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a b s t r a c t

In several situations the consequences of an actor’s choices are also affected by the actions of
other actors. This is one of the aspects which determines the complexity of social systemsQ2
and make them behave as a whole. Systems characterized by such a trade-off between
individual choices and collective behavior are ubiquitous and have been studied extensively
in different fields. Schelling, in his seminal papers (1973, 1978), provided an interesting
analysis of binary choice games with externalities. In this work we analyze some aspects
of actor decisions. Specifically we shall see what are the consequences of assuming that
switching decisions may also depend on how close to each other the payoffs are. By making
explicit some of these aspects we are able to analyze the dynamics of the population where
the actor decision process is made more explicit and also to characterize several interesting
mathematical aspects which contribute to the complexity of the resulting dynamics. As we
shall see, several kinds of dynamic behaviors may occur, characterized by cyclic behaviors
(attracting cycles of any period may occur), also associated with new kinds of bifurcations,
called big-bang bifurcation points, leading to the so-called period increment bifurcation
structure or to the period adding bifurcation structure.

© 2010 Published by Elsevier B.V.

1. Introduction28

One of the aspects which determines the complexity of social systems and makes them behave as a whole is that in several29

situations the consequences of an actor’s choices are also affected by the actions of other actors. The trade-off between30

individual choices and collective behavior is ubiquitous and has been studied extensively in different fields. For example,31

Schelling (1973, 1978) provided an interesting analysis of binary choice games with externalities. Although his approach32

was qualitative, its depth and the number of examples to real life situations made his contributions seminal, and showed33

how this kind of games can describe several important situations which characterize social dynamics. Recently, Bischi and34

Merlone (2009) gave a quantitative formalization of this kind of dynamics. The resulting mathematical formalization have35

been examined by Bischi et al. (2009a,b). Finally, Bischi and Merlone (2010a) provided a generalization of the binary choice36
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model in which interactions are considered both in a single large group as in Schelling (1973) and small groups as in Galam37

(2003); for a review of these model the reader may see Bischi and Merlone (2010b).38

In Schelling (1973, 1978) and the other contributions we have cited, agents’ behavior depends on the number of people39

choosing one way or the other. In fact Schelling (1973, p. 383) assumes that “Everybody’s payoffs, whichever way he makes40

his choice, depend only on the number of people who choose one way or the other”. In other words each actor’s decision41

process is assumed to be a sort of “black-box” for which input are payoff values and output are decisions.42

Although it is possible to reduce decisions simply to payoff comparison, several other aspects are important to determine43

how decisions are made (see for example Bazerman, 2006).44

In this paper we analyze some other aspects of actor decisions. In fact in the model analyzed in Bischi et al. (2009a,b)45

impulsive agents are considered. Impulsive agents are defined as agents for which the switching decision depends only on46

the sign of the difference between payoffs no matter how much they differ. There, depending on the switching fractions of47

agents, the dynamics are analyzed and the bifurcation diagrams are studied. By contrast, in this paper we take into account48

also the difference between payoffs; in other words, we consider agents whose switch depends not only on the sign of49

the difference payoffs, but also takes into account the relative difference between payoffs. As we shall see, similarly to the50

previous case, the dynamics will be characterized by stable cycles of any period.51

The structure of the paper is the following. In Section 2 the model we consider is described and the behavior of agents52

is formalized. In Section 3 the map is analyzed for linear payoff functions and depending on the payoff structure two cases53

are identified. These two cases are analyzed in Sections 4 and 5 where several kinds of dynamic behaviors of the system54

are studied. In particular, we show that breaking the continuity an attracting fixed point may lead to an attracting cycle of55

any period, and the period of the cycles depends on the two key parameters of the model. We shall see that changing such56

parameters, different border collision bifurcation curves are crossed, leading to cycles of different periods. Moreover, new57

kinds of bifurcation points are evidenced in the two-dimensional parameter plane, characterizing particular regions always58

associated with cycles of different periods. Following Avrutin and Schanz (2006), Gardini et al. (submitted for publication),59

and Avrutin et al. (2010b, submitted for publication), they are called big-bang bifurcation points, and are associated with60

particular bifurcation structures, following the so-called period increment structure or to the period adding structure. These61

terms are used in Avrutin and Schanz (2006) as well as the recent literature. Roughly speaking, an adding structure means62

that when we have two cycles of different periods p and q, then for suitable values of the parameters, also a cycle with period63

(p + q) exists, and this applies iteratively, and bistability cannot occur. While an increment structure means that we may64

have only an infinite sequence of cycles with increasing periods (incremented by a fixed constant), and they may coexist in65

pair. Finally, Section 6 is devoted to the conclusions and further research.66

2. The model67

Several contributions analyze and extend the mathematical formalization of Schelling (1973). In particular, Bischi and68

Merlone (2009) propose a model where a population of agents is assumed to be engaged in a game where they have to69

choose between two strategies, say A and B respectively. In their formalization, the set of agents is normalized to the interval70

[0, 1] and the real variable x ∈ [0, 1] denotes the fraction of agents choosing strategy A. The payoffs are functions of x, say71

A : [0, 1] → R, B : [0, 1] → R, where A(x) and B(x) represent the payoff associated to strategies A and B respectively. Since72

binary choices are considered, when fraction x is playing A, then fraction 1 − x is playing B. Therefore x = 0 means that the73

whole population of agents is playing B and x = 1 means that all the agents are playing A. The basic assumption modeling the74

dynamic adjustment is that x will increase whenever A(x) > B(x); on the contrary, it will decrease when the opposite inequality75

holds.76

This assumption, together with the constraint x ∈ [0, 1], implies that equilibria are located either in the points x = x∗ such77

that A(x∗) = B(x∗), or in x = 0 (provided that A(0) < B(0)) or in x = 1 (provided that A(1) > B(1)). These results are consistent to78

Schelling (1973). Bischi and Merlone (2009) consider a process of repeated binary choices in which the agents update their79

binary choice at each time period t = 0, 1, 2, . . ., and xt represents the number of agents playing strategy A at time period t. At80

time (t + 1)xt becomes common knowledge, hence each agent is able to either compute or observe payoffs B (xt) and A (xt).81

Agents are homogeneous and myopic, that is, their aim is to increase their own next period payoff.82

A discrete-time model is obtained: at time t if xt agents are playing strategy A and A(xt) < B (xt) then a fraction of the xt83

agents that are playing A will switch to strategy B in the following turn. Analogously, if A(xt) > B (xt) then a fraction of the84

(1 − xt) agents that are playing B will switch to strategy A. In Bischi and Merlone (2009), Bischi et al. (2009a,b) agents are85

assumed to be impulsive, that is, agents immediately switch their strategies even when the difference between payoffs is86

extremely small. In this case the dynamics can be formalized as87

M : x′ =
{

f (x) = x + ıA(x)(1 − x) if A(x) > B(x)
x if A(x) = B(x)
g(x) = (1 − ıB(x))x if A(x) < B(x)

(1)88

where the parameters ıA and ıB represent how many agents may switch to A and B respectively. When ıA = ıB, there are no89

differences in the propensity to switch to either strategies. The case with ıA and ıB constant parameters varying in [0, 1) is90

the one already investigated in the cited literature. Now they are assumed to be functions depending on fraction x of agents.91
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It is worth noticing that depending on the functions involved in its definition, the map M may be continuous or discon-92

tinuous, and even if f(x) and g(x), as well as B(x) and A(x), are smooth functions, the map M in general is not differentiable93

where the payoff functions intersect.94

In this paper we assume that agents are concerned not only about the sign difference in payoffs but also on the relative95

difference. That is, the smaller the absolute difference between payoffs the less likely are agents to switch choices. We96

consider two polar behaviors. On one side agents are impulsive and switch to the higher payoff choices whatever is the97

difference. On the other side, agents’ decision depends on the magnitude of payoffs difference and not just on the sign. We98

consider also agents who decide to switch according to a combination of these behaviors. This can be formalized as follows.99

Assume that when x ∈ ]0, 1[ agents are playing A, the payoffs are A(x) and B(x) with B(x) < A(x). Then let ıA(x) be the fraction100

of the 1 − x agents playing B who in the next turn will switch to A; we assume that101

ıA(x) = min
{

kA + (1 − kA) [A(x) − B(x)] , 1
}

(2)102

with kA ∈ [0, 1). Analogously for B(x) > A(x) we define103

ıB(x) = min
{

kB + (1 − kB) [B(x) − A(x)] , 1
}

(3)104

with kB ∈ [0, 1).105

The function upper bound 1 rules out results in which more than existing agents switch choice.106

When kA,B = 0, agents decide taking into account the absolute value of the difference between the payoffs. That is, the107

fraction of those switching decision is proportional to the relative difference between payoffs.108

Therefore the resulting map is M, x′ = M(x) defined above in (1) with ıA(x) and ıB(x) defined in (2) and (3), respectively,109

with kA and kB are constants belonging to the interval [0, 1).110

3. The analysis of the map with linear payoffs111

With impulsive agents as in Bischi and Merlone (2009) and Bischi et al. (2009a,b) the relative difference between payoff112

is not important, therefore they considered only the number of intersections between payoffs functions. On the contrary,113

when agents switching choices depend on the relative difference between payoffs, their expression is important. For the114

sake of simplicity, in the following we consider the case in which A(x) and B(x) are linear functions:115

A(x) = mAx + qA

B(x) = mBx + qB
(4)116

in which the offsets qA and qB as well as the slopes mA and mB may be of any kind, in sign and modulus.117

Let us define as d the solution of the equation118

A(x) = B(x) (5)119

that is, assuming mB /= mA:120

d = qA − qB

mB − mA
(6)121

We are interested in the case with the intersection point d ∈ [0, 1] which implies the following constraints in the param-122

eters:123

0 ≤ qA − qB

mB − mA
≤ 1 (7)124

so that we have two cases: either (I) qA < qB and mB < mA or (II) qA > qB and mB > mA, and this leads to the following conditions,125

respectively:126

Case (I): When qA < qB and mB < mA, then it must be127

qA < qB < qA + mA − mB (8)128

Case (II): When qA > qB and mB > mA, then it must be129

qB < qA < qB + mB − mA (9)130

In our specific model. We have A(x) ≥ B(x) for (mA − mB)x ≥ (qB − qA). Thus in Case (I) we have mA > mB, so that A(x) ≥ B(x)131

occurs for x ≥ d, where d is defined in (6). As a consequence the map M to investigate becomes as follows:132

MI : x′ =
{

g(x) = (1 − ıB(x))x if x < d
x if x = d
f (x) = x + ıA(x)(1 − x) if x > d

(10)133
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By contrast, in Case (II) we have mA < mB, and A(x) ≥ B(x) occurs for x ≤ d. Thus the map M to investigate becomes as134

follows:135

MII : x′ =
{

f (x) = x + ıA(x)(1 − x) if x < d
x if x = d
g(x) = (1 − ıB(x))x if x > d

(11)136

As it concerns the function ıA(x), we have that the constraint kA + (1 − kA)(A(x) − B(x)) < 1 occurs for A(x) − B(x) < 1 that is137

(mA − mB)x < 1 − (qA − qB) (12)138

in which case139

ıA(x) = [kA + (1 − kA)(qA − qB)] − (1 − kA)(mB − mA)x (13)140

otherwise ıA(x) = 1. Notice that if ıA(x) = 1 then we have f(x) = 1.141

For the function ıB(x) we have that the constraint [kB + (1 − kB)(B(x) − A(x))] < 1 occurs for B(x) − A(x) < 1 that is for142

(mB − mA)x < 1 + (qA − qB) (14)143

in which case144

ıB(x) = [kB − (1 − kB)(qA − qB)] + (1 − kB)(mB − mA)x (15)145

otherwise ıB(x) = 1. Notice that for ıB(x) = 1 then we have g(x) = 0.146

The properties of the single functions f(x) and g(x) in the two different cases under study, leading to the two different147

maps MI and MII defined above, are considered in the next sections. Here we only prove the following:148

Proposition 1. In both Cases (I) and (II) the map M is continuous in x = d for kA = kB = 0.149

In fact, from g(d) = (1 − ıB(d))d and ıB(d) = kB we have g(d) = (1 − kB)d ≤ d and g(d) ∈ (0, 1). Thus for kB = 0 we have g(d) = d150

(while g(d) < d for kB ∈ (0, 1)).151

Similarly from f(d) = d + ıA(d)(1 − d) and ıA(d) = kA we have f(d) = d + kA(1 − d) ≥ d and f(d) ∈ (0, 1). Thus for kA = 0 we have152

f(d) = d (while f(d) > d for kA ∈ (0, 1)).153

4. Case (I): dynamics of the map MI154

In this case we have
155

qA < qB < qA + (mA − mB), (mA − mB) > 0156

then for x < d = (qB − qA)/(mA − mB) the constraint (14) is satisfied for (mA − mB)x > − 1 + (qB − qA). Therefore, for x > x̄ = (−1 +157

(qB − qA))/(mA − mB) the function g(x) is defined as follows:158

g(x) = (1 − ıB(x))x
= x − x[kB − (1 − kB)(qA − qB)] − (1 − kB)(mB − mA)x2

= x[1 − kB + (1 − kB)(qA − qB)] − (1 − kB)(mB − mA)x2

= x(1 − kB)[1 − (qB − qA)] + (1 − kB)(mA − mB)x2

(16)159

so that160

g′(x) = (1 − kB)[1 − (qB − qA)] + 2(1 − kB)(mA − mB)x
g′′(x) = 2(1 − kB)(mA − mB) > 0

(17)161

and from g′(x) = (1 − kB)[1 − (qB − qA) + 2(mA − mB)x] we have g′(x) ≥ 0 for x ≥ xg,c =(− 1 + (qB − qA))/(2(mA − mB)). Assuming162

that the critical point xg,c of g(x) is negative, which occurs for 0 < (qB − qA) < 1, we have that in the range of its definition the163

function g(x) is increasing and convex, with164

g′(0) = (1 − kB)[1 − (qB − qA)] ∈ (0, 1) (18)165

Regarding the function f(x), we have that the constraint (12) is satisfied for x < (1 + (qB − qA))/(mA − mB) in which case the166

function f(x) is defined as follows:167

f (x) = x + ıA(x)(1 − x)
= x + (1 − x)[kA + (1 − kA)(qA − qB)] − (1 − kA)(mB − mA)x(1 − x)
= −˛1x2 + ˇ1x + �1

(19)168

where169

˛1 = (1 − kA)(mA − mB)
ˇ1 = (1 − kA)[1 + (qB − qA) + (mA − mB)]
�1 = kA + (1 − kA)(qA − qB)

(20)170
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Fig. 1. qA = 0.2, qB = 0.5, mA = 0, mB = − 0.5. In (a) kA = kB = 0. In (b) kA = 0.4, kB = 0.2.

and its first and second derivative are given by:171

f ′(x) = −2(1 − kA)(mA − mB)x + (1 − kA)[1 + (qB − qA) + (mA − mB)]
f ′′(x) = −2(1 − kA)(mA − mB) < 0

(21)172

We have f′(x) ≥ 0 for x ≤ xf,c = (1 + (qB − qA) + (mA − mB))/(2(mA − mB)). Assuming that the critical point xf,c of f(x) is greater173

than 1, which occurs for (mA − mB) < 1 + (qB − qA), we have that in the range of its definition the function f(x) is increasing and174

concave, and (by using the assumption, in (8)) with175

f ′(1) = (1 − kA)[1 + (qB − qA) − (mA − mB)] ∈ (0, 1) (22)176

Summarizing, the explicit expression of the map MI is the following:177

MI : x′ =
{

g(x) = x(1 − kB)[1 − (qB − qA)] + (1 − kB)(mA − mB)x2 if 0 ≤ x < d
x if x = d
f (x) = −˛1x2 + ˇ1x + �1 if d < x ≤ 1

(23)178

We remark that the critical points of f(x) and g(x) are independent of the values of the two parameters kA and kB.179

Then for kA = kB = 0MI(x) is a continuous function, with three fixed points: x∗
0 = 0, x∗

1 = 1 and x∗
d

= d. The continuity in the180

end points of the interval is immediate. The continuity in x = d comes from Proposition 1.181

The derivatives in the fixed points are given by g′(0) = [1 − (qB − qA)] ∈ (0, 1); f′(1) = [1 + (qB − qA) − (mA − mB)] ∈ (0, 1). In182

the fixed point d we have g′(d) = 1 + (qB − qA) > 1 and f′(d) = 1 − (qB − qA) + (mA − mB) > 1 so that x∗
0 and x∗

1 are both locally stable183

(from the side of interest), while x∗
d

is a repelling fixed point, and separates the two basins of attraction: B(0) = [0, d) and184

B(1) = (d, 1]. An example is shown in Fig. 1(a). Now considering any value for the parameters kA and kB different from185

0 and smaller that 1, we have that map F becomes discontinuous in d, and the kind of continuity breaking is, let us say,186

increasing/increasing with positive jump, being g(d) = (1 − kB)d < d and f(d) = d + kA(1 − d) > d. Then the dynamics of the map187

F persists to be of the same kind. In fact, as noticed above, also now we have g′(0) ∈ (0, 1) and f′(1) ∈ (0, 1) thus we still have188

two coexistent fixed points x∗
0 = 0 and x∗

1 = 1, whose basins of attraction are separated by the point x = d. That is, as in the189

continuous case, we still have B(0) = [0, d) and B(1) = (d, 1]. As example is shown in Fig. 1(b).190

Summarizing we have proved the following191

Proposition 2. Let 0 < (qB − qA) < 1 and 0 < (mA − mB) < 1 + (qB − qA). Then g(x) is increasing and convex and f(x) is increasing192

and concave. For any value of the parameters kA and kB in [0, 1], the map MI has the fixed point x∗
0 = 0 which attracts the points193

in [0, d) and the fixed point x∗
1 = 1 which attracts the points in (d, 1].194

This result confirms and extends the findings of Schelling (1973, p. 403). In fact, in his analysis, Schelling concludes that,195

depending on the payoff curves position, there may exist two stable equilibria, namely x = 0 and x = 1, where everybody is196

respectively choosing one of the choices, whereas the inner equilibrium x∗
d

is unstable. While the conclusion by Schelling197

is based on the qualitative properties of the system, the same results are confirmed by Bischi and Merlone (2009) in their198

quantitative model. As the model we present in this paper extends the behavior by agents considered in the literature it is199

important to remark that even when agents consider difference between payoff not just in terms of sign, there are situations200

in which the population converge to one of the two choices.201

As described in the next section, the dynamics occurring in the second case are much different, and leads to attracting202

cycles of any period.203
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5. Case (II): dynamics of the map MII204

Let us now consider Case (II) and the related map MII. The parameters satisfy205

qB < qA < qB + mB − mA, (mB − mA) > 0 (24)206

so that for the function ıA(x) we have that (12) holds for (mB − mA)x > − 1 + (qA − qB). Thus for207

x > x̄ = −1 + (qA − qB)
(mB − mA)

(25)208

it is ıA(x) = [kA + (1 − kA)(qA − qB)] − (1 − kA)(mB − mA)x and the function f(x) is defined as follows:209

f (x) = x + ıA(x)(1 − x)
= x + (1 − x)[kA + (1 − kA)(qA − qB)] − (1 − kA)(mB − mA)x(1 − x)
= ˛2x2 + ˇ2x + �2

210

where211

˛2 = (1 − kA)(mB − mA)
ˇ2 = (1 − kA)[1 − (qA − qB) − (mB − mA)]
�2 = kA + (1 − kA)(qA − qB)

(26)212

We also have213

f ′(x) = 2(1 − kA)(mB − mA)x + (1 − kA)[1 − (qA − qB) − (mB − mA)]
f ′′(x) = 2(1 − kA)(mB − mA) > 0

(27)214

and f′(x) ≥ 0 for x ≥ xf,c =(− 1 + (qA − qB) + (mB − mA))/(2(mB − mA)).215

Two cases may occur, that is, the critical point xf,c of f(x) may be smaller than d or not. As we shall see, these two cases216

qualify different kinds of dynamic behaviors. We have217

xf,c < d for (mB − mA) < 1 + (qA − qB) (28)218

otherwise the critical point is xf,c > d. Summarizing:219

(a) for (mB − mA) < 1 + (qA − qB) we have xf,c < d and f(x) is increasing and convex for x in a left neighborhood of d;220

(b) for (mB − mA) > 1 + (qA − qB) we have xf,c > d and f(x) is decreasing and convex for x in a left neighborhood of d.221

Regarding the second function g(x), we have that (mB − mA)x < 1 + (qA − qB) occurs for222

x < x∗ = 1 + (qA − qB)
(mB − mA)

(29)223

so that for x > x∗ the function ıB(x) = 1 leads to g(x) = 0, while for x < x∗ we have224

ıB(x) = [kB − (1 − kB)(qA − qB)] + (1 − kB)(mB − mA)x and225

g(x) = x(1 − kB)[1 + (qA − qB)] − (1 − kB)(mB − mA)x2 (30)226

its derivatives are as follows:227

g′(x) = (1 − kB)[1 + (qA − qB)] − 2(1 − kB)(mB − mA)x
g′′(x) = −2(1 − kB)(mB − mA) < 0

(31)228

From g′(x) = (1 − kB)[1 + (qA − qB) − 2(mB − mA)x] we have g′(x) ≥ 0 for x ≤ xg,c = (1 + (qA − qB))/(2(mB − mA)). Notice that229

xg,c > d for (qA − qB) < 1 (32)230

Thus we can distinguish two cases also here:231

(a′) for (qA − qB) < 1 we have xg,c > d so that for d < x < x∗ the function g(x) defined in (30) is locally increasing and concave in a232

right neighborhood of d;233

(b′) for (qA − qB) > 1 we have xg,c < d so that for d < x < x∗ the function g(x) defined in (30) is locally decreasing and concave in234

a right neighborhood of d.235

Now notice that236

x̄ = −1 + (qA − qB)
(mB − mA)

> 0 for (qA − qB) > 1 (33)237
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Fig. 2. In (a) the region of interest for parameters kA and kB; in (b) regions R1, R2, R3, and R4.

and that238

x∗ = 1 + (qA − qB)
(mB − mA)

< 1 for (mB − mA) > 1 + (qA − qB) (34)239

Summarizing, the explicit expression of the map MII is the following:240

MII : x′ =

⎧⎪⎪⎨
⎪⎪⎩

f (x) = 1 if x ≤ x̄
f (x) = ˛2x2 + ˇ2x + �2 if x̄ < x < d
x if x = d
g(x) = x(1 − kB)[1 + (qA − qB)] − (1 − kB)(mB − mA)x2 if d < x < x∗

g(x) = 0 if x ≥ x∗

(35)241

and it is continuous in the points x = x̄ and x = x∗.242

We remark that the critical points xf,c and xg,c of f(x) and g(x) respectively, do not depend on the parameters kA and kB as243

well as all the other conditions which distinguish between the cases described above.244

In all the possible cases, for kA = kB = 0 the map MII is continuous in x = d (from Property 1) and in x = d the local attractivity245

or instability is determined from the derivatives of the functions on the two sides of d, where we have246

f ′(d) = (1 − kA)[1 + (qA − qB) − (mB − mA)] (36)247

which is positive in case (a) and negative in case (b); in both cases its modulus may be smaller or higher than one.248

Similarly also249

g′(d) = (1 − kB)[1 − (qA − qB)] (37)250

which is positive in case (a′), negative in case (b′), and its modulus may be smaller or higher than one. However, we notice251

that when the critical point xf,c is close to d then the derivatives f′(d) is close to zero, and thus the fixed point d is locally252

attracting on the left side of the discontinuity, and this local stability existing for kA = 0 is the same for any value kA ∈ (0, 1).253

Similarly when the critical point xg,c is close to d then the derivatives g′(d) is close to zero, and thus the fixed point d is locally254

attracting on the right side of the discontinuity, and this local stability existing for kB = 0 is the same for any value kB ∈ (0, 1).255

In particular, for | f′(d) |<1 and | g′(d) |<1, at kA = kB = 0 the continuous map MII has an attracting fixed point in x = d.256

As already remarked, we can have all the possible combinations (a)–(a′), (b)–(a′), (a)–(b′), (b)–(b′). For the sake of sim-257

plicity, they are summarized in Fig. 2(b) in the parameter plane ((qA − qB), (mB − mA)) leading to the regions R1, R2, R3, and258

R4, respectively. In Fig. 2(a) we show schematically the parameter region of interest. In Fig. 2(b) we also show for kA,B ∈ (0, 1)259

the qualitative behavior of the functions in a neighborhood of x = d in the related regions. In fact, for values of the parameters260

kA and kB not both zero, the map MII has a discontinuity in x = d, with261

f (d) = d + kA(1 − d) > d and g(d) = (1 − kB)d < d (38)262
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This continuity breaking has a strong effect on the dynamic behaviors. In fact, except for the occurrence of cases (b) and263

(b′), we have that for values of (kA, kB) in any neighborhood of (0, 0) we can have attracting cycles of any period, as stated in264

the following265

Proposition 3. (1) Let 0 < (qA − qB) < 1 and (qA − qB) < (mB − mA) < 1 + (qA − qB) (region R1). Then in the two-dimensional positive266

parameter plane (kA, kB) the point (0, 0) is a big-bang bifurcation point for the map MII, from which infinitely many BCB curves267

are issuing, following the period adding scheme.268

(2) Let 0 < (qA − qB) < 1 and 1 + (qA − qB) < (mB − mA) < 2 + (qA − qB) (belonging to region R2). Then in the two-dimensional pos-269

itive parameter plane (kA, kB) the point (0, 0) is a big-bang bifurcation point for the map MII, from which infinitely many BCB270

curves are issuing, following the period increment scheme.271

(3) Let 1 < (qA − qB) < (mB − mA) < 1 + (qA − qB) < 3 (belonging to region R3). Then in the two-dimensional positive parameter272

plane (kA, kB) the point (0, 0) is a big-bang bifurcation point for the map MII, from which infinitely many BCB curves are issuing,273

following the period increment scheme.274

(4) Let 2 < 1 + (qA − qB) < (mB − mA) < 2 + (qA − qB) < 4 (belonging to region R4). Then for (kA, kB) in the two-dimensional positive275

parameter plane close to the point (0, 0) there exists an attracting cycle of period 2.276

The proof is reported in Appendix A.277

Remark 1. We notice that the conditions given in Proposition 3 are sufficient, but not necessary. In fact, as we shall see in278

the examples in the next subsections, the condition of local stability for f′(d) and g′(d) are quite strong, and the results of the279

big-bang bifurcation points can be seen also when these conditions are not satisfied.280

Remark 2. The results of the continuity breaking are local, i.e., these hold for values of the parameters (kA, kB) close to the281

point (0, 0), but relevant results also exist in large, for values of the parameters (kA, kB) far from the point (0, 0). These are282

related with the global shapes of the functions f(x) and g(x) (while the previous result is only due to the local shape, close to283

the discontinuity point x = d). These further bifurcations are due to the intersection of BCB curves, whose equations will be284

given in implicit form. The existence of intersections leads to other big-bang bifurcation points (analogous to the origin (0,285

0) of the parameter plane), from which infinitely many curves issue, following the period adding structure.286

In the next subsections we shall illustrate several examples. In particular, in the last one, we shall see that the result for287

parameter values in the region R4 holds in large.288

5.1. Increasing/increasing case289

Let us consider the parameters of the map MII belonging to the region R1. As remarked above, we have that when MII is290

continuous (kA = kB = 0), the fixed point x∗
d

= d is attracting on both sides and locally attracting for T. When the continuity is291

broken and a jump in x = d occurs, the parameters in this region R1 lead to a discontinuous map with an increasing branch292

on the left of x = d, above the diagonal, and an increasing branch on the right, below the diagonal, so that the fixed point293

disappears and no fixed points are left in a neighborhood of x = d. Locally the map has the qualitative shape shown in Fig. 2294

(region R1). The jump in x = d is determined by f(d) (upper value) and g(d) (lower value). These values determine an absorbing295

interval I = [g(d), f(d)] from which the dynamics cannot escape. We recall that this increasing/increasing case was already296

considered by Keener (1980) in a remarkable paper, and we know that, as long as the map is uniquely invertible in I, only297

stable cycles can exist, and only one at each fixed parameters (i.e., bistability cannot occur). Moreover, the structure of all298

the possible existing cycles has been recently described in Avrutin et al. (submitted for publication) showing also how to299

obtain also the BCB curves of the period adding structure. Locally, for (kA, kB) in a neighborhood of (0, 0), the functions may300

be approximated by the linear parts in x = d, leading to a piecewise linear map with a discontinuity point. The linear case has301

been fully described in Gardini et al. (2010a), Avrutin et al. (2010a), for which not only the structure can be explained, but302

also the bifurcation curves can be determined analytically. We notice that inside the absorbing interval I the only possible303

bifurcations are due to a collision with a periodic point with the discontinuity point, that is, only border collision bifurcations304

(BCB) can occur.305

In Fig. 3 we show an example of continuity breaking in this region. When the map is discontinuous, Fig. 3(b) shows the306

convergence to a stable 2-cycle. However the period of the attracting cycle existing in the discontinuous map MII depends307

on the relative values of the parameters kA and kB. A picture in the whole parameter plane (kA, kB) where both variables308

range between 0 and 1 is shown in Fig. 4(a), while Fig. 4(b) shows an enlarged part, close to the point (0, 0). There, it can be309

appreciated the BCB structure related with a piecewise linear discontinuous map, for which the boundaries of the periodicity310

regions (BCB curves) can also be detected analytically. There are periodicity regions associated with cycles of first complexity311

level (following the notation introduced by Leonov (1959, 1962) and used also in Gardini et al. (2010a), which are also known312

as principal cycles or maximal cycles. Below we give the equation in implicit form of the BCB curves bounding the regions.313

Between any pair of consecutive periodicity regions of the first level, two infinite families of periodicity regions can be found,314

following the Farey summation rule in the period and rotation number (Hao, 1989), called of second complexity level, and the315

process continues for any level of complexity.316

The cycles can be identified using a symbolic sequence, in which we use the letter L (resp. R) to denote a periodic point on317

the left (resp. right) side of the discontinuity point. We recall that a sequence is cyclically invariant, as it represents periodic318
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Fig. 3. qA = 0.7, qB = 0.2, mA = 0, mB = 0.9. In (a) kA = kB = 0. In (b) kA = 0.2, kB = 0.1, a 2-cycle is attracting.

points of the same cycle. For example, maximal cycles have the symbolic sequence LRn or RLn for any n ≥ 1.319

In our map MII, the periodicity regions of maximal cycles of symbolic sequence LRn for any n ≥ 1 have as limit set the320

axis kA, of equation kB = 0. The unique periodic point on the left side of x = d of these cycles can be determined by using the321

equation gn ◦ f(x) = x. The boundaries of the periodicity regions in which these cycles exist are given by the BCB curves of322

implicit equation as follows:323

gn ◦ f (d) = d, gn−1 ◦ f ◦ g(d) = d (39)324

On the contrary, the periodicity regions of maximal cycles of symbolic sequence RLn for any n ≥ 1 have as limit set the325

other axis, of equation kA = 0. The unique periodic point on the right side of x = d of these cycles can be determined by using326

the equation fn ◦ g(x) = x. The boundaries of the periodicity regions in which these cycles exist are given by the BCB curves of327

implicit equation as follows:328

f n ◦ g(d) = d, f n−1 ◦ g ◦ f (d) = d (40)329

Similarly we can write the implicit equations of the BCB curves for any level of complexity.330

As already remarked, this structure certainly occurs locally, close to (0, 0). On the other hand, when (kA, kB) are changed331

more in large, the qualitative shape of the map is no longer only increasing/increasing. That is, in the absorbing interval332

inside which the dynamics of the map are confined, the nonlinear functions f(x) and g(x), modify their shape, and other333

bifurcations may occur. An example is illustrated in the particular point P∗ shown in Fig. 4(a). This particular bifurcation334

point, as well as the origin (0, 0), is a big-bang bifurcation. In order to provide a better illustration of this bifurcation point335

Fig. 4. qA = 0.7, qB = 0.2, mA = 0, mB = 0.9. BCB in the parameter plane (kA , kB). In (b) the enlarged part of the small square close to (0, 0).
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Fig. 5. qA = 0.4, qB = 0.2, mA = 0, mB = 0.9. In (a) kA = kB = 0. In (b) kA = 0.58, kB = 0.4444; the initial point x = 0.5 converges to the 3-cycle, the initial point x = 0.6
converges to the 2-cycle.

we consider a different example, where this particular point is better observable.336

In Fig. 5 we show the continuity breaking at other parameters always belonging to the region R1, while in Fig. 6 we can337

see that the periodicity regions having as limit set the kA axis are wider, so that we can better observe that the BCB curves338

of the 2-cycle and the 3-cycle intersect in a point P∗
2 illustrated in Fig. 6(a). Locally the behavior of the periodicity tongues is339

the one qualitatively drawn in Fig. 6(b). That is, on the right of such a point there is a region of overlapping, inside which we340

can see coexistence of a 2-cycle and of a 3-c ycle. A numerical example is shown in Fig. 5(b), for a parameter point taken inside341

this overlapping region: taking an initial condition close to the left of the discontinuity point x = d we have convergence to342

the 2-cycle, whose periodic points have been drawn on the bisectrix of Fig. 5(b), while taking an initial condition close to343

the right of the discontinuity point x = d we have convergence to the 3-cycle, whose periodic points have been drawn on the344

graphs of the functions of Fig. 5(b). It is clear that this big-bang bifurcation point is not unique. In fact, we can see that all345

the periodicity regions of the maximal cycles with symbolic sequence LRn for any n ≥ 1 have a region of bistability issuing346

from a big-bang bifurcation point in which they are intersecting in pair, that is P∗
n = BCBLRn ∩ BCBLRn+1 exist for any n ≥ 1.347

5.2. Decreasing/increasing case348

In this section we consider parameters in the region R2. As already remarked, the continuity breaking is characterized by349

a locally decreasing branch on the left side of the discontinuity point x = d, and a locally increasing branch on the right side350

of it.351

Fig. 6. qA = 0.4, qB = 0.2, mA = 0, mB = 0.9. In (a) BCB in the parameter plane (kA , kB). In (b) qualitative picture of the BCB structure leading to a big-bang
bifurcation point P∗ .
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Fig. 7. qA = 0.7, qB = 0.2, mA = 0, mB = 1.9. In (a) kA = kB = 0. In (b) kA = 0.2, kB = 0.1.

An example is shown in Fig. 7 where, besides the point x = d, also the point x = x∗ at which g(x) becomes 0 is shown. In352

Fig. 7(b) the attracting set existing after the continuity breaking is a cycle of period 3, and here it is the only attracting set.353

However, for different values of the parameters kA and kB, it is also possible to find a case of bistability between a 3-cycle354

and a 2-cycle. In fact, we are in a regime in which the results provided in Gardini et al. (submitted for publication) applies,355

as shown in Fig. 8. That is, in a neighborhood of (kA, kB) = (0, 0) we have the period increment structure, where the maximal356

cycles of symbolic sequence LRn exist for any n ≥ 1. In general, the unique periodic point on the left side of x = d of these357

cycles can be determined by using the equation gn ◦ f(x) = x. The boundaries of the periodicity regions in which these cycles358

exist are given by the BCB curve of implicit equation already written in (39), that is, gn ◦ f(d) = d and gn−1 ◦ f ◦ g(d) = d. Locally,359

in a neighborhood of (kA, kB) = (0, 0), the periodicity regions of the maximal cycles must have a region of bistability (see360

Gardini and Tramontana, 2010; Avrutin et al., 2010b, submitted for publication; Gardini et al., submitted for publication). In361

Fig. 8(b) a bistability region is illustrated between the periodicity regions of the 2-cycle and the 3-cycle, as well as between362

the periodicity regions of the 3-cycle and the 4-cycle. Clearly all the other overlapping regions also exist, although very thin363

and not observable in Fig. 8(b). All the periodicity regions of the maximal cycles issuing from (0, 0) with symbolic sequence364

LRn for any n ≥ 1 have a region of bistability issuing from (0, 0).365

As we know, this structure occurs locally, close to (0, 0). However, when (kA, kB) are changed more in large, the qualitative366

shape of the map is no longer only decreasing/increasing, that is, in the absorbing interval inside which the dynamics of the367

Fig. 8. qA = 0.7, qB = 0.2, mA = 0, mB = 1.9. In (a) BCB in the parameter plane (kA , kB), and enlarged part in (b). In (b) a bistability region is emphasized. In (c)
the qualitative intersection of two BCB curves leading to a big-bang bifurcation point P∗ .
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Fig. 9. qA = 0.4, qB = 0.2, mA = 0, mB = 2.9. In (a) kA = kB = 0. In (b) kA = 0.1, kB = 0.05.

map are confined, the nonlinear functions f(x) and g(x), modify their shape, and other bifurcations may occur. An example is368

shown in the particular point P∗ illustrated in Fig. 8(a). Here, in large, the BCB curves defined by the equations in (39) have369

one more intersection leading to a big-bang bifurcation point through a different bifurcation mechanism. And this occurs370

in pair for all the periodicity regions of the maximal cycles issuing from (0, 0). The structure of all the big-bang bifurcation371

points is clearly similar to the one already met in the previous subsection, and qualitatively shown also in Fig. 8(c). That is,372

two periodicity regions are overlapping, leading to a portion of bistability (where both cycles exist), two regions where a373

unique cycle exists, and a region issuing from the intersection point in which these two cycles do not exist. Exactly in this374

last region the adding mechanism applies and an infinite number of periodicity regions can be found, following the period375

adding structure.376

A different example in which the different big-bang bifurcation points P∗
n = BCBLRn ∩ BCBLRn+1 for any n ≥ 1 can be seen377

in Figs. 9 and 10. In Fig. 10(b) we also show a one-dimensional bifurcation diagram of x as a function of kB along the path378

shown as a vertical line in Fig. 10(a), where it is possible to see the quick transition from a period to another one for the379

attracting set.380

5.3. Increasing/decreasing case381

When the parameters belong to the region R3, on the two sides of the discontinuity point the increasing and decreasing382

parts are exchanged; nevertheless the reasoning is similar. In the parameter plane (kA, kB) the BCB curves have a similar383

shape, although “symmetric” with respect to those described above. That is, in this case we have the periodicity regions of384

maximal cycles of symbolic sequence RLn for any n ≥ 1 having as limit set the kB axis, of equation kA = 0. The unique periodic385

point on the right side of x = d of these cycles can be determined by using the equation fn ◦ g(x) = x. The boundaries of the386

Fig. 10. qA = 0.4, qB = 0.2, mA = 0, mB = 2.9. In (a) BCB in the parameter plane (kA , kB), big-bang bifurcation points are emphasized. In (b) one dimensional
bifurcation diagram at kA = 0.2 fixed, along the vertical path shown in (a).
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Fig. 11. qA = 1.4, qB = 0.2, mA = 0, mB = 2.9. In (a) at kA = 0.05 and kB = 0.02 a local 2-cycle can be seen. In (b) at kB = 0.06 the 2-cycle with periodic points 0 and
1 is to the result of the constraints.

periodicity regions in which these cycles exist are given by the BCB curve of implicit equation fn ◦ g(d) = d and fn−1 ◦ g ◦ f(d) = d,387

as already given in (40). And similarly we have that in large these periodicity regions intersect in pair leading to infinitely388

many big-bang bifurcation points and related period adding structure between the two BCB curves involved.389

5.4. Decreasing/decreasing case390

When the parameters belong to region R4, the dynamic behavior of the map is very simple. Considering the derivatives391

f′(d) and g′(d) given in (27) and (31), respectively, when we have f′(d)g′(d) < 1 then a stable 2-cycle exists after the continuity392

breaking, as proved (locally) via Proposition 3. However even when this condition is not satisfied, and an absorbing interval393

including the discontinuity point does not exist, due to the shape of our functions f(x) and g(x) we can only have a stable394

2-cycle, as stated in the following395

Proposition 4. Let 2 < 1 + (qA − qB) < (mB − mA) < 2 + (qA − qB) (region R4). Then for (kA, kB) ∈ (0, 1] × (0, 1] a stable 2-cycle exists.396

Proof. When the parameters belong to region R4 the minimum of f(x) is above the discontinuity point, thus f(x) is decreasing397

in its region of definition. Similarly the maximum of g(x) is below the discontinuity point, thus g(x) is decreasing in its region398

of definition. It follows that a bounded (by construction) decreasing discontinuous function without a fixed point can have at399

most cycles of period 2. Here we have that a unique 2-cycle can exist, because the functions f(x) and g(x), when not constant,400

are second degree polynomials. �401

Two examples are shown in Fig. 11.402

6. Conclusions403

Recent literature has considered and examined discrete-time dynamic models of repeated binary choices with external-404

ities, based on the qualitative properties described by Schelling (1973). So far (Bischi et al., 2009a,b), the analysis has been405

conducted considering impulsive agents, i.e., agents who immediately switch their strategies even when the difference406

between payoffs is extremely small. In this paper we considered more realistic behaviors. In fact, we assumed that agents407

may decide to switch choices taking into account the relative difference in terms of payoffs. This way, we were able to model408

a continuum of behaviors which ranged from agents considering the payoffs in terms of relative differences to impulsive409

agents as in previous studies. The results of our analysis confirm Schelling’s findings about stable equilibria and also the410

occurrence of cyclic behaviors as described in Bischi and Merlone (2009) and analyzed in Bischi et al. (2009a,b). Nevertheless,411

in the case of cyclic behaviors, the analysis we provided in this paper shows different kinds of dynamics. First, while with412

impulsive agents the shape of payoff function is important just in terms of the number of intersections, with non-impulsive413

agents, the difference between payoffs values is important. Even in the case of linear payoffs the dynamics can be quite414

different depending on the relative difference between the slopes and intercepts of the payoff functions. In fact, depending415

on these values, in the origin (0, 0) we can have either a big-bang bifurcation point following the period adding scheme, or a416

big-bang bifurcation point following the period increment scheme or an attracting cycle of period 2 in its neighborhood. The417

analytic expression of the border collision bifurcation curves issuing from (0, 0) is given in implicit form. Furthermore, there418

may exists bifurcation-points different form the origin; since in the case of impulsive agents big-bang bifurcation points419

following the period adding scheme can occur only in the origin, this shows a remarkable difference in terms of dynamics.420

The fact that, under some conditions, we may have several big-bang bifurcation points shows how the dynamics, although421
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qualitatively similar, may be quite different from those analyzed with impulsive agents with respect to the period of the422

attracting set. In Bischi and Merlone (2009) the switching propensity was modeled in terms of the population of agents:423

given that one choice gave a larger payoff the parameter described the percentage of switching agents. On the contrary, in424

this paper the switching propensity becomes a function of how the agent considered the difference in payoffs. In this sense425

the switching propensity becomes a perception parameter instead of a decision parameter. This approach not only allowed426

us to describe a less simplified behavior of the agents but also provided more interesting dynamics with bifurcation points427

different from the origin.428

The case of nonlinear payoff curves is still to be analyzed, and is left for further research. Other interesting cases to429

investigate are those with more than a single intersection, as described in Schelling (1973). Finally it will be interesting to430

explore the boundary between small groups and large groups as in Bischi and Merlone (2010a,b).431

Appendix A.432

Proof of Proposition 3. At the discontinuity point x = d of the map MII we have f(d) = d + kA(1 − d) > d and g(d) = (1 − kB)d < d433

for ant kA,B ∈ (0, 1). The conditions given in Proposition 3 are such that | f′(d) |<1 and | g′(d) |<1, from (36) and (37) at kA = kB = 0,434

and thus | f′(d) |<1 and | g′(d) |<1 for any kA,B ∈ (0, 1). This proves that for values of the parameters (kA, kB) close to the point435

(0, 0), the map has bounded dynamics close to the discontinuity point. That is, there exists a trapping region close to the436

discontinuity point, from which the dynamics cannot escape.437

When the parameters satisfy the conditions of Case (II) and (a)–(b) given above (region R1), then we have point (1) of438

Proposition 3. At these parameters’ values we have f′(d) ∈ (0, 1) as well as g′(d) ∈ (0, 1), so that close to the discontinuity439

point, f(x) and g(x) are both increasing functions. Then for values of the parameters (kA, kB) close to the point (0, 0) the440

map MII possesses an absorbing interval given by I = [f(d), g(d)] = [d + kA(1 − d), (1 − kB)d] from which the dynamics cannot441

escape. These conditions are sufficient to state the existence of a big-bang bifurcation point from which periodicity regions442

following an adding scheme are issuing (Avrutin et al., submitted for publication). Thus in the region R1 we have a so-called443

increasing/increasing case with negative jump, in which the breaking of the continuity in the map MII leads to a unique stable444

cycle. Infinitely many periodicity regions, of any period, are issuing from the point (0, 0) in the two-dimensional parameter445

plane (kA, kB), following the so-called period adding structure.446

When the parameters satisfy point (2) of Proposition 3 then Case (II) and (a′)–(b) given above are satisfied, together with447

−1 < f′(d) < 0, so that close to the discontinuity point f(x) is decreasing and g(x) is an increasing functions (as g′(d) ∈ (0, 1)).448

Then for values of the parameters (kA, kB) close to the point (0, 0) the map MII possesses an absorbing interval given by449

I = [g(d), f ◦ g(d)] from which the dynamics cannot escape. These conditions are sufficient to state the existence of a big-bang450

bifurcation point. Infinitely many periodicity regions, of any period, are issuing from the point (0, 0) in the two-dimensional451

parameter plane (kA, kB), following the so-called period increment structure (with bistability regions) (Avrutin et al., submitted452

for publication; Gardini et al., submitted for publication).453

When the parameters satisfy point (3) of Proposition 3 then Case (II) and (a)–(b′) given above are satisfied, together with454

−1 < g′(d) < 0. Thus close to the discontinuity point f(x) is increasing and f′(d) ∈ (0, 1), while g(x) is a decreasing (and locally455

stable). Then for values of the parameters (kA, kB) close to the point (0, 0) the map MII possesses an absorbing interval given456

by I = [g ◦ f(d), f(d)] from which the dynamics cannot escape. As in the previous case, these conditions are sufficient to state457

the existence of a big-bang bifurcation point at which periodicity regions following an increment scheme (with bistability458

regions) exist.459

When the parameters satisfy point (4) of Proposition 3 then Case (II) and (a′)–(b′) given above are satisfied, together with460

−1 < f′(d) < 0 and −1 < g′(d) < 0. Thus close to the discontinuity point f(x) and g(x) are both decreasing (and locally stable).461

Then for values of the parameters (kA, kB) close to the point (0, 0) the map MII possesses a stable cycle of period 2, that is,462

two attracting fixed points of the composite functions g ◦ f(x) and f ◦ g(x) exist (Avrutin et al., submitted for publication). �463
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