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Abstract

Cournot oligopolies are examined with two kinds of output adjustment
costs, which model the use of contingent work force and additional invest-
ments. The best responses of the firms are first determined and the par-
tial adjustment toward best responses is assumed in formulating a dynamic
model. The steady states are first characterized and the dynamic behavior of
the output trajectories is demonstrated by computer simulation. With small
number of firms and low speeds of adjustments the trajectories converge to a
steady state. This convergence is lost with increasing number of firms and/or
larger speeds of adjustment giving the possibility of cycles and even chaotic
behavior.

Keywords: oligopolies, repeated games, complex dynamics

1. Introduction

One of the most frequently discussed models of mathematical economy
is the classical Cournot oligopoly [2]. It represents an industry with a few
firms producing the same goods or offering the same services to a homoge-
neous market. This situation is usually modeled as a noncooperative game,
and the solution of the game is the Nash equilibrium. Initially the exis-
tence and uniqueness of the equilibrium was the main research issue, and
computational methods were developed to find the equilibria. Okuguchi [12]
offered a comprehensive summary of the major results up to the mid 70s,
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and their multiproduct extensions with some practical applications were dis-
cussed in [13]. In dynamic extensions linear models were first introduced
and examined, the dynamic properties of which are relatively simple and
local asymptotical stability implies global asymptotical stability. The local
stability of nonlinear systems can be investigated by linearization, however
the study of global dynamics required the development of new methodology.
In the case of discrete time scales the critical curve method has been shown to
be a powerful tool. [1] has an introduction to this methodology as well as its
applications to a large variety of nonlinear dynamic oligopolies. The classical
oligopoly models as most models introduced in mathematical economics, are
based on certain assumptions in order to have a mathematically tractable
problem. Several of the traditional assumptions have been already criticized
in the literature. Some of the special models discussed in [1] take some of
these critical comments and suggestions into account. Based on the criti-
cal comments nonlinearities were introduced into the models. For example,
[8] modeled joint ventures, partial equity interests and two types of indirect
shareholdings between the firms as partially cooperative Cournot oligopolies.
In [9] and [10] antitrust tresholds were introduced into oligopolies with linear
and isoelastic price functions based on the Herfindal-Hirschmann index as
an indicator of violation of antitrust regulations. The firms were assumed
to partially cooperate until this index reached a certain threshold showing
violation, then stop cooperating resulting in flip-flop dynamics. Analytic
conditions of local stability were derived and the global asymptotic behavior
of the steady states were examined by computer simulation.

In this paper we will introduce production adjustment costs into the
oligopoly models. Only very few works have been done in this direction
in the past. Linear inverse demand function and quadratic production and
adjustment functions were assumed by [6] and the authors showed that the
adjustment costs had no effect on the equilibrium, it had only a stabilizing
effect on the market. In the dynamic game of [7] the additional adjustment
cost had only a limited effect on the output levels of the firms. In the model
of [14] quadratic adjustment cost function was assumed with zero value at
zero so the profit of the firms remained continuous and differentiable. He con-
sidered only continuous time scales. In [4] it was assumed that the output
adjustment cost depended on the current output levels and their derivatives
in a duopoly. Discrete time scales with continuous adjustment cost functions
were assumed in [17], and both continuous and discrete time models were
examined in [13]. A linear-quadratic differential game model was introduced

2



in [15] with a special focus on the equilibria and feedback strategies. The
continuity assumption of the adjustment cost function was dropped in [20]
where the best responses of the firms were determined and the equilibria set
was described. The dynamic extension of this model was analyzed in [11],
and the complex dynamic behavior of the firms was illustrated by computer
simulations. All previous models assumed that the firms face additional cost
at each time period when they increase their output levels. This assumption
is realistic especially in the case when contingent workforce is employed by
the firms (see for example, [19]). Increasing the output may also require ad-
ditional investment including the purchase of new machineries, equipments
and even constructing new buildings. In such cases additional cost arises
when the output level exceeds the capacity limit that was already build up
by the firm. That is, this type of cost arises when the current output of
the firm exceeds the maximum output occurred in the previous time periods.
In this paper we will introduce both types of production adjustment costs
into the classical oligopoly model. For the sake of mathematical simplic-
ity single-product models without product differentiation will be considered,
more complex oligopolies can be examined in a similar way. The combination
of the two types of adjustment cost is the main contribution of this paper.

This paper develops as follows. In Section 2 the mathematical model
is introduced and the best response functions of the firms are determined.
Section 3 constructs the dynamical model with partial adjustment toward
best responses, and the steady states of these dynamic systems are found.
Simulation studies are reported in Section 4 showing the large variety and the
complexity of the long-term behavior of the state trajectories. Conclusions
and further research directions are drawn in the final Section 5.

2. The Mathematical Model and Best Responses

Consider a single-product oligopoly without product differentiation. Let
n denote the number of firms, xk (t) the output of firm k at time period t,
Lk the absolute maximal production level of firm k, which might be infinity
and can never be exceeded, and S (t) =

∑n

k=1
xk (t) the total output of the

industry. The price function is assumed to be linear: p (S) = A − BS with
A,B > 0, and the cost function of firm k is given as Ck (xk) = ck + dkxk

with dk > 0 and ck ≥ 0. Two kinds of adjustment costs are assumed. In
the first case adjustment cost is assumed if the firm increases its production
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level from the previous time period:

Ck (xk, xk (t− 1)) =

{

0 if xk ≤ xk (t− 1)
γk (xk − xk (t− 1)) otherwise,

(1)

where γk > 0 is a given constant. For example, having additional workforce
can be modeled by this equation. The second type of adjustment cost arises
when the output of a firm exceeds the capacity limit being built up by the
firm during the previous time periods:

Ck (xk, Xk (t− 1)) =

{

0 if xk ≤ Xk (t− 1)
αk (xk −Xk (t− 1)) otherwise,

(2)

where αk > 0 is a positive constant and

Xk (t− 1) = max
0≤τ≤t−1

{xk (τ)} (3)

is the maximum built-up capacity of firm k up to time period t − 1. For
example, the purchase of additional machinery has this kind of cost func-
tion. Notice that equation (2) can be intepreted as investment in capacity,
the depreciation of it could be also included in the formula. This additional
feature would not change the model significantly, so for the sake of mathe-
matical simplicity we did not take it into account. In this paper we consider
adjustment costs only when the firm increases its output level. In principle
a firm could also face an adjustment cost even though it reduces the produc-
tion level with respect to the previous period. This is the case for example,
when workforce is laid off and the firm is obliged to give severance pay.

The profit of firm k at time period t can be obtained as follows:

Πk (xk, xk (t− 1) , Xk (t− 1)) = xk (A− Bxk − Bsk)− (ck + dkxk)

−Ck (xk, xk (t− 1))− Ck (xk, Xk (t− 1)) ,
(4)

where sk =
∑

l 6=k xl is the output of the rest of the industry. With fixed
values of x (t− 1) and X (t− 1) this profit function is concave in xk.

In order to determine the best response function of firm k we have to
consider several cases. Their condition numbers are indicated in Figure 1,
where the different possible shapes of this profit function are shown.

If ∂Πk/∂xk ≤ 0 at xk = 0, then the best response is xk = 0. This is the
case when

A−Bsk − dk ≤ 0,
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Figure 1: The possible shapes of the profit functions

that is, when

sk ≥
A− dk

B
. (5)

Otherwise we have two possibilities. The first occurs when ∂Πk/∂xk ≤ 0
at xk = xk (t− 1) from the left hand side. This is the case, when

A− 2Bxk (t− 1)−Bsk − dk ≤ 0,

or

sk ≥
A− dk

B
− 2xk (t− 1) . (6)

In this case the best response is the stationary point between 0 and xk (t− 1):

xk = −
sk
2

+
A− dk
2B

. (7)

In the second case the left hand side derivative of ∂Πk/∂xk at xk = xk (t− 1)
is positive. For the right hand side derivative we have two possibilities. It is
nonpositive if

A− 2Bxk (t− 1)− Bsk − dk − γk ≤ 0,
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that is, when

sk ≥
A− dk − γk

B
− 2xk (t− 1) , (8)

and the best response is xk = xk (t− 1). Otherwise (8) is violated and we
have again two cases. If the left hand side derivative ∂Πk/∂xk is nonpositive
atXk (t− 1), then the best response is the stationary point between xk (t− 1)
and Xk (t− 1):

xk = −
sk
2

+
A− dk − γk

2B
. (9)

It is clearly the case, when

A− 2BXk (t− 1)− Bsk − dk − γk ≤ 0,

which can be rewritten as

sk ≥
A− dk − γk

B
− 2Xk (t− 1) . (10)

Assume next that (10) is violated. Then we have again two possibilities
concerning the right hand side derivative ∂Πk/∂xk at Xk (t− 1). Assume
first that it is nonpositive, that is,

A− 2BXk (t− 1)−Bsk − dk − γk − αk ≤ 0,

or

sk ≥
A− dk − γk − αk

B
− 2Xk (t− 1) . (11)

In this case the best response is xk = Xk (t− 1). Otherwise we have to
consider the value of the left hand side derivative ∂Πk/∂xk at the final point
Lk. It is nonpositive if

A− 2BLk − Bsk − dk − γk − αk ≤ 0,

or

sk ≥
A− dk − γk − αk

B
− 2Lk. (12)

This relation always holds if Lk = ∞. Under this condition the best response
is the stationary point between Xk (t− 1) and Lk:

xk = −
sk
2

+
A− dk − γk − αk

2B
. (13)
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Figure 2: Best response function of firm k

Otherwise (12) is violated and the best response is xk = Lk.
We can summarize the best response of firm k as follows

Rk (sk, xk (t− 1) , Xk (t− 1)) =

=















































Lk if 0 ≤ sk <
A−dk−γk−αk

B
− 2Lk

−sk
2
+ A−dk−γk−αk

2B
if A−dk−γk−αk

B
− 2Lk ≤ sk <

A−dk−γk−αk

B
− 2Xk (t− 1)

Xk (t− 1) if A−dk−γk−αk

B
− 2Xk (t− 1) ≤ sk <

A−dk−γk
B

− 2Xk (t− 1)

−sk
2
+ A−dk−γk

2B
if A−dk−γk

B
− 2Xk (t− 1) ≤ sk <

A−dk−γk
B

− 2xk (t− 1)

xk (t− 1) if A−dk−γk
B

− 2xk (t− 1) ≤ sk <
A−dk
B

− 2xk (t− 1)
−sk

2
+ A−dk

2B
if A−dk

B
− 2xk (t− 1) ≤ sk <

A−dk
B

0 if A−dk
B

≤ sk ≤
∑

l 6=k

Ll.

(14)
The graph of this function is shown in Figure 2 with the assumption that
0 < xk (t− 1) < Xk (t− 1) < Lk, otherwise one or more segments of the
function are merged. It is interesting to note that the best response functions
(14) are piecewise linear, and nonautonomous, since they change during the
game as a result of the different output levels selected during the history of
the game.
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3. Dynamic Model and Steady States

Assume that the firms adjust their outputs toward their best responses.
Let Kk denote the speed of adjustment of firm k, then the output of this firm
at time period t becomes

xk (t) = xk (t− 1) +Kk (Rk (sk (t− 1) , xk (t− 1) , Xk (t− 1))− xk (t− 1))
(15)

and the new value of Xk is the following:

Xk (t) = max {xk (t) , Xk (t− 1)} . (16)

Notice that in (15) the firm assumes that the output of the rest of the industry
is sk (t− 1) which is usually called the näıve or static expectation.

The steady state of this dynamic system is a 2n-dimensional vector
(

x1, . . . , xn, X1, . . . , Xn

)

such that for all k,











xk ≤ Xk

xk = Rk

(

∑

l 6=k

xl, xk, Xk

)

(17)

The second condition is satisfied if and only if the left hand side derivative
∂Πk/∂xk is nonnegative and the right hand side derivative ∂Πk/∂xk is non-
positive at xk = xk (t− 1) = xk and Xk (t− 1) = Xk. This is the case
when

A−2Bxk−B
∑

l 6=k

xl−dk ≥ 0 ≥ A−2Bxk−B
∑

l 6=k

xl−dk−

{

γk if xk < Xk

γk + αk if xk = Xk.

(18)
for all k, where the left-hand side is the left-hand side derivative ∂Πk/∂xk

and the right-hand side is the right-hand side derivative ∂Πk/∂xk . In a
slight increase of xk the adjustment cost (1) always occurs, however the cost
(2) occurs only if xk = Xk. If we are interested in the equilibria in terms of
the output quantities, then it is sufficient to consider the case when xk = Xk

for all k. So the set of all equilibrium output vectors (x1, . . . , xn) forms a
nonempty convex polyhedron with usually infinitely many points.

The equilibrium of the corresponding Cournot equilibrium without output
adjustment costs is clearly a steady state of system (15)-(16) with Xk = xk
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for all k. Usually there are infinitely many solutions of relation (18). In the
case of duopolies, relation (18) simplifies as

A− 2Bxk −Bxl − dk ≥ 0 ≥ A− 2Bxk −Bxl − dk −

{

γk if xk < Xk

γk + αk if xk = Xk

(19)
for k, l = 1, 2 and l 6= k. In the case of xk = 0 the left hand side is omitted
and if xk = Lk, then the right hand side has to be omitted from relations
(18) and (19). In the case of the classical Cournot model αk = γk = 0, so an
output vector (x1, . . . , xn) is an equilibrium if and only if for all k,

A− B
∑

l 6=k

xl − dk ≤ 0 if xk = 0;

A− 2BLk −B
∑

l 6=k

xl − dk ≥ 0 if xk = Lk;

and
A− 2Bxk − B

∑

l 6=k

xl − dk = 0 if 0 < xk < Lk.

Notice that they are the well-known equilibrium conditions in the classical
Cournot model (see for example, [1]).

The dynamic behavior of system (15)-(16) cannot be examined by the
usual methodology of stability analysis, since instead of isolated equilibria
we face a nonempty convex equilibria set with usually infinitely many points.
Instead of convergence to a single point we have to deal with convergence
to a certain set, which problem can be treated mathematically by using the
theory of differential manifolds. In this paper therefore no analytical study is
presented, the dynamic behavior of the system will be illustrated by computer
simulation.

4. Dynamic Analysis

In the computer simulation study we selected A = 20 and B = 2 for
the price function, and considered the semisymmetric case where n− 1 firms
had identical cost functions with ck = 0 and dk = 1 and for firm n, cn = 0
and dn = 2. This type of the semisymmetric case is very common in the
literature (see for example [1]), however more general cases can be studied
in the same way. For the sake of comparing our results with those known
from the literature we selected this special case. We also considered both the
homogeneous case, in which all firms were identical, and the nonsymmetric

9



case, where half of the firms had identical cost functions with ck = 0 and
dk = 1 and for the remaining firms, cl = 0 and dl = 2. The results were quite
similar to the semisymmetric case in all but one case, and therefore they are
not reported. The only case which gave different results will be discussed.
Identical adjustment cost functions were selected: αk ≡ α and γk ≡ γ for all
k. The common speed of adjustment K was varied between 0 and 1, and it
was selected as the bifurcation parameter. We also varied the number n of
firms. For each case, for the sake of comparison, we computed three model
variants. Each of them models a different assumption on the production
adjustment costs. The first case with α = 1.0 and γ = 0.0 occurs when
increasing production requires only additional investment; the second one,
α = γ = 0.5 corresponds to the case in which both additional investment
and contingent workforce is necessary, and the final case, with α = 0.0 and
γ = 1.0 requires only contingent workforce to increase production level.

For n = 2 and n = 3 the trajectories always converge to a steady state.
The limit depends on the initial outputs levels of the firms. In these cases
no bifurcation occurs. As we will see later, the increasing number of firms
will produce instability, and the associated bifurcation is called the “border
collision bifurcation” (see for example [3]), since the response functions are
piece-wise linear and nonautonomous.

If n = 4, then for small values of K the trajectory always converges to
a steady state. By increasing the common value of the speed of adjustment
this convergence is lost and two-period cycles emerge. The amplitude of the
cycle is small initially, and asK ≃ 0.8372 the amplitude suddenly widens and
further increases with larger values ofK. This is illustrated in Figure 3 by the
bifurcation diagram, in which the trajectory values are shown for t > 2500
with zero initial outputs and varying values of the bifurcation parameter
K. The vertical axis represents the common output of the identical n − 1
firms. Parts a), b) and c) correspond to the three scenarios mentioned above.
Notice that in the three scenarios the value of K where convergence is lost is
slightly different: a) K = 0.8352 with only investment costs, b) K = 0.8191
with investment and contingent workforce costs and c) K = 0.7998 with only
contingent workforce costs.

The dynamic behavior remains similar for n < 9, as both convergence
and 2-period cycles can be observed. The bifurcation diagram is also similar
to the one depicted in Figure 3.

For n = 9 and n = 10 the bifurcation diagrams are quite similar. In Figure
4 the case of n = 10 is depicted. Positive contingent workforce costs generate
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Figure 3: The case of n = 4 firms. a) α = 0.0, γ = 1.0 b) α = 0.5, γ = 0.5 c) α = 1.0,
γ = 0.0

two nonconnected intervals of the adjustment speed with convergence and
also with two nonconnected intervals with 2-period cycles. With increasing
values of K the 2- period cycles become wider.

When the number of firms is n = 11, the dynamics becomes more complex
as illustrated in Figure 5. If K is small then there is convergence with limit
point depending on the initial outputs of the firms. By increasing the value
of K, 2-period cycles appear. If K increases further, then 4-period cycles are
observed. Finally, when K increases even further then 2-period cycles can be
found again. Notice that in cases a) and b) where the contingent workforce
costs are nonzero there is a small interval aroundK = 0.7714 andK = 0.7821
respectively with convergence. After this small interval the 2- period cycles
reappear. While no chaotic behavior is shown so far, this depends on the
choice of parameters we have considered. In fact still considering n = 11
firms, but with group sizes 8 and 3 it is possible to observe chaotic bands as
shown in Figure 6. It can be also observed that increasing investment costs
seems to reduce chaotic behavior.

When the number of firms increases up to 12, the dynamics becomes
much more complex as shown in Figure 7 by the appearance of a chaotic
region for all the three cases.

If the number of firms increases even further, then the dynamics becomes
more complex. Figures 8 and 9 illustrate the semisymmetric and nonsymmet-
ric cases for n = 14 firms. The bifurcation diagrams show a larger variety
of complex dynamic behaviors with, in some cases, even a second chaotic
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Figure 4: The case of n = 10 firms. a) α = 0.0, γ = 1.0 b) α = 0.5, γ = 0.5 c) α = 1.0,
γ = 0.0

Figure 5: The case of n = 11 firms. a) α = 0.0, γ = 1.0 b) α = 0.5, γ = 0.5 c) α = 1.0,
γ = 0.0
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Figure 6: The case of n = 11 firms partitioned into two groups of 8 and 3 members. a)
α = 0.0, γ = 1.0 b) α = 0.5, γ = 0.5 c) α = 1.0, γ = 0.0

Figure 7: The case of n = 12. a) α = 0.0, γ = 1.0 b) α = 0.5, γ = 0.5 c) α = 1.0, γ = 0.0
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Figure 8: The case of n = 14 firms. a) α = 0.0, γ = 1.0 b) α = 0.5, γ = 0.5 c) α = 1.0,
γ = 0.0

region. Furthermore, the bifurcation diagram of the nonsymmetric case is
different from the semisymmetric one and we can observe that the presence
of the adjustment type (1) seems to have a stronger destabilizing effect than
type (2). One reason could be that type (1) adjustments are likely to affect
the dynamics more often than the others which are more structural. Finally,
it must be observed that considering null initial outputs makes the dynamics
more complex. In fact, considering initial outputs larger than zero would
mean that part of the adjustment cost would have already made resulting in
a less complex dynamics as illustrated in Figure 10.

5. Conclusions

The classical Cournut oligopoly model was extended to include produc-
tion adjustment costs. As in modeling the use of contingent work force the
increase from the previous output level is first considered and then the addi-
tional cost of increase from the past largest output level was included into the
model, which is the case of additional investments. Each firm has a unique
best response depending on the output of the rest of the industry, its output
at the previous time period as well as its maximal past output level.

Partial adjustment toward best responses was next assumed in formulat-
ing the corresponding dynamic extension which has at least one steady state.
Their number is usually infinity, and the set of the steady states was char-
acterized by a system of linear inequalities. Computer simulation confirmed
that this model can lead to convergence to steady states, cycles and even
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Figure 9: The case of n = 14 firms, nonsymmetric case where 7 firm have cost functions
with ck = 0 and dk = 1 and the remaining firms ck = 0 and dk = 2. a) α = 0.0, γ = 1.0
b) α = 0.5, γ = 0.5 c) α = 1.0, γ = 0.0

Figure 10: The case of n = 12, with initial outputs xk (0) = 1, ∀k. a) α = 0.0, γ = 1.0 b)
α = 0.5, γ = 0.5 c) α = 1.0, γ = 0.0
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chaotic behavior if the number of firms and/or the speeds of adjustments are
sufficiently large. Similarly to the classical Cournot model an increase in the
number of firms and/or in the speed of adjustments makes the asymptotic
behavior of the system more complex ([1], [5], [12], [13], [16] [18]). The profit
functions assumed in this paper, similarly to most studies of the literature,
were continuous. However the increase of production capacity might require
fixed cost such as building construction, land purchase, etc. This additional
assumption would result in discontinuous profit functions which would make
the steady states and dynamic analysis more complicated. In our future re-
search we will consider such discontinuous models, nonlinear price and cost
functions. Also it will be interesting to consider partial cooperation between
the firms and introduce antitrust thresholds as in [8, 9, 10].

Acknowledgments

This work has been performed within the activity of the PRIN project
“Local interactions and global dynamics in economics and finance: models
and tools”, MIUR, Italy, and under the auspices of COST Action IS1104
“The EU in the new complex geography of economic systems: models, tools
and policy evaluation”.

References

[1] G.I. Bischi, C. Chiarella, M. Kopel, F. Szidarovszky, Nonlinear
Oligopolies: Stability and Bifurcations, Springer-Verlag, Berlin/New
York, 2010.

[2] A. Cournot, Recherches sur les Principes Mathematiques de la Theorie
des Richesses, Hachette, Paris, 1838. (English translation, Kelly, New
York, NY, 1960).

[3] M. di Bernardo, C. Budd, A. Champneys, P. Kowalczyk, Piecewise-
smooth Dynamical Systems, Springer-Verlag, London, UK, 2008.

[4] R. Driskill, S. McCafferty, Dynamic oligopoly with adjustment costs:
a differential game approach, Journal of Economic Theory 49 (1989)
324–338.

[5] F.H. Hahn, The stability of the Cournot oligopoly solution, The Review
of Economic Studies 29 (1962) 329–331.

16



[6] T.D. Howroyd, J. Rickard, Cournot oligopoly and adjustment costs,
Economics Letters 7 (1981) 113–117.

[7] W.B. MacLeod, On adjustment costs and the stability of equilibria,
Review of Economic Studies 52 (1985) 575–591.

[8] A. Matsumoto, U. Merlone, F. Szidarovszky, Cartelizing groups in dy-
namic linear oligopoly with antitrust threshold, International Game
Theory Review 10 (2008) 399–419.

[9] A. Matsumoto, U. Merlone, F. Szidarovszky, Cartelising groups in dy-
namic hyperbolic oligopoly with antitrust threshold, Australian Eco-
nomic Papers 49 (2010a) 289–300.

[10] A. Matsumoto, U. Merlone, F. Szidarovszky, Dynamic oligopoly with
partial cooperation and antitrust threshold, Journal of Economic Be-
havior and Organization 73 (2010b) 259–272.

[11] A. Matsumoto, U. Merlone, F. Szidarovszky, Oligopolies with contingent
workforce and unemployment insurance systems, Submitted, 2013.

[12] K. Okuguchi, Expectations and Stability in Oligopoly Models, Springer-
Verlag, Berlin/Heidelberg/New York, 1976.

[13] K. Okuguchi, F. Szidarovszky, The Theory of Oligopoly with Multi-
product Firms, Springer-Verlag, Berlin/Heidelberg/New York, 1999.

[14] S.S. Reynolds, Capacity investment, preemption and commitment in an
infinite horizon model, International Economic Review 28 (1987) 69–88.

[15] S.S. Reynolds, Dynamic oligopoly with capacity adjustment costs, Jour-
nal of Economic Dynamics and Control 15 (1991) 491–514.

[16] J. Seade, The stability of Cournot revisited, Journal of Economic Theory
23 (1980) 15–27.

[17] F. Szidarovszky, J. Yen, Dynamic Cournot oligopoly with production
adjustment costs, Journal of Mathematical Economics 24 (1995) 95–
101.

[18] R.D. Theocharis, On the stability of the Cournot solution on the
oligopoly problem, The Review of Economic Studies 27 (1960) 133–134.

17



[19] U.S. Bureau of Labor Statistics, Contingent and al-
ternative employment arrangements, February 2005,
http:data.bls.gov/news.release/conemp.nr0.htm, 2005.

[20] J. Zhao, F. Szidarovszky, N-firm oligopolies with production adjustment
costs: Best responses and equilibrium, Journal of Economic Behavior
and Organization 68 (2008) 87–99.

18



Referee’s report on the paper “Dynamic oligopolies with contingent workforce and investment 
costs” By Ugo Merlone and Ferenc Szidarovszky 
Submitted to Mathematics and Computers in Simulation 

The paper addresses the issue of adjustments costs within the classic Cournot oligopoly framework 
without product differentiation. These adjustments costs are related to the increments of production 
over the last period of time or over the entire duration of the game. In the first part of the paper, the  
authors derive the best reply functions of the players. This derivation is very clearly explained and 
Figure 1 is helpful in working out the various cases. The second part of the work presents numerical  
results related to the best reply dynamics of the oligopoly in a semi-symmetric setting. The paper as 
well as several results are interesting. In the following, I try to provide some comments to improve 
the overall presentation of the paper. 

Main remarks 

In my opinion there is a big gap in the way the paper is presented, namely between the first part  
(Sections 2 and 3) and the last part (Section 4). The first part presents a nice derivation of the model 
and the best replies, which are then employed to obtain the dynamical system in terms of best reply 
dynamics with naïve expectations. On the other hand, the second part appears just as a collection of 
bifurcation diagrams with varying speed of adjustment. This second part outlines through numerical 
examples the increasing instability in the model as the agents’ speed of adjustment as well as the 
number of competitors is increased. Although the latter is a classic topic within the framework of 
Cournot  oligopoly (Theocaris,  Hahn, McManus,  Seade,...),  the authors do not  quote any of the 
works related to this issue, even though this literature is strictly related to their paper. 

In the revised version we quote these important results which are related to our findings.

For instance, for N=2,3 (page 9) it seems that the classic results are retrieved also with adjustments 
costs.  However,  there  is  no  way  to  understand  how  robust  this  is,  based  on  the  numerical 
experiments of the paper. By the first part of the paper, it is clear that the best reply functions are 
nonautonomous, in the sense that they change during the game as a result of the different quantities 
played during the history of the game.  Moreover,  the best  reply functions  (and hence the map 
defined in (15)) are clearly piecewise linear and the possible bifurcations of (15) should be Border 
Collision Bifurcations. However, the authors do not recall this fact (the expressions “piecewise-
linear” and “border collision bifurcation” do not appear in the text, as well as quotes to the related 
literature, see for instance Di Bernardo et al. 2008) and do not discuss the difficulties arising from 
the analysis of the map (15). I would encourage the authors to provide some analytical results on the 
stability of the Nash equilibrium or, at least, to discuss the problems related to this analysis, before 
providing the numerical examples. 

In  the  revised  version  we mention  the  border-collision  bifurcation  providing a  reference  to  as  
suggested. Furthermore, at the end of Section 3 we discuss the difficulties related to the theoretical  
analysis and explain why we provide numerical examples. 

Minor remarks 

Page 1, line 5 of the Introduction: I would avoid to say “in the first stage”, as this expression seems 
to be related to a multi-stage game; 

The expression has been modified. 

*Response to Reviewers



Page 2: a review of the literature on adjustment costs is provided. However, it would be useful to 
discuss better how the quoted works relate to the present paper; 

In the revised version we provide a better discussion which links how the  critiques to the 
traditional models have been approached.  

Page 3: the maximum capacity level Lk can never be exceeded. However, in the long-run, any level 
can, in principle, be exceeded, as firms can invest in increasing the production capacity. Do the 
authors have in mind a specific example of oligopoly where the proposed cost functions are a 
reasonable assumption? 

In the revised version, after  equation (3) we discuss the assumptions underlying our formalization.

Page 4: formula (4) represents the profit that firm k expects for time period t. However, it should 
be said that firm k has naïve expectations when assessing the future output of the rest of the 
industry; 

In the revised version we mention this point later on, when we discuss the dynamical model, after 
equation (16).

Page 4: equation (2) is interpreted as an investment in capacity; however, here the capital does not 
depreciate; would it be possible/feasible/interesting to embed in Xk(t-1) [formula (3)] a 
depreciation term? 

Clearly it would be interesting and will make the analysis more difficult. Nevertheless we keep in 
mind this suggestion for further research as we say in the conclusions DA FARE

Page 6, first line: “we have have two possibilities” 

We corrected the typo, thank you.

Page 7: better explain equation (18) 
What happens when the assumption of a semi-symmetric model is relaxed? What if the players are 
equally split in two groups of equal size? What about the case of completely homogeneous players 
(i.e. an unidimensional map if also the initial outputs coincide)? 

In preparing the revised version we repeated our analyis considering also homogenous players and 
two groups of equal size.  As the results do not change, we do not report the bifurcation diagrams. 
Nevertheless, we discuss this point and provide the bifurcation diagram for the case in which the 
nonsymmetric case is different from the semi-symmetric.

In principle a firm could face an adjustment cost even though it reduces the production with 
respect to the previous period (e.g. when workforce is laid off a firm could be obliged to give 
severance pay). The authors could briefly mention this point. 

Right before Equation (4) of the revised version we mention this point.
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Referee Report on 
Dynamic Oligopolies with Contingent Workforce and Investment Costs 
by Merlone and Szidarovsky 

This paper considers inertial best response dynamics in Cournot oligopolies with adjustment costs 
based on excess output relative to last output (work- force adjustment) and relative to the maximal 
output in the past (capacity adjustment). The resulting dynamical system is piecewise smooth and 
has typically a continuum of fixed points. By means of numerical simulation the dynamic properties 
of the system are explored and it is shown that for an increasing number of firms cycles and chaotic 
dynamics occur for certain ranges of the adjustment speed parameter of firms. 

I appreciate the idea of the authors to introduce different types of ad justment costs into the heavily 
studied myopic best reply Cournot models. The analysis is competently done and results seem to be 
correct (obviously the numerical findings could not be checked in detail). However, the substance 
of the contribution does not become very clear in the current version. 
From a technical perspective the study is rather standard, so in my opinion the new economic 
insights have to become more clear. I think this aspect should be improved to make the paper 
publishable and give detailed comments below. 

1.) The basic observation that an increase in the number of firms leads to instability of the steady 
state(s) and, under consideration of (non-negativity) contraints on prices and outputs, cycles and 
maybe more complex patters might emerge under myopic best response dynamics is not really new 
(e.g. Theocharis (1960)). So, it has to be made clear what kind of qualitatively new phenomenon 
arises due to the introduction of these two types of adjustment costs. Also, the different implications 
of the two types of adjustment costs (i.e. the differences between cases a) and c)) should be 
discussed in more detail. Is there any economic intuition to explain the different patterns 
we observe in a) vs. c) in figs 7. - 9.? 

In the revised version we provide some economic intuition to explain the different effects  on the 
dynamics between the two kinds of adjustment costs.

2.) The assumption that firms only consider current profit when making their output decision is 
quite standard in this literature, but it seems to me that in this particular setting the assumption is 
more heroic than usual. It is assumed that production capacities stay intact without any depreciation 
forever, which implies that firms in their planing should distribute their investment costs over the 
anticipated number of periods in which they will produce such output or higher. In that sense it 
seems that in the current formulation firms systematically underinvest in capacities. Some 
discussion of this point and some defense of this assumption should be provided. 

In the revised version we discuss why we do not take into account depreciation.

3.) From a more mathematical perspective I am wondering whether no analytical conditions can be 
derived to characterize the threshold for the number of firms (as a function of parameters) where a 
steady state losses stability. 

In the revised version we explain why it is so difficult to obtain analytical conditions.

4.) The exposition could be more clear at several points. Some Examples: 

In (15) on p7. the term sk is used on the right hand side. I guess this should be sk (t − 1) with sk (t − 
1) = l=k xl (t − 1) but this should be explicitly stated. 

*Response to Reviewers



In the revised version we corrected the typo and address this point.

On p8 it is explained that in the simulations n−1 firms are assumed to be identical and one firm is 
different. Why is this setup used? Would the dynamics look qualitatively different if a completely 
symmetric (or a much more heterogeneous) setup would be considered? 

In preparing the revised version we repeated our analyis considering also homogenous players and 
two groups of equal size.  As the results do not change, we do not report the bifurcation diagrams. 
Nevertheless, we discuss this point and provide the bifurcation diagram for the case in which the 
nonsymmetric case is different from the semi-symmetric.

The assumption that initial output is zero might not be innocent. Due to the well known 
overshooting this should imply large outputs in the first period and this might take care of all capital 
adjustment costs in the following periods. Would steady states look different for larger initial 
output? 

The analysis has been repeated considering initial output larger than zero. In the revised version 
we show how the initial condition plays such a role. Nevertheless, as the paper investigates the role 
of adjustment costs, considering large outputs in the first period which would take care of all 
capital adjustment costs at the beginning making the dynamics less interesting from the economic 
point of view.

On p9 it is explained that in Figure 3 the smallest and largest trajectory value for t > 2500 is shown. 
This seems to suggest that for each value of K we see exactly two points (which might coincide) in 
the graph. Whereas this is true for figures 3 and 4, in figs. 5 - 9 we see multiple points for a given 
K-value. Hence, these figures must have been generated differently from the explanation on p9. 
Please explain what they exactly show. 

In the revised version we provide a better explanation. The previous version was unclear and we 
are grateful to the reviewer for pointing out this.
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