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TOTAL BOUNDEDNESS IN METRIZABLE SPACES

GERALD BEER, CAMILLO COSTANTINI, AND SANDRO LEVI

Abstract. We show that a metric space 〈X, d〉 is separable if and only if

the bornology of its d-bounded subsets agrees with the bornology of ρ-totally
bounded subsets with respect to some equivalent remetrization ρ. We also show

that the bornology of d-totally bounded subsets agrees with the bornology of

ρ-bounded subsets with respect to some equivalent remetrization if and only
if the former bornology has a countable cofinal subfamily. Finally, we charac-

terize those bornologies on a metrizable space that are bornologies of totally

bounded sets as determined by some metric compatible with the topology.

1. Introduction

Let 〈X, d〉 be a metric space and for a nonempty subset A of X, let Aε denote its
ε-enlargement with respect to d, that is, Aε := {x ∈ X : d(x,A) < ε}. A subset A
of X is called bounded if for some x0 ∈ X and r > 0, we have A ⊆ {x0}r, whereas
A is called totally bounded if ∀ε > 0, ∃ a finite subset F of X with A ⊆ F ε.
We denote the nonempty d-bounded subsets of X by Bd(X) and the nonempty
d-totally bounded subsets by TBd(X). Sometimes the families coincide, e.g., in
finite dimensional Euclidean space.

In this paper, we address the following two questions:

(1) When does there exist an equivalent metric ρ such that Bd(X) = TBρ(X)?

(2) When does there exist an equivalent metric ρ such that TBd(X) = Bρ(X)?

Both questions have remarkably simple answers, with the class of metrics d satisfy-
ing (1) properly containing those that satisfy (2). Question (1) is less transparent
than (2) and we display two separate paths to its resolution, one of which employs a
natural embedding theorem for separable metric spaces into the sequence space RN

equipped with product topology. Question (2) was actually settled by two of the
authors in [6] as a byproduct of an investigation with very different goals, and here
we supply a more traditional proof as well as some additional conditions. Finally,
we characterize in two different ways those bornologies on a metrizable space that
are bornologies of totally bounded sets as determined by some compatible metric.
The first entails the existence of a certain kind of embedding, while the second is
stated in terms of star-developments.
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2 GERALD BEER, CAMILLO COSTANTINI, AND SANDRO LEVI

2. Preliminaries

If 〈X,T〉 is a Hausdorff space and A ⊆ X, we write cl(A) and int(A) for the
closure and interior of A respectively. We write P0(X) for the nonempty subsets of
X, and we denote the nonempty compact subsets of X by K0(X). If U is a cover
of X and A ⊆ X, we put St(A,U) := ∪{U ∈ U : U ∩ A 6= ∅}, of course writing
St(x,U) for St({x},U). A cover V is said to star-refine U provided the associated
cover {St(V,V) : V ∈ V} refines U. As shown by A. Stone [17], the existence of an
open star-refinement for each open cover of X is equivalent to paracompactness of
〈X,T〉 [10].

By a bornology B on X [3, 5, 12], we mean a family of nonempty subsets of X
that forms a cover of X and that is stable under finite unions and under taking
nonempty subsets. The nonempty relatively compact subsets RK0(X), i.e., the
subsets with compact closure, form a typical bornology; obviously, P0(X) is the
largest. By a base for a bornology, we mean a subfamily B0 of B that is cofinal in
B with respect to inclusion. For example, K0(X) is a closed base for RK0(X), and
in the case of the bornology of bounded sets determined by a metric d, the set of
all open (or closed) d-balls with fixed center and integral radius forms a countable
base for the bornology. We denote the open ball with center x and radius α > 0 in
a metric space 〈X, d〉 by Sd(x, α) and the corresponding closed ball by Sd(x, α).

Given a bornology B with a closed base on a Hausdorff space 〈X,T〉, we can
form the one-point extension of X associated with B by adjoining an ideal point
{p} to X and taking as open sets in the extension

T ∪ {X ∪ {p}\B : B ∈ B and cl(B) = B}.
Obviously, if B0 is a closed base for the bornology, {X ∪ {p}\B : B ∈ B0} forms
a neighborhood base at the ideal point p. As expected, conditions for various sep-
aration axioms to hold, as well as metrizability and complete metrizability, have
been identified (see, e.g., [4, 8, 9, 19]). As a particular case, when B is the bornol-
ogy of sets with compact closure, we get a compact extension, which is Hausdorff
provided X is locally compact [10]. More generally, starting with a bornology with
closed base, the one-point extension is Hausdorff if and only if each point of X has
a neighborhood belonging to the bornology (see, e.g., [19, pg. 821]).

We now focus on metrizable spaces. Let 〈X, d〉 be a metric space. We write
〈X̃, d̃〉 for its completion, which for definiteness may be viewed as the closure of
〈X, d〉 in the Banach space of bounded continuous real functions on X equipped
with the usual supremum norm under the identification x ↔ fx where fixing x0 ∈
X, fx := d(x, ·) − d(x0, ·) [10, pg. 338]. The space is called boundedly compact
if and only if each closed and bounded subset of X is compact. By a theorem of
Vaughan [18], a metrizable space has a compatible boundedly compact metric if
and only if the space is separable and locally compact.

If 〈X, d〉 is a metric space, then its bornology of d-bounded subsets Bd(X) has
a countable base, and ∀B ∈ Bd(X),∃B1 ∈ Bd(X) with cl(B) ⊆ int(B1). As
shown by Hu sixty years ago [14], these two properties of the family of metrically
bounded sets are characteristic of bornologies on a metrizable space that are the
bounded subsets with respect to some compatible metric. That is, if 〈X,T〉 is a
metrizable space, then a bornology B is the bornology of d-bounded subsets with
respect to some compatible metric if and only if (1) B has a countable base, and
(2) ∀B ∈ B,∃B1 ∈ B with cl(B) ⊆ int(B1). That this result is not standard
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in topology texts save Hu’s [15] is a little surprising. It turns out that if the
underlying metrizable space is noncompact, there are in fact uncountably many
distinct metric bornologies [3], that is, bornologies that arise as Bd(X) for some
compatible metric d. In the final section of this article, we will present two separate
sets of characteristic properties for bornologies of totally bounded sets with respect
to some compatible metric.

For completeness, we list standards facts about the totally bounded subsets of a
metric space 〈X, d〉, most of which should be well-known to the reader.

• TBd(X) is a bornology with closed base;
• A is compact if and only if A is both complete and totally bounded;
• A is totally bounded if and only if each sequence in A has a Cauchy subse-

quence;
• A is totally bounded if and only if ∀ε > 0, there exists a finite subset F of
A with A ⊆ F ε;
• Each totally bounded subset A is separable;

• TBd(X) ⊆ Bd(X); equality holds if and only if 〈X̃, d̃〉 is boundedly com-
pact;
• TBd(X) is preserved under each uniformly equivalent remetrization.

3. Interchanging Bounded Sets With Totally Bounded Sets

We immediately settle our first question.

Theorem 3.1. Let 〈X, d〉 be a metric space and let x0 ∈ X. The following condi-
tions are equivalent:

(1) There exists an equivalent metric ρ such that Bd(X) = TBρ(X);

(2) 〈X, d〉 is separable;

(3) There is a topological embedding ϕ of X into some metrizable space Y such
that the family {clY (ϕ(Sd(x0, n)) : n ∈ N} is cofinal in K0(Y );

(4) There exists an equivalent metric ρ with Bd(X) = TBρ(X) = Bρ(X).

Proof. (1) ⇒ (2). From (1), X is a countable union of totally bounded sets and
thus has a separable topology.

(2)⇒ (3). In the case that the metric d is bounded, by the Urysohn Embedding
Theorem [21, pg. 166], there exists an embedding ϕ of X into [0, 1]N. Let Y
be the closure of ϕ(X) in the product; choosing n with X = Sd(x0;n), we have
Y = clY (ϕ(Sd(x0, n)), and so this set alone is cofinal in K0(Y ).

If d is unbounded, let {xi : i ∈ N} be dense in X. For each positive integer i,
let fi : X → R be defined by fi(x) = d(x, xi). Suppose C 6= ∅ is a closed subset of
X and x /∈ C; choosing xi with d(x, xi) < d(xi, C), we have fi(x) /∈ cl(fi(C)). As
{fi : i ∈ N} separates points from closed sets

x 7→ 〈fi(x)〉∞i=1
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is an embedding ϕ of X into RN equipped with the product topology [15, 21]. We
claim that Y := cl(ϕ(X)) equipped with the relative topology satisfies the required
conditions.

Let d∗ be a metric compatible with the product topology on RN (see, e.g., [21,
pg. 162]). Let n ∈ N be arbitrary; ∀i ∈ N, fi(Sd(x0, n)) is bounded, so by the
Tychonoff Theorem, clY (ϕ(Sd(x0, n)) is compact as it is contained in a product
of closed intervals. It remains to show that {clY (ϕ(Sd(x0, n)) : n ∈ N} is cofinal
in K0(Y ). If not, suppose K ∈ K0(Y ) is contained in none of these. For each
n ∈ N, take yn ∈ K\clY (ϕ(Sd(x0, n)) and then xn ∈ X with d(xn, x0) > n and
d∗(yn, ϕ(xn)) < 1

n . By the compactness of K and the metrizability of Y , some
subsequence 〈ynk

〉∞k=1 of 〈yn〉∞n=1 must d∗-converge to some point of K. Denoting
the limit by y0, we also have 〈ϕ(xnk

)〉∞k=1 convergent to y0. But this is impossible,
as for each fixed i ∈ N, we have

limk→∞fi(xnk
) = limk→∞d(xnk

, xi) =∞.

(3)⇒ (4). We now identify X with ϕ(X). Note that X must be dense in Y , else
for some y0 ∈ Y, y0 /∈ clY (X). Thus, the compact set {y0} fails to be contained in
any set of the form clY (Sd(x0, n)), and this violates condition (3). Since K0(Y ) has
a countable cofinal subfamily and Y is first countable, by a theorem of Arens [2], Y
is locally compact, and since Y is locally compact, separable and metrizable, it has
a compatible boundedly compact metric ρ̃ [18]. Let us denote by ρ the trace of ρ̃ on
X ×X (note the appropriateness of the notation). By the sixth bulleted property
of total boundedness listed in the previous section, we have TBρ(X) = Bρ(X). It
remains to show that TBρ(X) = Bd(X).

Suppose first B ⊆ X is ρ-totally bounded. As 〈Y, ρ̃〉 is complete, the set clY (B)
is compact. By cofinality, choose n ∈ N with clY (B) ⊆ clY (Sd(x0, n)). This of
course implies that

B ⊆ clX(B) ⊆ clX(Sd(x0, n)) = Sd(x0, n),

and it follows that TBρ(X) ⊆ Bd(X). For the reverse inclusion, if B ∈ Bd(X), we
choose n ∈ N with B ⊆ Sd(x0, n); as B ⊆ clY (Sd(x0, n)) we see that B is ρ̃-totally
bounded. As approximations by finite sets can be done from the inside to determine
total boundedness, ρ-total boundedness of B follows.

(4)⇒ (1). This is trivial �

Corollary 3.2. Let 〈X,T〉 be a metrizable space. The following conditions are
equivalent:

(1) 〈X,T〉 is separable and noncompact;

(2) There exists a compatible metric ρ for 〈X,T〉 whose completion is unbounded
and boundedly compact.

Proof. As is well-known [10, pg. 347], 〈X,T〉 is noncompact if and only if there
exists an unbounded compatible metric (this follows immediately from the failure
of the space to be pseudo-compact). Since (2) implies X is separable, (2) ⇒ (1)
holds. For (1)⇒ (2), starting with an unbounded metric d for 〈X,T〉, by the sixth
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bulleted property for total boundedness, the metric ρ described in condition (4) of
Theorem 3.1 does the job. �

Theorem 3.1 warrants commentary. First, identifying X with ϕ(X), an embed-
ding of the form described in condition (3) of Theorem 3.1 has these noteworthy
sequential properties:

(i) Each bounded sequence in X has a cluster point in Y ;

(ii) Each sequence in X convergent to a point of Y must be bounded in 〈X, d〉

Condition (ii) means in particular that a sequence in X that converges to infinity in
d-distance cannot cluster in Y . It is left as a routine exercise to the reader to show
that conditions (i) + (ii) + density of X in Y are together equivalent to condition
(3) of Theorem 3.1.

Second, we note that while we used a boundedly compact compatible metric for
Y in the proof of (3)⇒ (4), the proof shows that any complete compatible metric
will work to get Bd(X) = TBρ(X), and it is possible that the bounded sets for a
different complete metric can properly contain its totally bounded sets. That is,
it is not necessary that Bρ(X) = TBρ(X) holds in order that Bd(X) = TBρ(X)
hold. For example, in the plane with Euclidean metric d, the metric

ρ((x1, y1), (x2, y2)) := min{1, d((x1, y1), (x2, y2))}+ |y2 − y1|,

being uniformly equivalent to d, is complete, and so by the seventh bulleted prop-
erty for total boundedness has the same totally bounded sets as d. However,
{(x, 0) : x ∈ R} ∈ Bρ(R2), as it has ρ-diameter one. As we shall presently see,
there are uncountably many compatible metrics on R2 determining distinct metric
bornologies each of whose induced totally bounded sets coincide with Bd(R2).

Finally, the assumption of metrizability of Y in condition (3) cannot be removed.
This is because the assumption that K0(Y ) has a countable cofinal subfamily does
not guarantee metrizability of Y , even if each compact subspace with the relative
topology is metrizable and the space is assumed to be Tychonoff. To see this,
consider the Hilbert space `2 equipped with the weak topology. The weakly compact
sets here are the weakly closed norm bounded subsets, each of which is metrizable
by reflexivity and separability [13, pg. 72]. While the closed balls with fixed center
and integral radius are cofinal in the weakly compact subsets, the space itself is not
metrizable.

Theorem 3.1 involves the existence of a certain embedding, a theme which will
be taken up again in this paper. We note that there a direct proof of (2) ⇒
(4) which is more in the spirit of the standard proof of Hu’s characterization of
metric bornologies [3, 14, 15]: add the continuous pseudometric |d(x, x0)−d(w, x0)|
to a compatible totally bounded metric for X to produce an equivalent metric ρ
satisfying (4). The details are left to the interested reader.

We now turn to our second question. We first notice that separability of 〈X, d〉 is
not sufficient. For example, consider the completely metrizable space of irrationals
R\Q with the topology it inherits from R, equipped with a complete metric d. If a
remetrization ρ produced a metric with Bρ(R\Q) = TBd(R\Q), then TBd(R\Q)
would have a countable closed base. But each closed totally bounded subset in this
setting must be compact and thus has empty interior. By Baire’s theorem, R\Q
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cannot be a countable union of such sets, and we have a contradiction. A similar
analysis applies to the space `2 with the metric induced by || · ||2.

Of course Hu’s two conditions provide necessary and sufficient conditions for
TBd(X) to be a metric bornology. But in the case of bornologies of totally bounded
sets, the second condition is redundant, as we intend to show. First, we give a lemma
that we will use in the proof.

Lemma 3.3. Let 〈X, d〉 be a metric space, let B be a totally bounded subset of X,
and let E be a dense subset of X. Then there exists a totally bounded subset E0 of
E with B ⊆ cl(E0).

Proof. Let C be the closure of B in the completion of X. Since E is also dense
in 〈X̃, d̃〉, we can choose for each n ∈ N an irreducible finite subset En of E with

C ⊆ E
1
n
n (the enlargement is taken in the completion). This means that reciprocally,

En ⊆ C
1
n . We intend to show that C ∪

⋃∞
n=1En is totally bounded in 〈X̃, d̃〉.

To see this, let ε > 0 be arbitrary and choose k ∈ N with 1
k < ε. Since C is

compact, E
1
k

k contains some enlargement Cδ where δ ∈ (0, 1). By irreducibility,
whenever n > δ−1, we have En ⊆ Cδ, and as a result, choosing n0 > δ−1, we have

C ∪
∞⋃
n=1

En ⊆ Eεk ∪ (
n0⋃
n=1

En)ε.

This proves C ∪
⋃∞
n=1En is d̃-totally bounded, and so its subset ∪∞n=1En is d̃-

totally bounded and thus is d-totally bounded. Our construction gives B ⊆ C ⊆
clX̃(∪∞n=1En), and so B ⊆ clX(∪∞n=1En). �

We will employ our lemma only in the case that B is compact.

Theorem 3.4 (cf. [6, Theorem 4.12]). Let 〈X, d〉 be a metric space. The following
conditions are equivalent:

(1) TBd(X) has a countable base;

(2) There exists a metric ρ equivalent to d for which TBd(X) = Bρ(X);

(3) The one-point extension of X associated with TBd(X) is metrizable;

(4) The one-point extension of X associated with TBd(X) has a countable
neighborhood base at the ideal point.

Proof. The implications (3) ⇒ (4) and (4) ⇒ (1) are obvious, and as the one-
point extension corresponding to a metric bornology is always metrizable [4], we
get (2)⇒ (3). Thus we must only establish (1)⇒ (2).

Let 〈X̃, d̃〉 be the completion of 〈X, d〉 and let {Bn : n ∈ N} be cofinal in
TBd(X) with respect to inclusion. We claim that the family of compact sets
{clX̃(Bn) : n ∈ N} is cofinal in K0(X̃). To see this, let K be an arbitrary compact
subset of 〈X̃, d̃〉. By Lemma 3.3 and the density of X in X̃, there exists E0 ⊆ X with
E0 ∈ TBd̃(X̃) and K ⊆ clX̃(E0). Clearly E0 ∈ TBd(X), so for some n, E0 ⊆ Bn,
and the claim is established.

Arguing now just as in the proof of Theorem 3.1, there is an equivalent boundedly
compact metric ρ̃ for X̃, and if ρ is its trace on X×X, we get TBd(X) = TBρ(X)
so that TBd(X) = Bρ(X). �
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If TBd(X) has a countable base, by Hu’s Theorem, it must have a (countable)
open base. As noticed in [6] using unrelated methods, actually more can be shown:
for each B ∈ TBd(X) there exists ε > 0 with Bε ∈ TBd(X), that is, the bornology
of totally bounded sets is stable under small enlargements.

We further note the interesting lack of symmetry in Theorems 3.1 and 3.4: in
the first, the conditions given are purely topological, whereas in the second, the
conditions given are bornological.

Earlier in this section, we saw that two equivalent unbounded metrics with dif-
ferent metric bornologies could determine the same bornology of nonempty totally
bounded sets. We aim to show just how robust this phenomenon is. This falls out
of the following result of independent interest.

Theorem 3.5. Let 〈X, d〉 be an unbounded metric space. Then there exists a family
of metrics {ρr : r ∈ R} on X each uniformly equivalent to d such that whenever
r1 ∈ R, r2 ∈ R, and r1 6= r2, then Bρr1

(X) 6= Bρr2
(X).

Proof. The proof of Hu’s Theorem [14] shows that whenever {Cn : n ∈ N} is a
family of nonempty closed sets such that (i) ∀n, X\Cn 6= ∅, (ii) ∪∞n=1Cn = X, and
(iii) ∀n ∈ N, Cn ⊆ int (Cn+1), then {Cn : n ∈ N} is a base for the bornology of
bounded sets as determined by some unbounded metric ρ equivalent to d. Further, ρ
can be chosen to be uniformly equivalent to d if and only if ∃δ > 0, ∀n ∈ N, ∃k ∈ N
with Cδn ⊆ Ck, where the enlargement is taken with respect to d [3, Theorem 4.2].

Since X is not d-bounded, there exists a sequence 〈xj〉 in X with distinct terms
such that ∀j ∈ N, Sd(xj , j)∩ {xk : k 6= j} = ∅. It is well-known that there exists a
family of infinite subsets {Mr : r ∈ R} of N each two members of which have finite
intersection (see, e.g., [11, 16]). In particular, this almost disjoint family of subsets
has cardinality of the continuum c. For each r ∈ R and n ∈ N put

Cr,n :=
⋃
j∈Mr

Sd(xj , n).

Notice that for each index r, each infinite subset of {xn : n ∈ Mr} has infinite
diameter. It follows that for each n ∈ N, the family {Sd(xj , n) : j ∈ Mr} is locally
finite, whence each set Cr,n is closed. Further, as Cr,n fails to contain xj whenever
j > n and j /∈ Mr, we see that X\Cn,r is nonempty. Finally, whenever δ < 1 we
have Cδr,n ⊆ Cr,n+1. By [3, Theorem 4.2], for each r ∈ R there exists a metric ρr
uniformly equivalent to d such that {Cr,n : n ∈ N} is base for Bρr

(X). However,
if r1 ∈ R and r2 ∈ R are distinct, by construction {xj : j ∈ Mr1}\{xj : j ∈ Mr2}
is infinite. It is clear that {xj : j ∈ Mr1} is not contained in Cr2,n for any n ∈ N.
This means that Bρr1

(X) * Bρr2
(X). �

Remark 3.6. If we do not assume that the initial metric d on X is unbounded, then
there may be no unbounded metric uniformly equivalent to d, e.g., consider any
compact metric space, or for our metric space the unit ball in `2.

Corollary 3.7. Let 〈X, d〉 be an unbounded metric space. Then there exists a family
of compatible metrics {ρr : r ∈ R} on X such that ∀r ∈ R, TBρr

(X) = TBd(X)
while whenever r1 ∈ R, r2 ∈ R, and r1 6= r2, then Bρr1

(X) 6= Bρr2
(X).

Proof. Uniformly equivalent metrics determine the same totally bounded sets. �

Corollary 3.7 leads one to ask: under what circumstances does a particular metric
bornology correspond to a family of bornologies of totally bounded subsets having
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cardinality of the continuum? Our final result of this section completely resolves
this question.

Theorem 3.8. Let 〈X, d〉 be a metric space. The following conditions are equiva-
lent:

(1) 〈X, d〉 is not boundedly compact;

(2) There exists a metric ρ on X equivalent to d such that Bρ(X) = Bd(X),
yet TBρ(X) 6= TBd(X);

(3) There is a family of compatible metrics {ρr : r ∈ R} on X such that
∀r ∈ R, Bρr (X) = Bd(X) while whenever r1 ∈ R, r2 ∈ R, and r1 6= r2,
then TBρr1

(X) 6= TBρr2
(X).

Proof. (1) ⇒ (3). Let B ∈ Bd(X) be closed but noncompact, and let 〈xn〉 be a
sequence in B with distinct terms without a cluster point. Let {Mr : r ∈ R} be
the almost disjoint family prescribed in the proof of Theorem 3.5. For each r ∈ R
define a metric δr on the closed set {xn : n ∈ N} as follows:

δr(xj , xn) :=


0 if j = n

max{ 1
j+1 ,

1
n+1} if j 6= n and {j, n} ⊆Mr

1 otherwise
.

The discreteness of {xn : n ∈ N} implies that the metric is compatible with the
relative topology. Since {xn : n ∈ N} is a closed subset of X, by the Hausdorff
extension theorem [10, pg. 369], there exists a compatible metric δ∗r on X whose
restriction to {xn : n ∈ N} coincides with δr.

Now if f : X → R is arbitrary and A ∈ P0(X), then f(A) is bounded if and only
if sup{|f(a1) − f(a2)| : a1 ∈ A, a2 ∈ A} < ∞. As the distance functional d(·, B)
restricted to A is bounded if and only if A ∈ Bd(X), for each r ∈ R the metric
ρr : X ×X → [0,∞) defined by

ρr(x,w) := min{1, δ∗r (x,w)}+ |d(x,B)− d(w,B)|

satisfies Bρr
(X) = Bd(X). By the continuity of d(·, B), the metric ρr is equivalent

to δ∗r and thus is a compatible metric.
Now if we can prove that whenever r1 and r2 are distinct real numbers, we have

TBρr1
(X) 6= TBρr2

(X), then we will be done. By construction, {xn : n ∈ Mr1}
contains an infinite subset E(r1, r2) disjoint from {xn : n ∈ Mr2}. Observe that
{xn : n ∈ Mr1} is the range of a ρr1-Cauchy sequence because ρr1 restricted to B
agrees with min{δ∗r1 , 1}. Thus {xn : n ∈Mr1} and therefore its subset E(r1, r2) are
ρr1 -totally bounded. On the other hand, the set E(r1, r2) is ρr2-uniformly discrete,
for whenever {x,w} ⊆ E(r1, r2), we compute

ρr2(x,w) = min{δ∗r2(x,w), 1} = min{δr2(x,w), 1} = 1.

Thus, E(r1, r2) as a subset of {xn : n ∈ Mr1} belongs to TBρr1
(X)\TBρr2

(X) as
required.

(3)⇒ (2). This is obvious.
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(2) ⇒ (1). Suppose condition (1) fails, i.e, d is boundedly compact. If ρ is
equivalent to d and Bρ(X) = Bd(X), then the ρ-bounded sets are just the relatively
compact subsets of X. Since always RK0(X) ⊆ TBρ(X), we get

TBρ(X) = RK0(X) = TBd(X).

Thus condition (2) fails. �

4. Which Bornologies are Bornologies of Totally Bounded Sets?

Here we produce two separate sets of necessary and sufficient conditions for a
bornology on a metrizable space to be a bornology of totally bounded sets with
respect to some compatible metric. The first set of conditions we give are not
internal conditions as are those given in Hu’s characterization of metric bornologies;
rather, they are of the flavor of condition (3) of Theorem 3.1.

Theorem 4.1. Let B be a family of nonempty subsets of a metrizable space 〈X,T〉.
Then B = TBd(X) for some compatible metric d if and only if there exists an
embedding ψ of X into a completely metrizable space Y with the following property:

(]) B = {E ∈ P0(X) : ψ(E) is relatively compact in Y }.

Proof. For necessity, assume for some compatible d that B = TBd(X). Let ψ be
the inclusion of 〈X, d〉 into 〈X̃, d̃〉. It is obvious that (]) holds for this embedding.
For sufficiency, assume that such an embedding exists and put W := clY (ψ(X)).
As a closed subspace of Y, W is completely metrizable itself. Let d̃ be a compatible
complete metric for W and let d be its trace on ψ(X) × ψ(X). If E ∈ B, then
clY (ψ(E)) = clW (ψ(E)) is compact, so ψ(E) is d̃-totally bounded, and since ψ(E) ⊆
ψ(X), we get ψ(E) ∈ TBd(ψ(X)). On the other hand, if ψ(E) ∈ TBd(ψ(X)), then
by completeness clW (ψ(E)) = clY (ψ(E)) is compact, and so E belongs to B. �

Notice in the proof of Theorem 4.1 that it is not necessary to assume in advance
that B is a bornology; the reader is invited to derive this directly from condition (]).
Our first example shows the necessity of assuming that Y is completely metrizable.

Example 4.2. Consider Q as a subspace of R; as Baire’s theorem fails in Q, the
space is not completely metrizable. Put B := {E ∈ P0(Q) : clQ(E) is compact}.
Evidently, the identity map on Q satisfies (]). But the family of nonempty relatively
compact subsets a metric space forms a bornology of totally bounded sets if and
only if the space is completely metrizable, as argued in Corollary 4.6 infra.

In our next example we show that (]) cannot be replaced by this weaker state-
ment: (�) ∀E ∈ B, clY (ψ(E)) is compact. This is true even if we assume B is a
bornology.

Example 4.3. Consider [0,1] equipped with the usual topology; by its compactness,
TBd([0, 1]) = P0([0, 1]) whenever d is a compatible metric. But any bornology
on [0, 1] having as a member a dense subset of [0, 1] satisfies condition (�) with
respect to the identity map, e.g., the bornology consisting of all sets of the form
F ∪Q where F is a nonempty finite subset of [0, 1] and Q is a possibly empty subset
of Q.
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It is clear that the argument used in establishing (2)⇒ (3) in Theorem 3.1 can
be easily adjusted to show that (]) holds for the specific embedding ϕ described
therein, yielding a direct proof of (2)⇒ (1). We next present a different application
of Theorem 4.1.

Proposition 4.4. Let S(X) be the bornology of nonempty separable subsets of a
metrizable space 〈X,T〉. Then S(X) is the bornology of totally bounded subsets with
respect to some compatible metric if and only if X itself is separable.

Proof. If X is separable, then S(X) = P0(X), so that if d is a compatible totally
bounded metric, we have TBd(X) = P0(X). Conversely, suppose now that S(X) is
the bornology of totally bounded subsets with respect to some compatible metric,
yet X is not separable. Let Y and ψ be as guaranteed by Theorem 4.1 with respect
to the family S(X). Of course, clY (ψ(X)) is not compact; thus, there exists a
sequence 〈yn〉 in clY (ψ(X)) without a cluster point. Without loss of generality we
can assume that each yn actually belongs to ψ(X). Choosing for each n ∈ X, xn ∈
X with ψ(xn) = yn, we obtain a separable subset {xn : n ∈ N} mapped by ψ to a
set failing to be relatively compact, which is a contradiction. �

We now turn to an internal characterization of bornologies that are bornologies of
totally bounded sets. One version of the Alexandroff-Urysohn metrization theorem
- the first general metrization theorem [1] - is this: a Hausdorff (or even T0) space
〈X,T〉 is metrizable if and only if there exists a sequence of open covers 〈Un〉 of X
with the following two properties [21, pg. 167]:

(1) ∀n ∈ N, Un+1 star-refines Un;

(2) ∀x ∈ X, {St(x,Un) : n ∈ N} is a neighborhood base for T at x.

A sequence of open covers satisfying both (1) and (2) is called a star-development
or a compatible normal sequence for X. An analysis of a standard proof of the
metrization theorem leads easily to our internal characterization.

Theorem 4.5. Let 〈X,T〉 be a metrizable space and let B be a family of nonempty
subsets of X. Then B = TBd(X) for some compatible metric d if and only if there
is a star-development 〈Un〉 for X such that

(`) B = {E ∈ P0(X) : ∀n ∈ N, Un admits a finite subcover of E}.

Proof. If B = TBd(X) for some compatible metric d, then let Un = {Sd(x, 1
3n ) :

x ∈ X} for every n ∈ N. It is easily shown that 〈Un〉 is a star-development of X.
If E ∈ B, then for each n, E can be covered by finitely many d-balls of radius of
radius 1

3n , i.e., by finitely many elements of Un, and if for each n,E can be covered
by finitely many members of Un, then almost by definition, E is d-totally bounded.

For sufficiency, first note that if B satisfies (`), then B is a bornology. The
existence of a star-development 〈Un〉 allows for the construction of a compatible
metric d such that ∀n ≥ 2, both of the following conditions hold [21, pg. 167]:

(i) Un refines {Sd(x, 1
2n−1 ) : x ∈ X};

(ii) {Sd(x, 1
2n ) : x ∈ X} refines Un−1.

Suppose B satisfies (`). Fix E ∈ B, let ε > 0 be arbitrary and choose n with
21−n < ε. By (`) choose {U1, U2, . . . , Ukn

} ⊆ Un with E ⊆ ∪kn
j=1Uj and then by
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(i) choose ∀j ≤ kn, xj with Uj ⊆ Sd(xj , 1
2n−1 ). This yields E ⊆ {x1, x2, . . . xkn

}ε
and so E ∈ TBd(X). On the other hand, if E is d-totally bounded and n ∈ N is
arbitrary, we can choose a finite subset F of X with E ⊆ F 2−n−1

. Using (ii), this
immediately yields E ∈ B. �

As an immediate corollary we obtain a curious characterization of those metriz-
able spaces that are completely metrizable.

Corollary 4.6. Let 〈X,T〉 be a metrizable space. The following conditions are
equivalent:

(1) 〈X,T〉 is completely metrizable;

(2) The bornology of nonempty relatively compact subsets is a bornology of totally
bounded subsets with respect to some compatible metric;

(3) There exists a star-development 〈Un〉 for X such that a subset A of X is
relatively compact if and only if ∀n ∈ N, Un admits a finite subcover of A.

Proof. The implication (1)⇒ (2) is obvious while (2)⇔ (3) follows from Theorem
4.5. Finally, for (2)⇒ (1), if 〈X,T〉 fails to be completely metrizable, then for each
compatible metric d, there is a d-Cauchy sequence that fails to converge, and so its
set of terms while d-totally bounded fails to be relatively compact. �

With respect to the bornology of separable subsets that we dealt with in Propo-
sition 4.4, even more can be said than what Theorem 4.5 literally yields.

We acknowledge the possibility that the equivalence of conditions (2) and (3) in
Proposition 4.7 below may be known, but we have not been able to find a reference
in the literature.

Proposition 4.7. Let S(X) be the family of nonempty separable subsets of a metriz-
able space 〈X,T〉. The following conditions are equivalent:

(1) S(X) is the bornology of totally bounded subsets with respect to some
compatible metric;

(2) 〈X,T〉 is separable;

(3) There exists a star-development 〈Un〉 for X such that for each n, Un
is a finite family of sets.

Proof. We already know that conditions (1) and (2) are equivalent. For (3)⇒ (2),
it is immediate from (3) that

{E ∈ P0(X) : ∀n ∈ N, Un admits a finite subcover of E}

coincides with P0(X). Thus, by Theorem 4.5, X must be totally bounded with
respect to some compatible metric and so X is separable.

For (2) ⇒ (3), topologically embed 〈X,T〉 into the compact metrizable space
Y := [0, 1]N. Identify X with its image, and let ρ be metric compatible with the
product topology for Y . Let ε1 > 0 be arbitrary. By compactness take F1 finite in
the product such that Y = ∪y∈F1Sρ(y, ε1). Again by compactness, let λ1 > 0 be
a Lebesgue number for the cover, and then put ε2 := min{λ1,

ε1
3 }. Let F2 ⊆ Y be

finite with Y = ∪y∈F2Sρ(y, ε2). Let λ2 > 0 be a Lebesgue number for this second
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cover, and then put ε3 := min{λ2,
ε2
3 }. Continuing in this way, the sequence of

finite open covers 〈Un〉 of X, where for each n,

Un := {Sρ(y, εn) ∩X : y ∈ Fn}
is easily shown to be a star-development of X. �

It is noteworthy that in the proof of Theorem 4.5, we use star-developments to
construct a totally bounded metric with certain properties, whereas in the proof of
Proposition 4.7, we do just the opposite. We also mention that we have been able
to derive the equivalence of conditions (1) and (2) in Theorem 3.1 from Theorem
4.5; however, we have not inserted our argument here, as it requires some nontrivial
techniques to obtain, from a given cover, a star-refinement with suitable supple-
mentary properties. So in total, we know of four distinct paths to a resolution of
question (1) posed in the introduction.

Given a Tychonoff space 〈X,T〉 and a compatible diagonal uniformity U, one
calls a subset B of X U-totally bounded [10] if for each entourage U there exists a
finite subset F of X with B ⊆ U(F ); this of course agrees with our definition in the
case of metric uniformities. Motivated by applications to topological vector spaces,
boundedness of B is usually defined as follows [7]: B ⊆ X is U−bounded if ∀U ∈ U,
there exists a finite set F and n ∈ N with B ⊆ Un(F ). This definition is problematic
for us in that it does not subsume boundedness in metric spaces (consider an infinite
set with the zero-one metric). Nevertheless, one may ask analagous questions in
this framework. Vroegrijk [20] has recently shown that these two notions coincide
under an appropriate re-uniformization of 〈X,T〉, and has furthermore exhibited
internal conditions on a bornology on a Tychonoff space that make it a bornology
of bounded/totally bounded sets with respect to some compatible uniformity.
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