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Abstract8

The Asian chestnut gall wasp Dryocosmus kuriphilus, native of China, has be-

come a pest when it appeared in Japan, Korea, and the United States. In

Europe it was first found in Italy, in 2002. In 1982 the host-specific parasitoid

Torymus sinensis was introduced in Japan, in an attempt to achieve a biologi-

cal control of the pest. After an apparent initial success, the two species seem

to have locked in predator-prey cycles of decadal length. We have developed a

spatially explicit mathematical model that describes the seasonal time evolution

of the adult insect populations, and the competition for finding egg deposition

sites. In a spatially homogeneous situation the model reduces to an iterated

map for the egg density of the two species. While, for realistic parameters, the

map would support the hypothesis of biological control, the full model, in the

same parameter range, does not give such a clear-cut answer. In particular,

according to the spatially explicit model, the introduction of T. sinensis would

spark a traveling wave of the parasitoid population that destroys the pest on its

passage. Then, depending on the value of the diffusion coefficients of the two

species, the pest may later be able to re-colonize the empty area left behind the

wave. When this occurs the two populations do not seem to attain a state of

spatial homogeneity, but produce an ever-changing pattern of traveling waves.
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1. Introduction9

Since its first report in 2002 the Asian chestnut gall wasp Dryocosmus10

kuriphilus Yasumatsu (Hymenoptera: Cynipidae) is affecting many chestnut11

ecosystems in Europe and its range is continuously expanding. Native of China,12

it established as a pest in the mid 20th century in several countries, being re-13

ported in Japan (1941) (Moriya et al., 2003), in Korea (1958) (Cho and Lee,14

1963), in the United States (1974) (Rieske, 2007) in Nepal (1999) (Abe et al.,15

2007), and in Canada (2012) (Huber and Read, 2012).16

In Europe, D. kuriphilus was first found in Italy and reported only in 200217

(Brussino et al., 2002). It was added to the European Plant Protection Orga-18

nization (EPPO) A2 Action list (EPPO, 2005) in 2003. Despite the European19

Commission Decision 2006/464/EC of 27 June 2006 to put into place provisional20

emergency measures to prevent the introduction into and the spread within the21

community of D. kuriphilus, the pest is now widely distributed in Italy and22

has become established in many other European countries including Austria23

(2013), Croatia (2010), Czech Republic and Slovakia (2012), France (2005), Ger-24

many (2013), Hungary (2013), Portugal (2014), Slovenia (2005), Spain (2012),25

Switzerland (2009), Turkey (2014), the United Kingdom (2015) and Belgium26

(2016) (EFSA, 2010; EPPO, 2013, 2015a, 2016). In the Netherlands it was acci-27

dentally imported through nursery trees (2010) and then promptly detected and28

eradicated by destroying the few affected plants (NPPO, 2013), but recently a29

new outbreak has been detected close to the German border (EPPO, 2015b).30

Since D. kuriphilus has shown its ability to spread rapidly and is successfully es-31

tablished in several countries, further establishment is likely in Europe anywhere32

there is availability of the host plants Castanea spp. (EFSA, 2010).33

The chestnut gall wasp is a univoltine and thelytokous species (Moriya et34

al., 1989), and lays eggs in buds during summer. The hatched larvae induce the35

formation of greenish-red galls, which develop at the time of budburst in the36

following early spring on new shoots (Ôtake, 1980), suppressing shoot elongation37

and causing twig dieback. Severe reduction of fruiting with yield losses due to38
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insect attacks have been estimated to reach between 65% and 85% in northern39

Italy (Bosio et al., 2013; Battisti et al., 2014). However, no evidence was found40

to confirm tree mortality. A gradual reduction in vigor in the longer term is41

the likely consequence of annual infestation by the gall wasp, causing a gradual42

reduction in biomass (EFSA, 2010).43

Early attempts of biological control of the pest were performed in Japan44

(Murakami et al., 1977; Murakami, 1981) and in the USA (Rieske, 2007) by45

the introduction of Torymus sinensis Kamijo (Hymenoptera: Torymidae), a46

chinese parasitoid described by Kamijo (1982). In its native environment it is47

only one among many species of natural parasitoids of D. kuriphilus (Murakami48

et al., 1980), but it appears to be very well synchronized with the life cycle of49

the pest, making it a strong candidate as a biological control agent (Murakami,50

1981). In addition, outside China, it was believed to be host-specific, although51

its host range was never studied or tested in detail (Murakami et al., 1977;52

Gibbs et al., 2011). Recently, a large-scale survey in northern Italy found a few53

specimens of T. sinensis emerging from oak galls of the non-target host Biorhiza54

pallida Olivier. All evidence, however, still suggests that D. kuriphilus is by far55

the preferred host, and parasitism of other species occurs only exceptionally,56

possibly as a response to scarcity of its primary host (Ferracini et al., 2015a).57

T. sinensis reproduces sexually, and by arrhenotokous parthenogenesis if58

there is lack of mating. It is reported as univoltine, like its host. However,59

recent preliminary investigations highlighted that a very small fraction of the60

insect population may undergo a prolonged diapause extended for 12 months,61

mainly as late instar larva (Ferracini et al., 2015b). After emergence, which62

takes place in early spring, and mating, the female lays eggs inside the larval63

chamber of newly formed galls, one egg per host larva. Although in controlled64

conditions occasional multiple eggs per host larva have been reported by an65

early study (Piao and Moriya, 1992), we have never found more than one egg66

per host larva while dissecting galls collected in the field. After hatching, the67

larva feeds ectoparasitically on the host larva, and it pupates in the host larval68

chamber during winter.69
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T. sinensis was introduced in Japan from China (Murakami et al., 1977,70

1980; Moriya et al., 2003). After its release, it dispersed successfully alongside71

expanding D. kuriphilus populations. In Japan D. kuriphilus may also be sub-72

ject to varying levels of parasitism from native insects, most notably Torymus73

beneficus Yasumatsu & Kamijo and several species of the genus Eupelmus (Mu-74

rakami and Gyoutoku, 1995; Moriya et al., 2003) that, however, are unable to75

control the pest. Monitoring of test orchards showed that after about 6–18 years76

from the introduction of T. sinensis, the pest population declined to levels as77

low as to be practically undetectable, giving rise to claims of success in bio-78

logically controlling the infestation (Moriya et al., 1989; Murakami et al., 2001;79

Moriya et al., 2003). However, continuous monitoring of the first release site80

over 25 years shows three successive peaks in the population of D. kuriphilus,81

shortly followed by peaks in the population of T. sinensis (Moriya, personal82

communication). In the USA, several Asian Torymus species were released in83

1977 in southeastern Georgia, but the release was not followed by any moni-84

toring. The first accounts of the successful establishment of T. sinensis in the85

United States were published only thirty years later (Cooper and Rieske, 2007;86

Rieske, 2007). In spite of the abundant presence of T. sinensis, and of Ormyrus87

labotus Walker (a native insect that was shown to easily parasitize D. kuriphilus88

galls), the pest could be found in most of the southern Appalachian range, with89

satellite infestations in Ohio and Pennsylvania.90

The European chestnut (Castanea sativa Mill.) is one of the most important91

broad-leaved species in Italy: chestnut stands amount to 788,400 hectares, which92

represents 9% of the Italian forests (Graziosi and Santi, 2008). Due to the report93

of the gall wasp in 2002 and in consideration of the long-established economic94

importance of chestnut throughout the country for fruit and wood production,95

a collaboration was started with Japanese researchers and a biological control96

program was initiated in 2005 with the release in infested orchards of Japan–97

imported T. sinensis specimens (Quacchia et al., 2008). Following the Japanese98

and Italian experiences, reporting the establishment of a sizable population of99

T. sinensis vigorously parasitizing the galls of D. kuriphilus, recent releasing100
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programs were performed in Croatia, France and Hungary (Borowiec et al.,101

2014; Matošević et al., 2014), as well as test releases in Spain and Portugal (Juan102

Ramón Boyero at Junta de Andalucia, personal communication, Associação103

Portuguesa da Castanha, 2015).104

Although in Europe there exist several native species of Hymenoptera capa-105

ble of parasitizing D. kuriphilus galls, all of them have a very large host range,106

and suffer by a mismatch between their emergence times and the development107

of the galls. They are therefore unable to act effectively as biological control108

agents (Aebi et al., 2006, 2007; Quacchia et al., 2013; Alma et al., 2014).109

In the present paper we develop a mathematical model of the interaction110

between T. sinensis and D. kuriphilus. aiming at developing a tool for under-111

standing and evaluating the effectiveness of biological control programs based112

on the release of T. sinensis in woods and orchards infested by D. kuriphilus.113

In particular we would like to investigate whether T. sinensis should be114

expected to be able, alone, to maintain its population to levels at least as low as115

to produce no harm, or if such expectations are over optimistic. The fact that T.116

sinensis is extremely well synchronized with D. kuriphilus, that outside China it117

acts almost perfectly as host-specific, and that in Europe its abundance appears118

to be limited only by the availability of its host, with a very low mortality during119

all its life stages, allows hopes for a rapid, complete, and permanent control of120

the pest. However, the experiences of both Japan and the USA warn that the121

effectiveness of T. sinensis might be less perfect than one would wish it to be.122

In the case of Japan the imperfect control of D. kuriphilus has been ascribed to123

a high mortality of T. sinensis by hyperparasitism (Murakami and Gyoutoku,124

1991). In Europe hyperparasitism is only occasional (Quacchia et al., 2013),125

which leaves more room for hopes of obtaining a control.126

In order to have a flexible tool, our model, in its full form, is hybrid discrete–127

continuous in time and spatially explicit. In an abstract setting, a class of models128

of this sort for a single species has been discussed by Lewis and Li (2012).129

Our model describes the host–parasitoid interplay of two species (namely T.130

sinensis and D. kuriphilus). For both species the time–continuous part of the131
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model describes the seasonal dispersal of the adult insect population, and the132

inter–specific competition for finding egg deposition sites. The time–discrete133

(or “impulsive”) part describes the overwintering of the larvae. In a spatially–134

homogeneous situation the model may be rigorously reduced to an iterated map135

quantifying the egg density of the two species, whose properties are studied136

with a combination of analytic and numerical techniques. The full, spatially–137

explicit model is studied by means of numerical simulations in one and two138

spatial dimensions. The comparison between the dynamics of the iterated maps139

and of the full model suggests a diffusion-based mechanisms that may give rise,140

under certain conditions, to repeated waves of full infestation followed by near141

disappearance of the pest and of its parasitoid, on time scales that depend not142

only on the physiological and ecological parameters, but also on the size and143

geometry of the wood.144

The rest of the paper is organized as follows: the mathematical model is145

developed in section 2; the results obtained from the model are reported in146

detail in section 3; finally they are summarized in section 4, together with some147

speculative considerations. Section 5 is an appendix containing mathematical148

analyses in support of statements appearing in sections 2 and 4.149

2. The model150

2.1. Equations for the gall wasp151

We aim at describing the population of adult gall wasps on spatial scales152

much larger than those of an individual tree. Thus the population of adult gall153

wasps during the summer of the year n is quantified as a vertically–integrated154

density field Un (that is, the number of insects per unit area as a function of time155

and space) of egg–carrying D. kuriphilus adults. By “density of egg–carrying156

adults” we mean that an adult that has not yet laid any eggs contributes by157

a whole unit in the computation of this density, an adult that has laid, say,158

half its eggs contributes by half a unit, and one that has laid all its eggs does159

not contribute at all, even if it is still alive. Thus, calling ND the maximum160

number of eggs that can be laid by a typical D. kuriphilus adult under optimal161
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conditions, then NDUn(\bfitx , t) is the number of eggs per unit area present at the162

location \bfitx and time t that can still potentially be laid.163

We shall also need a second field, Vn, that quantifies the density of eggs laid164

in chestnut buds. Because D. kuriphilus may only lay eggs on chestnuts buds,165

and at most M eggs per bud, then the density of laid eggs in any location \bfitx is166

always at most M\beta n(\bfitx ), where \beta n is the density of chestnut buds on the n - th167

year. In any case, the maximum density of laid eggs cannot exceed the quantity168

Vmax = M\beta max (1)

where the constant \beta max is the maximum density of buds attainable in a chest-169

nut wood under optimal conditions.170

At the beginning of each season, the density of both the gall wasps and of171

their laid eggs are zero:172

\left\{     Un(\bfitx , 0) = 0

Vn(\bfitx , 0) = 0

. (2)

As the season progresses, from the galls formed during the previous season, the173

wasps gradually emerge. For simplicity we shall assume a constant emergence174

rate:175

\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e} \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e} =
\eta Vn - 1(\bfitx , TD)

TD
(3)

where TD is the length of the egg deposition season, and the non-dimensional176

parameter \eta \in (0, 1] is the survival rate during the overwintering. More pre-177

cisely, \eta Vn - 1(\bfitx , TD) dA is the number of D. kuriphilus adults that emerge dur-178

ing the n - th season from an area dA centered around the location \bfitx . Taking179

into account that chestnut gall wasps reproduce by thelytokous parthenogene-180

sis (Murakami, 1981), and have a low natural mortality of eggs and larvae, we181

expect the numerical value of \eta to be close to one. More in detail, the primary182

mortality factors for D. kuriphilus are parasitism, gall-chamber invading fungi183

and failure of adult gall wasp to emerge (Cooper and Rieske, 2010), but from184

our experience all these processes have effects so mild to be almost negligible185

(authors’ personal observation).186
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Individual gall wasps do not survive for more than a few days. Therefore187

we need to introduce a sink term representing their mortality rate. We are not188

aware of any evidence in the literature of important exogenous factors affecting189

the mortality of adult gall wasps. Thus, taking individual deaths as independent190

from each other, the rate of deaths per unit area is likely to be proportional to191

the density of the population, suggesting the following simple choice for the192

death rate term193

\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{h} \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e} =  - Un(\bfitx , t)

a
(4)

where a is the typical adult life span (up to ten days: EFSA, 2010).194

We shall assume that during the egg-laying season the gall wasps move ran-195

domly, diffusing isotropically in the forest. Although there is evidence of a196

response of D. kuriphilus to olfactory cues in the choice of a host twig, this was197

observed at spatial scales shorter than a meter (Germinara et al., 2011). On198

much larger scales there is no evidence of anisotropic motion of the gall wasps,199

nor it should be expected. Following olfactory cues in a turbulent environment,200

such as a wood canopy, is a very challenging task when there is a single odor201

source (Balkowsky and Shraiman, 2002). In the presence of multiple sources202

it is very unlikely that an insect can consistently and reliably exploit olfactory203

cues on long range. For example, in the case of the parasitoid wasp Diachas-204

mimorpha juglandis Muesebeck, it was verified that it preferred to use visual205

cues rather than olfactory ones for locating the walnut fruit husks where its host206

may be found (Henneman et al., 2002). In the case of D. kuriphilus, the avail-207

able visual cues are also short-range: chestnut buds are not visible from more208

than a few meters away. Therefore, we consider reasonable to assume that the209

large-scale motion (that is, on distances larger than the size of individual trees)210

of D. kuriphilus adults is aimless and random, and thus it should be modeled211

by a Laplacian diffusion operator (we shall further discuss this issue in section212

4).213

When the egg-carrying adults find available buds (that is buds that are not214

already fully saturated by other eggs), they quickly lay one or more eggs, thus215
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reducing the number of available deposition sites. The rate of egg deposition216

of an individual will be proportional to the density of available eggs deposition217

sites, which, in the model, is expressed as M\beta n(\bfitx ) - Vn(\bfitx , t). It would be more218

accurate to assume that the egg deposition rate is a Holling’s type II function of219

the available egg deposition sites. However, our observations suggest that, for220

D. kuriphilus, the handling time (the time actually spent laying eggs) is just a221

tiny fraction of the search time (which is comparable with the adult life span).222

When the handling time is negligible, the Holling’s type II function tends to a223

simple proportionality between the deposition rate and the density of available224

deposition places (see e.g. Vandermeer and Goldberg, 2013, p.163). Accordingly,225

the egg deposition rate of the whole population is taken as proportional to the226

product of the density of available sites by the density of the adult population,227

as in the following expression228

\mathrm{e}\mathrm{g}\mathrm{g} \mathrm{d}\mathrm{e}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e} = rD
M\beta n(\bfitx ) - Vn(\bfitx , t)

Vmax
Un(\bfitx , t). (5)

It is possible to give a reasonable estimate for the proportionality constant rD229

that appears in the expression above. In fact, we must assume that in optimal230

conditions (that is, if Vn = 0, \beta n(\bfitx ) = \beta max and thus the deposition rate reduces231

to rDUn) every adult gall wasp must be able to lay all its ND eggs in a time232

interval roughly equal to its adult life span a. This would imply that233

rD =
ND

a
(6)

By adding together all the processes discussed in this section we arrive to234

the following model that describes the time evolution of the Un and Vn fields235

during the n - th season.236 \left\{                       

\partial 

\partial t
Un(\bfitx , t) = DD\nabla 2Un(\bfitx , t) - 

1

a

M\beta n(\bfitx ) - Vn(\bfitx , t)

Vmax
Un(\bfitx , t)

 - 1
aUn(\bfitx , t) +

\eta Vn - 1(\bfitx , TD)

TD

\partial 

\partial t
Vn(\bfitx , t) =

ND

a

M\beta n(\bfitx ) - Vn(\bfitx , t)

Vmax
Un(\bfitx , t)

(7)
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where DD is the diffusivity of the gall wasps, and all other symbols have already237

been defined. Note that the egg deposition rate, that appears as the only term238

in the right-hand side of the equation for Vn, also appears in the equation for239

Un with a minus sign and divided by ND. This is because, as discussed above,240

the contribution of each individual to the density Un is weighted by the fraction241

of eggs that it carries.242

The problem (7) with the initial conditions (2) is not closed, because no rule243

was specified for the time evolution of the bud density \beta n. In the presence of a244

developed infestation the health of the chestnut trees progressively deteriorates,245

and the bud density may decrease. This is a slow process, whose details are246

largely unknown (Kato and Hijii, 1997). If the model were used to perform247

detailed, realistic year–by–year forecasts of the spreading of D. kuriphilus, the248

best results would be obtained by measuring the density \beta n by means of direct249

surveys of the orchards and coppices under study. In this paper, in order to250

assess and understand the main features of the solutions of the model’s equa-251

tions, we shall use the strong simplifying assumption that the density of buds252

is always constant, and equal to \beta max.253

It is convenient to make non–dimensional the dependent variables, by defin-254

ing un = Un/ (\eta Vmax) and vn = Vn/Vmax. Note that vn \in [0, 1] and that255

M\beta n/Vmax = 1, because of the simplifying assumption \beta n = \beta max. Likewise, it256

is convenient to use non–dimensional variables also for time and space. These257

are defined as: \~t = t/TD and \~\bfitx = \bfitx /
\surd 
DDTD. Thus the equations (7) be-258

come (for typographical brevity in the following we shall omit the tildes on the259

non–dimensional independent variables)260 \left\{     
\partial 

\partial t
un(\bfitx , t) = \nabla 2un(\bfitx , t) - \mu (2 - vn(\bfitx , t))un(\bfitx , t) + vn - 1(\bfitx , 1)

\partial 

\partial t
vn(\bfitx , t) = ED\mu (1 - vn(\bfitx , t))un(\bfitx , t)

(8)

where \mu = TD/a, ED = \eta ND and t \in [0, 1]. For each n, the equations (8) are261

subject to the conditions262 \left\{     un(\bfitx , 0) = 0

vn(\bfitx , 0) = 0

(9)
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This is a piecewise smooth initial value problem, characterized by two free pa-263

rameters: ED and \mu . The first one is the maximum number of eggs that can be264

laid by a D. kuriphilus adult, multiplied by the overwintering mortality (which265

does not appear elsewhere in the non–dimensional equations); the second is the266

reciprocal of the adult life span, measured in the non–dimensional time units.267

A further important parameter is the size, in non–dimensional units, of the268

domain \Omega , that is the chestnut–covered area on which Un and Vn are defined.269

The equations (8) and the conditions (9) must be complemented by suitable270

boundary conditions describing the behavior of the gall wasps when they find271

themselves at the edge of the wood. We are not aware of any published work272

on this issue. It is very likely that a small fraction of the gall wasps would ven-273

ture outside a chestnut orchard or coppice, spilling over adjacent regions. For274

simplicity, here we assume that any gall–wasp that were to leave the domain275

\Omega would promptly change its course, returning inside the chestnut–populated276

area. In this idealized situation there would be no flux of wasps across the edges277

of \Omega , and therefore the appropriate boundary conditions for Un would be278

\^\bfitn \cdot \nabla un| \partial \Omega = 0 (10)

where \partial \Omega denotes the line delimiting the boundary of \Omega , and \^\bfitn represents the279

outward unit vector perpendicular to \partial \Omega .280

The no–flux boundary condition (10) is of particular interest because it al-281

lows for homogeneous solutions, that is, solutions in which the densities un and282

vn are constant in space (but not in time). In particular, it is straightforward to283

verify that if s0 is taken as a constant, then at all later times t and seasons n, un284

and vn do not depend on \bfitx , and the problem (8,9,10) reduces to the following285

chain of ordinary differential equations:286 \left\{                   

\.un(t) = vn - 1(1) - \mu (2 - vn(t))un(t)

\.vn(t) = ED\mu (1 - vn(t))un(t)

un(0) = 0

vn(0) = 0

(11)
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where the dot denotes differentiation with respect to time. The solution of these287

nonlinear equations cannot be expressed in terms of simple functions. However,288

a formal calculation shows that the year–over–year dynamics of the egg density289

can be well approximated by the following simple map (see Appendix 5.1 for290

details)291

vn = 1 - e - kvn - 1 (12)

where the egg densities vn, vn - 1 are evaluated at time t = 1 (corresponding292

to the end of the n - th and (n - 1) - th seasons). The positive constant k that293

appears in the exponential is given by one of the following two expressions294 \left\{     k+ = ED

\mu (e - \mu + \mu  - 1) \mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}. \mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{v}\mathrm{e},

k - = ED

4\mu 

\bigl( 
e - 2\mu + 2\mu  - 1

\bigr) 
\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}. \mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{w}.

(13)

On choosing k = k - we obtain an approximation from below, which is highly295

accurate when the previous year egg density vn - 1 is appreciably smaller than296

1. Choosing k = k+ one has an approximation from above, that captures the297

dynamics more accurately when the egg density vn - 1 is close to 1. (see Appendix298

5.1 for details, and Figure 1).299

We observe that the iterated map (12) is the well-known model of Skellam300

(Skellam, 1951; Brännström and Sumpter, 2005), that describes the population301

dynamics of univoltine insects in a regime of contest competition.302

2.2. Equations for T. sinensis303

Torymus adults emerge from vacated galls in spring. There appears to be a304

good degree of synchronism in the emergence process, so that the great majority305

of all the individuals appear in a time span of a few days (authors’ personal306

observation). After mating, the egg-carrying females look for intact galls into307

which they lay (usually) one egg per chamber (Piao and Moriya, 1992). Each308

female initially carries about NT \approx 70 eggs. In outdoor conditions the adult309

lifetime of T. sinensis is at least 37 days (Piao and Moriya, 1992). For modeling310
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Figure 1: Comparison of the end–of–season egg densities given by Skellam’s map (12) and
by a numerical solution of the spatially–homogeneous model (11) for different values of the
parameter k\pm defined in (13). In all the computations we have used ND = 150, \mu = 10,
v0(1) = 10 - 5. The overwintering survival rates are, from top to bottom, \eta = 0.1, 0.3, 0.9.
The first two values are unrealistically low and are meant just to illustrate the properties of
the two approximations. The last value is considered to be realistic in the European setting.
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purposes we shall take the emergence as an instantaneous process, and attribute311

the same life–span to all the individuals, so that they all die together.312

In the following we will denote with Pn the density of the egg-carrying T.313

sinensis females and with Qn the density of the eggs already laid, during the314

n - th season. Just as in our model of D. kuriphilus, we shall use the following315

expression for the egg deposition rate of T. sinensis316

\mathrm{e}\mathrm{g}\mathrm{g} \mathrm{d}\mathrm{e}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e} = rT
\eta Vn - 1(\bfitx , TD) - Qn(\bfitx , t)

Vmax
Pn(\bfitx , t) (14)

Also in this case, in principle, the rate should be expressed through a Holling’s317

type II functional response. But the oviposition time of T. sinensis is very318

short (a few minutes, authors’ personal observation) in comparison with its319

search time. Thus, as we argued in the case of the gall wasp, the deposition rate320

must be proportional to the product of the density of egg-carrying T. sinensis321

females with the density of the sites where oviposition is possible. The latter322

is given by the difference between the density of gall wasp eggs laid during323

the previous season and turned into larvae (namely \eta Vn - 1) and the density of324

T. sinensis eggs already laid. Here rT /Vmax is the proportionality constant.325

As for the gall–wasp we should assume that every female Torymus, in optimal326

conditions (that is, \eta Vn - 1 = Vmax and Qn = 0), should be able to lay all its NT327

eggs during its life span TT . Thus, we assume328

rT =
NT

TT
. (15)

Also for T. sinensis it is know that it responds to olfactory and visual cues329

at short ranges (Graziosi and Rieske, 2013). On longer distances, the same330

considerations already mentioned for the gall–wasp apply: the overall motion331

of an adult T. sinensis during its life span should be random and aimless, and332

therefore a Laplacian diffusion process, characterized by a constant diffusivity333

DT , should be the appropriate model.334

Therefore we may describe the dynamics of a population of T. sinensis dur-335

ing the n - th season with the following equations:336
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\left\{       
\partial 

\partial t
Pn(\bfitx , t) = DT\nabla 2Pn(\bfitx , t) - 

1

TT

\eta Vn - 1(\bfitx , TD) - Qn(\bfitx , t)

Vmax
Pn(\bfitx , t)

\partial 

\partial t
Qn(\bfitx , t) =

NT

TT

\eta Vn - 1(\bfitx , TD) - Qn(\bfitx , t)

Vmax
Pn(\bfitx , t)

. (16)

Here the time t = 0 corresponds to the simultaneous emergence of the adult337

Torymus. The equations are valid up to t = TT , corresponding to the end of338

the Torymus season, when all the adults die. Just as we did for the gall wasp,339

the rate of change of the laid egg density Qn is equal to the egg deposition rate.340

This rate is also divided by NT and subtracted from the equation for the rate341

of change of the density Pn of the T. sinensis females, because the density of342

adult females is weighted by the number of eggs that each adult carries.343

The equations (16) are subject to the initial conditions344 \left\{     Pn(\bfitx , 0) = \gamma Qn - 1(\bfitx , TT )

Qn(\bfitx , 0) = 0

(17)

The initial density of T. sinensis females is not zero because we assumed the345

instantaneous emergence of all the adults. The constant \gamma accounts for the346

sex ratio of T. sinensis, and for the mortality rate of the overwintering larvae.347

Male and female have roughly the same probability to emerge from a fertilized348

egg of T. sinensis (Ferracini et al., 2015b) and the overwintering mortality is349

believed to be very low (author’s personal observation), thus we shall use values350

of \gamma smaller than, but close to 1/2. T. sinensis females that are not able to351

mate may still lay their unfertilized eggs, from which will emerge males, by352

arrhenotokous parthenogenesis. Therefore, if the density of T. sinensis drops353

to very low levels, in the next season the sex ratio will be skewed in favor of the354

males, resulting in an improved mating probability for the remaining females.355

In its present form, our model does not include this mechanism. However, we356

also do not model explicitly the mating process: all the females are implicitly357

considered to be fertilized at the moment of their emergence. Thus we are358

already overestimating the mating probability of the females, and we feel that,359

at this stage, further complications may be unnecessary. For the same reason,360
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T. sinensis is modeled as a strictly univoltine species. The recent observations361

of an extended diapause of a few Torymus individuals, in a controlled setting362

(Ferracini et al., 2015b), does not yet allow a quantitative assessment of the363

importance (if any) of this process for the dynamics of the population in the wild.364

Thus we postpone the inclusion of these processes for a possible future improved365

version of the model. However, in section 4 we present some additional results366

that allow us to argue that, as long as the fraction of individuals undergoing367

extended diapause remains very low, the overall effects should be negligible.368

It is convenient to rewrite the model by using the non–dimensional densities369

pn = Pn/(\gamma \eta Vmax), qn = Qn/(\eta Vmax), and the same non–dimensional space370

and time variables already used for the gall–wasp equations. The equations371

(16) then become372 \left\{     
\partial 

\partial t
pn(\bfitx , t) = \delta \nabla 2pn(\bfitx , t) - \tau  - 1 (vn - 1(\bfitx , 1) - qn(\bfitx , t)) pn(\bfitx , t),

\partial 

\partial t
qn(\bfitx , t) = ET \tau 

 - 1 (vn - 1(\bfitx , 1) - qn(\bfitx , t)) pn(\bfitx , t),

(18)

where we have defined the diffusivity ratio \delta = DT /DD, the non–dimensional T.373

sinensis season length \tau = TT /(\eta TD), and the effective egg number ET = \gamma NT .374

The initial conditions (17) become375 \left\{     pn(\bfitx , 0) = qn - 1(\bfitx , \eta \tau ),

qn(\bfitx , 0) = 0.

(19)

By imposing no–flux boundary conditions on pn, and looking for homogeneous376

solutions, the equations (18) together with the initial conditions, yield a set of377

ordinary differential equations whose solution is given in Appendix (5.2). By378

evaluating the solution at the time corresponding to the end of the Torymus379

season, that is at the non–dimensional time t = \eta \tau , we obtain the following380

map:381

qn+1 =

\left\{       
ET vnqn

\bigl( 
1 - e\eta (ET qn - vn)

\bigr) 
vn  - ET qne\eta (ET qn - vn)

, ET qn \not = vn

v2
n

vn+\eta  - 1 , ET qn = vn

(20)

16



where the egg densities qn+1, qn and vn are evaluated at the end of their re-382

spective seasons. Albeit complicated–looking, the right–hand side of the map383

is a smooth function of its parameters, even for ET qn = vn. In particular, it384

is a growing function of qn, and, for realistic values of ET and \eta , it rapidly385

approaches the horizontal asymptote qn+1 \rightarrow vn. Therefore, the map (20), and386

thus the underlying equations (16), are a model that describes a contest compe-387

tition process among the individuals of T. sinensis (Brännström and Sumpter,388

2005).389

2.3. The complete model390

The equations for T. sinensis, discussed in the previous subsection, already391

depend on the density of D. kuriphilus eggs laid in the previous year. In order392

to have a fully coupled model, we only need to incorporate the parasitism of T.393

sinensis in the equations for D. kuriphilus discussed in sec 2.1. This is easily394

accomplished by observing that parasitized larvae of D. kuriphilus simply won’t395

give rise to adults. Therefore we need to change the emergence rate (3) with396

\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e} \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e} =
\eta Vn - 1(\bfitx , TD) - Qn(\bfitx , TT )

TD
. (21)

The complete model, using the non–dimensional variables, then reads397 \left\{                                                 

\partial 

\partial t
pn(\bfitx , t) = \delta \nabla 2pn(\bfitx , t) - \tau  - 1 (vn - 1(\bfitx , 1) - qn(\bfitx , t)) pn(\bfitx , t)

\partial 

\partial t
qn(\bfitx , t) = ET \tau 

 - 1 (vn - 1(\bfitx , 1) - qn(\bfitx , t)) pn(\bfitx , t)

\partial 

\partial t
un(\bfitx , t) = \nabla 2un(\bfitx , t) - \mu (2 - vn(\bfitx , t))un(\bfitx , t) + vn - 1(\bfitx , 1) - qn(\bfitx , \eta \tau )

\partial 

\partial t
vn(\bfitx , t) = ED\mu (1 - vn(\bfitx , t))un(\bfitx , t)

pn(\bfitx , 0) = qn - 1(\bfitx , \eta \tau )

qn(\bfitx , 0) = 0

un(\bfitx , 0) = 0

vn(\bfitx , 0) = 0.

(22)
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In the case of space–independent solutions, the dynamic of this model is well398

approximated by the following map399 \left\{             
qn+1 =

\left\{       
ET vnqn

\bigl( 
1 - e\eta (ET qn - vn)

\bigr) 
vn  - ET qne\eta (ET qn - vn)

, ET qn \not = vn

v2
n

vn+\eta  - 1 , ET qn = vn

vn+1 = 1 - e - k(vn - qn+1)

. (23)

that describes the year–over–year change of the end–of–season density of T.400

sinensis and D. kuriphilus eggs. The second equation in (23) is found by looking401

for spatially constant solutions of the third and fourth equations in the complete402

model (22). Then one finds that in the system of ODEs (11) the source term403

vn - 1(1) is replaced by vn - 1(1)  - qn(\eta \tau ). Following the derivation of Skellam’s404

map of section 2.1 one finds the expression given in (23).405

2.4. The value of the parameters406

The mathematical model developed in this section depends on 11 free pa-407

rameters, listed in Table 1. Of these, one depends on the physiology and on the408

distribution of the chestnuts, namely the bud density \beta max. Its numerical value409

and its significance will be discussed at the beginning of the next section.410

The other 10 parameters are related to the physiology of either D. kuriphilus411

or to T. sinensis. The value of 6 of these, namely M , a, TD, TT , ND, NT , is412

fairly well-known; the value of \eta and \gamma is debatable, and it might be different413

in different regions of the world; the value of DD and DT is unknown, but414

the model links it to more readily measurable quantities. We shall now briefly415

discuss all of them in turn.416

The maximum number M of eggs of D. kuriphilus per chestnut bud is only417

used in the definition of the non–dimensional densities (see Table 2) but it does418

not enter in the parameters that appear in the non–dimensional model (22).419

Thus, any uncertainty in its value would not affect the dynamics. Then there420

are three intervals of time: the life span a of adult individuals of D. kuriphilus;421

the number of days TD during which the adults of D. kuriphilus are active (that422

is, the length of what we have called the “Dryocosmus season”); and the number423
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DD 0.77 \mathrm{k}\mathrm{m}2\mathrm{d} - 1 Diffusion coefficient of
D. kuriphilus.

See sec. 3.2.

a 2–10 days
2–3 days

Adult life span of
D. kuriphilus.

EFSA (2010);
Graziosi and Rieske (2014).

M 20–30 eggs bud - 1 number of eggs of D. ku-
riphilus that can be laid
on a bud.

EFSA (2010).

\beta max 2 \cdot 106buds ha - 1 Maximum density of
chestnut buds.

Bounous (2014).

\eta 0.5–0.98 Fraction of D. ku-
riphilus larvae surviv-
ing after overwintering.

Cooper and Rieske (2007);
Quacchia et al. (2013).

TD 30–50 days Length of the egg depo-
sition season for D. ku-
riphilus.

EPPO (2005).

ND 100–300 Number of eggs per
adult of D. kuriphilus.

Graziosi and Rieske (2014).

DT unknown Diffusion coefficient of
T. sinensis.

See sec. 3.3

TT 37 days or more Length of the egg de-
position season for T.
sinensis.

Piao and Moriya (1992).

NT 71 Number of eggs per
adult female of T.
sinensis.

Piao and Moriya (1992).

\gamma 0.25–0.45 Fraction of T. sinensis
larvae that are female
and survive after over-
wintering.

Piao and Moriya (1992)
Author’s unpublished observa-
tions

Table 1: Parameters of the model and their likely value or value range.
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un =
Un

\eta M\beta max

Non–dimensional density of D.
kuriphilus adults during the sea-
son n.

vn =
Vn

M\beta max

Non–dimensional density of D.
kuriphilus eggs laid during the
season n.

pn =
Pn

\gamma \eta M\beta max

Non–dimensional density of T.
sinensis adult females during
the season n.

qn =
Qn

\eta M\beta max

Non–dimensional density of T.
sinensis eggs laid during the
season n.

\mu =
TD

a Non–dimensional length of the
egg deposition season of D. ku-
riphilus.

ED = \eta ND

Number of larvae per adult of
D. kuriphilus that survive the
overwintering in optimal condi-
tions.

k =

\Biggl\{ 
k+ = ED

\mu (e - \mu + \mu  - 1)

k - = ED

4\mu 

\bigl( 
e - 2\mu + 2\mu  - 1

\bigr) Effective growth rate in the
Skellam maps approximating
from above (k = k+) or from
below (k = k - ) the year–over–
year dynamics of D. kuriphilus’
egg density.

\delta =
DT

DD

Diffusivity ratio.

\tau =
TT

\eta TD

Non–dimensional length of the
egg deposition season of T.
sinensis.

ET = \gamma NT

Number of female larvae per
adult female of T. sinensis that
survive the overwintering in op-
timal conditions.

Table 2: Non–dimensional variables and parameters. Here the unit of time is TD and the unit
of space is

\surd 
DDTD.
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of days TT during which the adults of T. sinensis are active (the “Torymus424

season”). What matters for the model are the non–dimensional ratios TD/a and425

TT /TD. We take 10 as the reference value for the first, and 1 for the second.426

We have verified that any discrepancy from these reference values, as long as it427

is compatible with the observational uncertainties, makes little difference in the428

end results. In particular, in the spatially homogeneous case, the calculations429

of the previous section show that the map (23) does not depend on their ratio.430

Finally we have ND and NT , respectively the average number of eggs carried431

by D. kuriphilus and T. sinensis females. For the first we take the reference432

value of 150 eggs per female, and for the second we take 70 eggs per female.433

In the non–dimensional model (22) these parameters always appear multiplied,434

respectively, by \eta and \gamma . Any uncertainty in the value of ND and NT is surely435

swamped by the uncertainty in these two parameters.436

In fact, the value of the two overwintering survival fractions \eta (of D. ku-437

riphilus) and \gamma (of T. sinensis, which also includes the sex ratio) are debatable.438

The works of Cooper and Rieske (2007) and of Piao and Moriya (1992) sug-439

gest intermediate values for these parameters. However, our own observations440

(published in Quacchia et al., 2013 for D. kuriphilus and yet unpublished for T.441

sinensis) suggest much higher survival fractions. Whether these discrepancies442

are due to regional variations (USA and Japan vs subalpine Europe) or to some443

other cause is, at present, not known. Therefore, in the following, we devote444

much attention to studying the dependence of the dynamics on the value of the445

overwintering survival fractions.446

The two diffusion coefficients DD and DT , respectively of D. kuriphilus and447

T. sinensis, are completely unknown. In §3.2 we estimate the value of DD on448

the basis of the model results and of the observed speed with which a popula-449

tion of D. kuriphilus is able to invade a chestnut forest. Not enough data are450

available for attempting a similar deduction with DT . The effect of changing451

the diffusivity is studied in detail in §3.3.452
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3. Results453

3.1. Space-independent dynamics454

The map (23), which describes the time evolution of spatially homogeneous455

populations of D. kuriphilus parasitized by T. sinensis, predicts that, starting456

from non-zero densities of both species, the subsequent dynamics will continue to457

have non-zero densities at all later years, with upper bounds determined by the458

availability of buds (for D. kuriphilus) and of galls (for T. sinensis; see sec. 5.3.1459

for the mathematical proof). This property alone, however, does not guarantee460

the survival of either species. If, at some point in time, the modeled egg density461

of a species drops to sufficiently low values, then the model is predicting a local462

extinction of that species. An order–of–magnitude estimate of the threshold463

density that signals extinction may be obtained as follows: a full-grown chestnut464

tree in spring produces about 104 buds; typical production orchards have a465

density of 100  - 200 trees per hectare, while coppices may have up to 1000466

stems per hectare, but with less buds per stem than in individual trees (Bounous,467

2014). Thus we have \beta max \approx 2 \cdot 106 \mathrm{b}\mathrm{u}\mathrm{d}\mathrm{s} \mathrm{h}\mathrm{a} - 1, and, allowing for uncertainties468

in the above figures, it follows that Vmax ranges between 107  - 108 \mathrm{e}\mathrm{g}\mathrm{g}\mathrm{s} \mathrm{h}\mathrm{a} - 1.469

Therefore, non–dimensional densities vn, qn below 10 - 7  - 10 - 8 correspond to470

less than one insect per hectare. For an isolated, hectare-wide orchard, this471

would be the extinction threshold. For a chestnut woodland spanning several472

square kilometers the threshold would be proportionally lower.473

The map (23) depends on three parameters: \eta , ET , k. The last two, in turn,474

depend on other parameters, namely \gamma , NT , \eta , ND and \mu (see Tables 1 and 2).475

We shall discuss the dynamics of the map as a function of the overwintering476

survival fractions \eta and \gamma (owing to the uncertainty of their value) and fix the477

other parameters to the following values: ND = 150 (eggs per D. kuriphilus478

adult), NT = 70 (eggs per T. sinensis female adult), \mu = 10 (ratio of lengths479

of the season and individual life span for D. kuriphilus). Uncertainties in the480

value of \mu do not produce large changes: going from \mu = 3 to \mu = 20 gives481

about 15% difference in the value of the constant k - in (13). In Figures 2482
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Figure 2: As a function of the overwintering survival fractions \eta and \gamma , top panel: average
length of the predator–prey cycles; zero means that the coexistence fixed point is stable; the
gray area that T. sinensis asymptotically becomes extinct; the white area that both species
asymptotically become extinct; the white dashed line is the graph of (24). Middle panel: \mathrm{l}\mathrm{o}\mathrm{g}10
of the minimum density of D. kuriphilus eggs; the white region corresponds to asymptotic
extinction. Lower panel: \mathrm{l}\mathrm{o}\mathrm{g}10 of the minimum density of T. sinensis eggs; the white region
corresponds to asymptotic extinction. For each pair (\eta , \gamma ) the statistics are computed over
3000 iterations of the map, after a 2000 iterations transient. The black markers show the
parameters of Figures (3), (4), (5). Note that \gamma , the survival fraction of T. sinensis, also
includes the sex ratio, and therefore may not be greater than 0.5.
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to 5 we use k = k - , because this choice gives a better approximation at low483

densities. Note that using k = k+, is equivalent to using a larger value of ED484

with k = k - . The map (23) in some range of parameters, produces a dynamics485

in which the variables may swing by many orders of magnitude in a single year.486

This is the result of some subtle balances, (detailed in appendix 5.3.3) that are487

sensitive to numerical cancellation errors. Therefore, when using the map, all488

calculations have been carried out with 200 decimal significant digits, using an489

arbitrary precision numerical library Johansson et al. (2013). A more general490

and technical analysis of the map is given in Appendix 5.3.491

Depending on the values of \eta and \gamma there are 4 possible dynamical outcomes492

qualitatively distinct: extinction of both species, extinction of the parasitoid,493

steady coexistence, and predator–prey cycles. The first 3 occur for unrealisti-494

cally low values of these parameters. If \eta is as low as to make k < 1 in (23), then495

the egg density of D. kuriphilus asymptotically goes to zero. As the gall wasp496

goes extinct, so does, in the model, T. sinensis, for lack of galls where to lay eggs497

(see section 4 for a discussion of this issue). This region of the parameter space498

is represented by the white vertical strip in Figure 2 (top panel). If \eta is such499

that k > 1 and \gamma is sufficiently low, then only T. sinensis becomes extinct, and500

D. kuriphilus reaches the non-zero fixed point of Skellam’s map (12). This is501

the gray region in Figure 2 (top panel). The exact threshold value of \gamma tr cannot502

be expressed in simple terms, but a good approximation (the white dashed line503

in Figure 2, top panel) is504

\gamma tr \approx 1

NT (1 - e - \eta )
. (24)

The dark blue region above the threshold in Figure 2 (top panel) corresponds505

to the survival fractions at which both species survive and reach a stable fixed506

point. The shape of this region shows that, according to the model, a steady507

coexistence of both species may only occur if the overwintering survival fraction508

of at least one of the two species is unrealistically low.509

When it exists, we find a unique coexistence fixed point. It can be visualized510

as the intersection between the set of points (vn, qn) such that qn+1 = qn (the511
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green lines in the right panel of Figures 3, 4, 5) and the set of points (vn, qn+1)512

such that vn+1 = vn (the red lines in the right panel of Figures 3, 4, 5). We shall513

call these sets, respectively, q - nullcline and v - nullcline, and they intersect, at514

most, at a single point (see Appendix 5.3.2 for details). If the overwintering sur-515

vival fractions \eta and \gamma in Figure 2 (top panel) lie beyond the dark blue region of516

steady coexistence, a coexistence fixed point still exists, but is unstable, there-517

fore the insect egg densities fluctuate from year to year. When qn is above the518

q - nullcline, then qn+1 < qn, and if qn is below, then qn+1 > qn . Analogously,519

when vn is above (below) the v - nullcline, then vn+1 is smaller (larger) than vn.520

These drop or raise tendencies are depicted in the left panel of Figure 3, by the521

green vertical arrows for qn, and by the red horizontal arrows for vn. The arrows522

in the right panel of Figure 3 suggest that the sequence of states in a qn vs vn523

diagram rotates anticlockwise around the unstable fixed point, corresponding to524

cyclical increases and decreases of both species, in which maxima and minima525

of T. sinensis follow the maxima and minima of D. kuriphilus, yielding the kind526

of fluctuations that are ubiquitous in predator-prey dynamics (e.g. May and527

McLean, 2007, ch. 5). For generic values of \eta and \gamma these fluctuations are not528

periodic, nor asymptotically approach a periodic oscillation. However the cycles529

are characterized by a fairly well-defined time scale.530

Figure 3 (left panel) shows 60 years of dynamics that one obtains by adopting531

for the overwintering survival fractions the very low values \eta = 0.35 and \gamma =532

0.15, located just beyond the steady coexistence region. The initial state is533

designed to simulate the release of a tiny amount of T. sinensis in a large534

chestnut forest infested by D. kuriphilus. Thus we take vn = 1 and qn =535

10 - 9. During the first two decades the population of T. sinensis grows steadily536

from the very low initial density, while the population of D. kuriphilus remains537

essentially unaffected by the presence of the parasitoid. When qn approaches538

1, then vn begins to decline. From then on, the densities of the two species539

oscillate in cycles that are about 5 years long. Omitting the initial transient,540

and plotting qn vs vn one finds that the succession of states describes the blue541

loop depicted in Figure 3 (right panel). With these low survival fractions the542
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Figure 3: Left panel: time evolution of D. kuriphilus (red dots) and T. sinensis (green dots)
egg density when the fraction of (female) larvae surviving the overwintering is, respectively
\eta = 0.35 and \gamma = 0.15; see the text for the other parameters. Right panel: the red and the
green curves are, respectively, the v - nullcline and the q - nullcline, which partition the plane
in four regions; their intersection, marked by the black dot, is the unstable coexistence fixed
point; the blue loops shows the states that the system occupies for asymptotically large times;
the red horizontal arrows and the vertical green arrows show, for each of the four regions,
whether the densities of the next state will be larger of smaller than those of a state in that
region.
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Figure 4: As Figure 3, but with \eta = 0.6 and \gamma = 0.2. These parameters might be representative
of a situation in which T. sinensis suffers from hyperparasitism, as it is hypothesized for Japan.
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Figure 5: As Figure 3, but with \eta = 0.9 and \gamma = 0.45. These are parameters that we consider
to be realistic for Europe. Note the extreme excursion of densities and the logarithmic density
axis of the left panel.

loop winds relatively close to the unstable fixed point (the black dot at the543

intersection of the nullclines). Note that with these parameters the biological544

control is not achieved in a satisfactory way: the egg density of D. kuriphilus545

never drops below 50% of its initial value.546

In Figure 4 we show the dynamics when the overwintering survival fractions547

are increased to \eta = 0.6 and \gamma = 0.2. Albeit still low, these values might rep-548

resent the case of Japan, where, according to Murakami and Gyoutoku (1991),549

a large amount of non–specialist parasitoid and hyperparasitoids species cause550

a high overwintering mortality both in D. kuriphilus, and, even more, in T.551

sinensis. These non–specialist parasitoids and hyperparasitoids are commonly552

associated to oak gall wasps, but are able to occasionally switch host plant and553

host species and can be a cause of overwintering mortality both for D. kuriphilus554

and for T. sinensis. The left panel of Figure 4 shows that the transient growth555

of T. sinensis is shortened to about a decade, after which it starts to dent the556

population of D. kuriphilus. The cycles after the transient have a length of 10–557

11 years, which is a time scale that roughly matches the observations in Japan558

(Moriya, personal communication). In the model, the egg concentration of D.559

kuriphilus remains almost constant, and very close to 1, for 6–7 years, while560
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the density of T. sinensis grows. Then, in the turn of 1–2 years T. sinensis561

peaks and causes a sudden drop in the concentration of D. kuriphilus, and con-562

sequently, also the population of T. sinensis drops in the following years. The563

recovery of D. kuriphilus occurs in 1–2 years, starting from minimum densities564

that may be smaller than 10 - 3. The population of T. sinensis continues to565

drop until the recovery of D. kuriphilus is almost complete, then it starts to566

increase. By this time the density of T. sinensis may have reached densities567

almost as low as 10 - 5. The decline and the subsequent recovery of T. sinensis568

span almost all the length of the cycle. High densities of T. sinensis occur only569

for 2–3 years in each cycle. The right panel of Figure 4 shows the succession of570

states (in blue, the initial transient was omitted) looping anticlockwise around571

the unstable fixed point (the black dot). In this case the loop is pushed much572

further away from the fixed point than in Figure 3, and the densities vn, qn573

almost always assume either very low values or values close to 1. Even in this574

case a satisfactory biological control is not achieved.575

This kind of dynamics, in which D. kuriphilus remains most of the times at576

densities close to 1, interrupted by brief bursts in the population of T. sinensis,577

rather than performing mild oscillations at intermediate values, occurs every578

time that the overwintering survival fractions are significantly removed from the579

stability region of the fixed point. For example, if the overwintering survival580

fractions are increased to values such as \eta = 0.9 and \gamma = 0.45, that we consider581

compatible with the assessments of Aebi et al. (2007), and thus realistic for582

the European setting, we observe the same stasis and burst dynamics as in583

the previous case, but with much longer cycles, that may last several decades584

(Figure 5). However, the really remarkable feature of this case is the extreme585

depth of the drops in the population density of both species. The left panel in586

Figure 5 shows that when the egg density of T. sinensis becomes close to 1, then587

the egg density of D. kuriphilus, in a single season, drops to values that may be588

smaller than 10 - 20. The subsequent recovery of D. kuriphilus is not short, but589

requires several years, during which the population of T. sinensis, for lack of590

deposition sites, decreases to absurdly low values. As we argued at the beginning591
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of this section, cycles that reach minima this low are a mathematical fiction. In592

reality, the model is stating that T. sinensis, after the initial transient, wipes593

out the local population of D. kuriphilus, and then becomes extinct itself. We594

would like to stress that this is really a fifth dynamical regime, and it should595

not be confused with the extinction that takes places at the opposite end of596

the parameter space, when the overwintering survival fractions are very close to597

zero.598

At very low densities, it would be more appropriate to switch to some form of599

stochastic model describing the probability of the presence of some individual600

insects in a given forest, rather than a density of the insects intended as a601

deterministic quantity. The map (23) may still give us some guidance in guessing602

what the stochastic dynamic could be. A Taylor expansion around vn = 0,603

qn = 0, shows that at very low densities, the map may be written at leading604

order as605 \left\{     qn+1 = \eta ET qnvn +O(q2nvn, qnv
2
n)

vn+1 = kvn  - kqn+1 +O(q2n+1, v
2
n, qn+1vn)

. (25)

Note that qn+1 is smaller than vn (in the complete map this holds for any value606

of qn and vn, see appendix 5.3.1, but it is evidently true when qn is as small as607

to make \eta ET qn < 1). Therefore the following year, and as long as \eta ET vn < 1,608

the population of the pest will be growing, being to a very good approximation609

decoupled from the parasitoid, whose population, instead, will be shrinking. In610

this regime, if we interpret the densities as probabilities, we are led to believe611

that if pest attains very low densities, its chances of surviving would increase612

with time, but the parasitoid, at the same density, would have progressively613

lower chances of survival, until the host population had recovered to densities614

of order one. Thus the pest might survive, and the parasitoid become extinct.615

In less mathematical terms, if, by any chance, in a forest there were a handful616

of individuals of D. kuriphilus and of T. sinensis, the probability that the latter617

could find the galls of the former are very small, which puts the local survival of618

the parasitoid at serious risk in the absence of other hosts, while the pest would619
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have a very good chance of rebuilding its population.620

The three panels of Figure 2 show, from top to bottom, the average length621

of the cycles, and the minimum density attained during a cycle for D. kuriphilus622

(middle panel) and T. sinensis (lower panel) as a function of \eta and \gamma . Note623

that all reasonably high values of the survival fractions yield long cycle lengths624

and extremely low densities at minimum, and thus explore the regime in which625

the pest might survive the parasitoid as a result of stochastic fluctuations. Even626

without invoking random effects, because the minima of T. sinensis are gen-627

erally much lower than those of D. kuriphilus, there is the possibility that T.628

sinensis reaches extinction–level densities before D. kuriphilus, which would629

then remain completely unchecked. On the other hand, the map shows that630

when T. sinensis attains densities very close to one, it is then able to bring631

D. kuriphilus to extremely low densities in a single season (the mathematical632

details are in appendix 5.3.3) which may be as low as to correspond to a local633

extinction of the pest, even accounting for stochastic effects.634

Finally, we mention that, for selected values of \eta and \gamma , the map (23) ap-635

pears to be characterized by periodic cycles with amplitude and length smaller636

than those found at different, but very close, values of the parameters (these637

are the scattered dots of color slightly different than the surroundings visible in638

Figure 2). These regularity windows are commonplace in discrete-time dynam-639

ical systems such as the map (23) and are unlikely to persist if subject to the640

random perturbations that are always present in a natural environment, but are641

absent in this simple model. Thus their presence does not change the overall642

qualitative description of the dynamics given above.643

3.2. Space-dependent dynamics of D. kuriphilus644

Before discussing the complete model (22) it is appropriate to analyze the645

dynamics of D. kuriphilus alone, as it invades an idealized forest. We shall646

consider a 1–dimensional spatial domain, that could be thought of as a very647

long strip of trees whose width is negligible with respect to its length.648

If D. kuriphilus is released at one end of the strip, in the absence of T.649
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sinensis, the equations (7), and their non–dimensional counterpart (8), describe650

the propagation of the population of the pest as it invades the domain. This is a651

traveling front joining the region in which the forest is fully infested by the pest652

to the region in which the pest is still absent, as illustrated in Figure 6A. Note653

that, owing to the large number of eggs that can be laid by a single individual,654

a relatively small density of adults is sufficient to saturate all of the available655

buds. Therefore, at the end of the season, the egg density front is offset with656

respect to the density front of the adult population. Numerical simulations (we657

used centered, second–order, finite–differences discretization for the diffusion658

term and Heun’s method for timestepping) show a strong analogy with the659

propagation of a burning front, and the solutions are reminiscent of those of the660

well–known Kolmogorov–Fisher equation, which is the prototypical example for661

this kind of phenomena (see e.g. Murray, 2007, § 13.2). For the K-F equation662

a simple argument based on dimensional analysis shows that the speed and663

thickness of the front are directly proportional to the square root of the diffusion664

coefficient. The thickness is also directly proportional to the characteristic time665

of the chemical reactions, but the speed is inversely proportional to it.666

Equations (7) are more complicated. The change of variables that brings667

(7) into (8) also suggests a proportionality of speed and thinkness of the gall668

wasp front to the square root of the diffusivity. However, there are three dis-669

tinct time scales that characterize the reaction–like terms of equations (7): the670

season length TD, the individual life span a, and the reciprocal of the egg de-671

position rate, a/ND. Thus, in the non–dimensional equations (8) there remain672

two independent parameters, namely ED and \mu . Figures 6B and 6C show the673

dependence of speed and thickness of the front on ED and \mu in a wide range674

of values. These data (represented by the solid lines) use the non–dimensional675

units of Table 2. In particular, the unit of length is
\surd 
DDTD and the unit of676

speed is
\sqrt{} 
DD/TD. The speed of the front is evaluated as the speed of the point677

where the non–dimensional egg density v is equal to 1/2. The thickness of the678

front is estimated as (\partial v/\partial x) - 1, where the derivative is evaluated at the same679

point. Both quantities are computed from the results of numerical solutions of680
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Figure 6: A) Density of eggs (continuous line) and of adults (dashed line) of D. kuriphilus
at the end of the 10th season in a numerical solution of equations (8) with \mu = 10 and
ED = 135, where the pest is initially introduced at the left end of the one-dimensional
domain. For clarity the density of adults is multiplied by \mu . The arrow shows the direction
of propagation of the front. B) Contour lines of the speed of the front as a function of the
parameters \mu and ED. The solid lines are the numerical results, and the dashed lines are the
fit (1.95(ED  - 8)1/5)/(\mu +2.75)1/2. C) Contour lines of the thickness of the egg density front
as a function of the parameters \mu and ED. The solid lines are the numerical results, and the
dashed lines are the fit ((2.26ED + 7)/ED)/(\mu + 0.1E

1/2
D )1/2. All quantities in these figure

use the non–dimensional units of Table 2.
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the equations (8) subject to the conditions (9) and (10). The data may be fit-681

ted reasonably well with simple analytic expressions (dashed lines, see the figure682

captions for their expression in terms of ED and \mu ). In terms of dimensional683

variables, and of the parameters of Table 1, the fits for the speed S and the684

thickness \Delta of the front read685

S = 1.95 (\eta ND  - 8)
1/5

\sqrt{} 
DD

TD

\bigl( 
TD

a + 2.75
\bigr) , (26)

686

\Delta =

\biggl( 
2.26\eta ND + 7

\eta ND

\biggr) \sqrt{} 
TDDD

TD

a + 0.1
\surd 
\eta ND

. (27)

These expressions are not formally deduced from the equations (we postpone687

this issue to a future work), and thus should be considered to be reliable only688

within the parameter range of Figures 6B and 6C. Nevertheless, they are fully689

satisfactory for the problem of determining the magnitude of the diffusion coef-690

ficient DD on the basis of the observed propagation speed of the pest. Taking691

into account that each year the gall wasp is active and mobile only during the692

interval of time TD, the speed of the front can also be expressed as S = L/TD,693

where L is the length traveled in one year by the infestation (as reported by694

EFSA, 2010).695

Taking TD = 40 d, a = 4 d, \eta = 0.9, ND = 150, from (26) we find696

DD \approx L2

83
(28)

where the denominator is expressed in days. Using this in (27) we can link the697

thickness of the front to the length it travels in a season, finding698

\Delta \approx L

2.1
. (29)

For example, with L = 8\mathrm{k}\mathrm{m}, we have a thickness of the front \Delta \approx 3.8 \mathrm{k}\mathrm{m}, and a699

diffusion coefficientDD \approx 0.77 \mathrm{k}\mathrm{m}2\mathrm{d} - 1. With a numerical value for the diffusion700

coefficient we can explicitly convert our non–dimensional lengths in kilometers,701

finding that, in this example, one unit of length is
\surd 
DDTD \approx 5.5 \mathrm{k}\mathrm{m}.702

Assuming that the trajectories of individual insects approximate a Brownian703

motion, Einstein’s formula (see, e.g., Gardiner, 2004, §1.2) suggests that the704
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Figure 7: A) Density of eggs (red continuous line) and of adults (magenta dashed line) of D.
kuriphilus density of eggs (green continuous line) and adults (cyan dashed line) at the end of
the 7th season in a numerical solution of equations (22) with \mu = 10, ED = 135, ET = 31.5,
\gamma = 0.45, \eta = 0.9, \delta = 1, \tau = 1/\eta , where the pest is initially homogeneously distributed
throughout the one–dimensional domain, and the parasitoid is present only at its left end.
For clarity the density of adults of D. kuriphilus is multiplied by \mu . The arrow shows the
direction of propagation of the front. B) Contour lines of the speed of the front as a function
of the overwintering survival fractions \eta and \gamma . The solid lines are the numerical results,
and the dashed lines are the fit (\eta /(0.301\eta + 0.021))(\gamma  - 0.05/(\eta + 0.12))1/5. C) Contour
lines of the thickness of the egg density front as a function of the overwintering survival
fractions \eta and \gamma . The solid lines are the numerical results, and the dashed lines are the fit
((0.88\eta + 1.55)/(0.6 + \eta ))(\gamma  - (1.  - 0.6\eta )/(17\eta )) - 1/5. For values of \delta different from 1, an
excellent fit is obtained by multiplying these expressions by

\surd 
\delta . All quantities in these figure

use the non–dimensional units of Table 2.

typical displacement l of an adult after t days would be l =
\surd 
2nDD t, where705

n is the dimensionality of the domain. Thus, in our idealized 1–dimensional706

strip of trees the displacement over the entire adult life span (4 days) would be707

l \approx 2.5 \mathrm{k}\mathrm{m}, and in a 2–dimensional domain, such as a real wood, it would be708

l \approx 3.5 \mathrm{k}\mathrm{m}.709

3.3. Space-dependent dynamics of the host–parasitoid system710

If we start from an initial condition in which the idealized 1–dimensional711

forest is fully infested by the pest, and the parasitoid is introduced at its left end,712

then, in the course of years, the parasitoid population will propagate rightward,713

as depicted in Figure 7A. As the parasitoid propagates rightward, it causes a714

severe drop in the population density of the pest, which develops a left–facing715
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region of high gradient, connecting the part of the forest which has not yet been716

reached by the parasitoid, and thus is still fully infested, to the part already717

swept by the parasitoid, where the pest density has been severely reduced. The718

reduction in the pest density is mirrored by a corresponding reduction of the719

parasitoid density, which faces a drastic scarcity of its host in the region of720

the forest that has already been swept. Therefore, the parasitoid population721

propagates into an infested forest as a moving peak, rather than as a moving722

kink.723

The results of the numerical simulations show that the speed of propagation724

of the parasitoid, and the thickness of the right–facing gradient region of its725

egg density, are proportional to the square root of the diffusivity ratio
\surd 
\delta (see726

Table 2), with excellent approximation, at least in the interval \delta \in [0.1, 10]. We727

have also computed the dependence of speed and thickness on the overwintering728

survival fractions \eta and \gamma . The results are reported in Figures 7B and 7C. These729

results may be fitted by simple expressions, which, in terms of the parameters730

of Table 1, read:731

ST =
\eta 

0.301\eta + 0.021

\biggl( 
\gamma  - 0.05

\eta + 0.12

\biggr) 1/5\sqrt{} 
DT

DD
, (30)

732

\Delta T =
0.88\eta + 1.55

0.6 + \eta 

\biggl( 
\gamma  - 1. - 0.6\eta 

17\eta 

\biggr)  - 1/5\sqrt{} 
DT

DD
(31)

These expressions are valid when the other parameters are \mu = 10, ED = 135,733

ET = 31.5, \tau = 1/\eta , which should represent fairly well the relevant physiological734

parameters of both the pest and of the parasitoid, as discussed in §2.4.735

The density to which both the pest and the parasitoid drop on the left–736

hand side of the right–moving peak, depends on the value of the overwintering737

survival fractions \eta and \gamma , roughly in the same way as shown in Figure 2 for the738

spatially homogeneous case discussed in §3.1. At low and intermediate survival739

rates (such as those of Figures 3 and 4) the density drop spans at most a few740

orders of magnitude, and it is thus insufficient to justify hopes of eradication of741

the pest.742

At higher survival rates the severity of the density drop is as large as to743
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Figure 8: A time sequence showing the beginning of the recolonization of the forest by the
pest after the passage of the parasitoid. The red line is the density of eggs or unparasitized
larvae of the pest D. kuriphilus; the green line is the density of eggs or larvae of the parasitoid
T. sinensis. Note the logarithmic scale. The ratio of the diffusivities (see Table 2) is \delta = 0.3,
the other parameters are the same as in Figure 7A.

amply justify claims of local extinction: as the parasitoid sweeps the forest,744

virtually no host will be left unparasitized. Unfortunately, this effect alone does745

not guarantee a successful biological control. In fact, our model shows cases in746

which the pest is able to recolonize the empty forest left back by the passage of747

the parasitoid.748

Figure 8 illustrates this phenomenon. In order to demonstrate that the model749

really allows for cases of recolonization, rather than failures of the parasitoid750

to attain a complete local eradication of the pest, in the run that produced751

Figure 8, at the end of the Torymus and of the Dryocosmus seasons, the egg752

density of both species was set to zero anywhere it was found to be below a753

threshold of local extinction equal to 10 - 6 non–dimensional units. The rationale754
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of identifying areas of very low density in the model as areas where no individual755

insects are likely to be present was discussed at the beginning of §3.1. In this756

run the initial conditions correspond to a release of a small amount of parasitoid757

in a region spanning 1 non–dimensional units on the left end of the idealized758

1–dimensional forest saturated by the pest. In a few years the population of the759

parasitoid grows and spreads rightward into the forest, locally wiping out the760

pest, and leaving a region devoid of both host and parasitoid behind its passage.761

The time sequence of Figure 8 begins 7 years after the release of the para-762

sitoid. At the end of the Torymus season, little or no Dryocosmus larvae remain763

unparasitized in correspondence of the peak density of the parasitoid (Figure 8,764

panel “Year 7 - End of Torymus season”). Then the surviving larvae of Dryocos-765

mus emerge, and diffuse in the forest, looking for deposition sites. By the end766

of the season, much of the ground lost to Torymus is recovered by Dryocosmus,767

that arrives to lay some eggs even in the region on the left of the Torymus peak,768

where the presence of the parasitoid is dwindling because of the scarcity of the769

host. Thus, at the end of year 7, on the left of the Torymus peak, both host and770

parasitoid are present, and, moving leftward, their density declines at a similar771

rate (Figure 8, panel “Year 7 - End of Dryocosmus season”). The next year772

Torymus once again wipes out all Dryocosmus larvae in the region where its773

density is highest, and continues its march rightward. However, on the left end774

of the Torymus peak, the density of the parasitoid is so low that it is unable to775

control the pest. Therefore, the very small amount of Dryocosmus larvae origi-776

nating from the eggs that were laid on the extreme left of the Torymus density777

peak, are left virtually unaffected by the presence of the parasitoid (Figure 8,778

panel “Year 8 - End of Torymus season”). Thus, they are able to develop into779

Dryocosmus adults, that find, on their left, a forest devoid of the parasitoid and780

ready to be recolonized (Figure 8, panel “Year 8 - End of Dryocosmus season”).781

In the next year the recolonized patch widens to the left, and the density of the782

pest increases (Figure 8, “Year 9” panels). In the following years (not pictured783

in Figure 8), when the pest density has recovered to sufficiently high density784

values, a second peak of the parasitoid population splits from the first, sweeping785
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leftward the recolonized forest. Subsequently, the pest passes back through this786

second peak, just as it did with the first. With the choice of parameters of the787

run in Figure 8, the long term dynamics is a never ending alternation of local788

extinctions and recolonizations.789

The inability of the parasitoid to control the pest at low densities of both790

species derives from the very low probability of finding egg deposition sites when791

both host and parasitoid are rare. This is a general characteristic of predator–792

prey systems and the ultimate source of their cyclic behavior. In the case of the793

present model, for spatially homogeneous solutions, the effect is well described794

by the approximate map (25). For solutions that have a dependence on space,795

local population flows caused by diffusion become important, and this means796

that regions where the pest had been eradicated and thus the parasitoid has797

dropped to densities at which it is unable to exert an effective control, may798

come again within reach of the diffusing pest population, as we have illustrated799

discussing the Figure 8. On the other hand, depending on the parameters,800

the effect may also work the other way around: when the diffusivity of the801

parasitoid is sufficiently high to avoid the recolonization of the areas behind802

the peak, diffusion allows Torymus to maintain high concentrations even in803

areas where Dryocosmus has already been brought below the local extinction804

threshold. In this case the map (25) does not apply, and seems unlikely that805

stochastic effects may offer a chance of survival to Dryocosmus.806

In order to understand under which conditions the pest is able to cross the807

parasitoid peaks and recolonize the forest, we have examined a large sample808

of numerical solutions of the model equations, with different parameters. The809

general pattern that emerges is the following: if the speed of propagation of810

Torymus peaks (as given by eq. (30)) is appreciably larger than that of Dry-811

ocosmus fronts (eq. (26)), then the pest will not be able to recolonize the forest.812

Conversely, if the speed of Dryocosmus fronts is sufficiently larger than that of813

Torymus peaks, then recolonization occurs. The precise boundary between the814

two regimes is determined by the value of the threshold of local extinction.815

The dynamics of traveling fronts of Dryocosmus and of sweeping peaks of816
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Figure 9: Time sequence of D. kuriphilus (left panels) and T. sinensis (right panels) egg
densities in a numerical solution of the model equations with \delta = 0.2 and the other parameters
as in Figure 8. The left column shows the earlier years after the release of a small amount of
T. sinensis in a small patch of a square forest saturated by D. kuriphilus. The right column
shows the dynamics on a longer time scale. The marker visible close to the lower left corner
of all the panels is the release site of T. sinensis, and the place where the egg densities shown
in Figure 10 are measured.
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Figure 10: Densities of D. kuriphilus (v) and T. sinensis (q) eggs, at the end of each year,
measured at the T. sinensis release site (shown in Figure 9) in the numerical solution of the
model equations shown in Figure 9.

Torymus is present also when the spatial domain is two-dimensional. In this817

case, peaks and fronts may be verbally described as waves propagating through818

the forest, as illustrated in the time sequence of Figure 9. The Torymus is819

initially released close to the lower–right corner of a square forest (the size820

of 20 \times 20 non–dimensional units corresponds in this numerical solution to a821

physical size of approximately 110 \times 110 km). It spreads radially, leaving a822

roughly circular area of the forest free of both the pest and the parasitoid, which823

is quickly recolonized by the pest. The parasitoid population then splits in two824

parts: most of it continues to propagate through the forest in an expanding825

arched wave, and a small part returns close to the release site, hunting the pest826

that has recolonized the release area, giving rise to a second expanding arching827

wave (left column of Figure 9). On longer time scales, because of the interaction828

with the forest boundaries, these waves assume irregular shapes and form a829

large variety of patterns (right column of Figure 9). The basic recolonization830

mechanism, however, remains the same, and repeats endlessly.831

This means that the time scales of appearance and disappearance through832

the years of both pest and parasitoid at any fixed place in the forest are de-833

termined by the speed of propagation of the waves, and by the size and shape834

of the forest itself. This is illustrated in Figure 10, showing the end–of–year835

egg density of Dryocosmus and Torymus at the Torymus release site, in the836
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numerical solution of Figure 9. In this case we have tuned the diffusivity ratio837

(namely, we used \delta = 0.2) explicitly to obtain cycles of pest and parasitoid on838

a decadal time scale (roughly the same time scale as observed in Japan). Note839

that, with these parameters, and neglecting the extinction threshold, homoge-840

neous solutions would give the cycles shown in Figure 5, that have a much longer841

time scale. The space–dependent solutions, instead, have the same time scale842

of the homogeneous solutions of Figure 4, but with much higher overwintering843

survival fractions.844

4. Discussion and conclusions845

In this paper we have developed a spatially explicit model that describes846

the invasion of a chestnut forest by the gall wasp Dryocosmus kuriphilus, which847

acts as pest of the chestnut outside its native China, as well as the effect of848

the parasitoid Torymus sinensis, which is modeled as host–specific of the gall849

wasp and perfectly synchronized to its life cycle. In the special case of a spa-850

tially homogeneous distribution of both pest and parasitoid, the model can be851

reduced to an iterated map. Otherwise it is a set of piecewise time–continuous852

reaction–diffusion partial differential equations which describe the spread and853

the competition for egg deposition sites of the adults of both species.854

The primary aim of the model is that of elucidating the possibilities of ob-855

taining a biological control of the gall wasp, and understanding possible causes of856

failure in obtaining control. In this respect the crucial parameters are the over-857

wintering survival fractions (the fraction of laid eggs that successfully emerge858

the next year) and the diffusion coefficients of the two species.859

If the overwintering survival fractions are sufficiently far from 100%, then860

both the spatially explicit model and its spatially–independent counterpart show861

persistent oscillations in the density of both species, reminiscent of the classic862

predator–prey models, having an amplitude too small to be consistent with local863

extinction. This is in agreement with the hypothesis of Murakami and Gyoutoku864

(1991), that attributes the failure of achieving biological control in Japan to the865
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presence of non–specialist parasitoid and hyperparasitoids species, which would866

cause a high overwintering mortality.867

Our own observations strongly suggest that, in an European setting, the868

overwintering survival fractions are, at least, 90%. In that case, in a spatially869

homogeneous situation, the model exhibits drops of more than 15 orders of870

magnitude in the density of the pest, followed by even larger drops in the density871

of the parasitoid. In practical terms, drops of this magnitude can only be872

interpreted as signaling the local extinction of the insect. Thus, in a spatially873

homogeneous situation, and with parameters that we consider appropriate for874

the European setting, the model predicts that the parasitoid would quickly875

eradicate the pest.876

However, ever since the seminal experiments of Huffaker (1958) on mites, it is877

known that spatial inhomogeneities may delay or altogether avoid phenomena878

of local extinction in predator–prey systems. In particular, spatially explicit879

versions of the Nicholson–Bailey host–parasitoid model show that the dispersal880

of the individuals spontaneously produces the formation of complicated, time-881

varying, but persistent patterns. In these cases, forcing a spatially–homogeneous882

environment (e.g. by reducing the size of the domain below the intrinsic scale883

of the patterns) often results in a rapid local extinction of both the host and884

the parasitoid (Hassel et al., 1991).885

With our model we find a similar outcome. If the speed of propagation of the886

host population is faster than that of the parasitoid population (those speeds are887

strongly dependent on the diffusion coefficients of the two species) and the size888

of the domain is sufficiently large, then the spatially explicit model never settles889

into a spatially–homogeneous solution leading to extinction. Instead, the gall890

wasp recolonizes the areas left empty after the passage of the parasitoid, in a891

never ending sequence of crossing waves of population density, of which Figure 9892

shows an example. We should note that the imperfect biological control achieved893

in Japan should probably be explained in this way, because the attack rate of894

indigenous parasitoids was later found to be no larger than 2% (EFSA, 2010),895

thus making unlikely the hypothesis of low overwintering survival rates.896
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On the other hand, when the population of the parasitoid propagates suffi-897

ciently faster than that of the pest, then a single density wave of the parasitoid898

sweeps the forest, killing the host, and leaving neither species behind it. In this899

case the end result of the spatially explicit and of the spatially homogeneous900

models is the same, and they both suggest a complete eradication of the pest.901

Quite remarkably, there is a very scant literature on the speed of propagation902

of T. sinensis when it is released in a forest fully invaded by D. kuriphilus. In903

the United States, after the release there has been a 30 years lapse with no904

follow-up observations (Cooper and Rieske, 2007). Regarding Japan, Toda et905

al. (2000) states that «T. sinensis had only dispersed 12 km from its release906

point over a 6 year period» and quotes Moriya et al. (1989) as a source. However,907

the quoted paper does not contain this information (and we shall assume that908

it was a personal communication, instead). Other published data refer to insect909

densities at the release site (Moriya et al., 1989; Murakami et al., 2001) but give910

no information on the spatial patterns of the insect population densities and911

their changes in time. A conference proceedings by Moriya et al. (2003) also912

reports a speed of 12 km in the first 6 years after the release, but states that913

in the following five years «a steady expansion has been observed at a constant914

rate of ca 60 km per year». No explanation is offered concerning the cause of the915

change in speed. For Europe we are not aware of published follow-up surveys916

assessing the spatial distribution of T. sinensis in the years following a release.917

Using equation (30) with the parameters used for Figure 5 and in section 3.2,918

we find that the ratio of the diffusivities of T. sinensis and D. kuriphilus would919

be \delta \approx 0.02 if the propagation speed were 2 km per season, and \delta \approx 18 if the920

speed were 60 km per season. These numbers are at the opposite ends of the921

realistic range of speed and diffusivities. We can report our direct experience922

in following up releases in the Cuneo province (NW Italy): when T. sinensis923

suddenly progressed by tens of kilometers in one year, or was found in sites where924

no official release was ever performed, it was usually later found that releases925

had been performed by private farmers. Because these unrecorded releases have926

become commonplace (alive specimens of T. sinensis can be readily bought on927
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the market) a reliable quantitative assessment of the speed of propagation of928

T. sinensis may be extremely difficult to accomplish. If the population of T.929

sinensis could really expand at a speed of 60 km per year, that is at 7.5 times930

the speed of D. kuriphilus, then, according to our model, a single release would931

be sufficient to achieve a complete biological control, because the pest would be932

unable to recolonize the areas already swept by the parasitoid.933

On the basis of qualitative personal observations, the authors suspect that934

T. sinensis actually spreads at a much lower rate than D. kuriphilus, and closer935

to what is reported by Toda et al. (2000). If this were confirmed, then, according936

to the model, we should expect that the release of T. sinensis at a single location937

within a large forest area would simply trigger a train of density waves of both938

the pest and the parasitoid, that would travel into the forest producing, at any939

fixed site, an alternating presence and absence of the insects on decadal time940

scales. A satisfactory control would then only be achieved by follow–up releases941

of the parasitoid, continuing for many years, at carefully chosen sites, in order942

to suppress any returning wave of D. kuriphilus that could recolonize the forest943

left empty by the previous sweep of T. sinensis. This strategy, obviously, calls944

for a campaign of accurate observations tracking the spatial distribution of both945

species in the course of several years.946

It has been recently discovered that a very low fraction of T. sinensis larvae947

experience an extended diapause (Ferracini et al., 2015b), and that, on very rare948

occasions, T. sinensis may parasitize galls not belonging to D. kuriphilus, but to949

European gall-making species (Ferracini et al., 2015a). Both processes have been950

observed in controlled laboratory settings, and in amounts so small that we felt951

authorized to neglect them in the model. In addition, the scarcity of observed952

events makes it difficult to detect external causes (if any) that may trigger the953

extended diapause, or the success rate of attempts of parasitism of galls of954

indigenous species. Therefore, even if further research is ongoing, the current955

level of knowledge is still insufficient to develop a detailed quantitative model956

that includes those processes. However, both a prolonged diapause and the957

ability to parasitize other hosts would allow T. sinensis to survive in the absence958
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Figure 11: Egg density of D. kuriphilus (red) and T. sinensis (green) 35 years after the release
of T. sinensis at the left end of the domain. The three columns, from left to right, refer to
numerical solutions with diffusivity ratio \delta = 0.2, 0.1, 0.05 corresponding, respectively, to
speeds of the T. sinensis front of about 6.4, 4.5 and 3.2 km per season. The rows, from top to
bottom refer to: the unmodified model, and the model where T. sinensis in the areas already
swept by the front, never drops below the threshold \sigma = 10 - 6, 10 - 5, 10 - 4, 10 - 3. All other
parameters are as in Figure 8.
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of D. kuriphilus (temporarily in the first case, on long time scales in the second).959

Therefore, we have modified the model by imposing that in any place already960

reached by the front of T. sinensis, at later times the density of the parasitoid961

never drops below a threshold value \sigma , independently of the local density of D.962

kuriphilus. This parameterization, albeit crude, is a simple and reliable way963

to qualitatively assess the importance of any effects leading to the survival of964

the parasitoid in the absence of the pest. The results are presented in Figure965

11. The first row shows the egg density of pest (red) and parasitoid (green)966

for \sigma = 0 (that is, for the unmodified model) 35 years after the release of the967

parasitoid on the left end of an idealized one-dimensional forest, for diffusivity968

ratios \delta = 0.2, 0.1, 0.05 (from left to right). In the rows below the first, the969

threshold is set at \sigma = 10 - 6, 10 - 5, 10 - 4, 10 - 3. These values, translated to970

dimensional quantities according to the estimates of section 3.1, range from one971

T. sinensis individual every few trees to a few hundred T. sinensis individuals972

per tree. When the threshold value is low the quantitative differences between973

the modified and unmodified model are very small, even after 35 years. Only974

when the threshold is high and the ratio of the densities is not too small the T.975

sinensis surviving behind the front manages to avoid the recolonization by D.976

kuriphilus. This result mathematically confirms what we expected: a very scant977

population of T. sinensis surviving by parasitizing indigenous galls (or by any978

other means) is unable to effectively find and parasitize galls of D. kuriphilus,979

unless these are present in abundance. Therefore, when the pest recolonizes980

the areas behind the T. sinensis front, first it rebuilds a sizable population,981

and only then the surviving parasitoid can have a non–negligible effect. Of982

course, a large population of T. sinensis surviving behind the front would be983

effective at wiping out recolonization attempts. But such a large concentration984

is completely incompatible with the observations.985

Recently, it emerged that some animals appear to move by performing so–986

called Lévy walks, that is, random trajectories approximated by sequences of987

straight segments, where the probability distribution of the lengths of each seg-988

ment has long, algebraic tails, and the variance of the distribution diverges989
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(Viswanathan et al., 2008). If D. kuriphilus or T. sinensis adopted this strategy,990

then the model would have to be corrected with the use of fractional diffusion991

operators, rather than ordinary ones. However, it seems far–fetched to assume992

that the individuals of D. kuriphilus or T. sinensis may be able to travel for993

kilometers along a straight line, as required in order to perform a Lévy walk. In994

addition, the results of (del-Castillo-Negrete et al., 2003) show that fractional995

diffusion would generate traveling fronts that exponentially accelerate, rather996

than maintain a constant speed. We are not aware of any report of a progressive997

acceleration of a gall wasp invasion front.998

Other dispersion processes, in addition to ordinary diffusion, may be present.999

The gall wasp spreading model of EFSA (EFSA, 2010) includes so–called long–1000

distance dispersal (LDD) events. There are essentially two main causes for1001

LDD events: transport due to antropic activities, and transport with the wind1002

of individuals that ventured above the forest canopy (particularly on occasion1003

of storms). Transport processes can easily produce patchiness (see, for example,1004

the case of zebra mussels carried downstream a river: Mari et al., 2009). In our1005

case, they are also completely random and unpredictable: while the outcome of1006

each LDD event could be forecast by a model, after its occurrence, and provided1007

the availability of sufficient observational data, the occurrence of the event itself1008

can not be forecast. Because our model does not (yet) have the ambition of being1009

an operational one, but it is meant to uncover and elucidate some ecological1010

processes in the interaction between D. kuriphilus and T. sinensis, we have, for1011

the moment, refrained from including LDDs into it.1012

However, we do not expect LDDs to change the overall picture that has1013

emerged about the likeliness of achieving biological control of D. kuriphilus with1014

T. sinensis. In fact, a random LDD event involving D. kuriphilus may have a1015

good chance of carrying the pest in a region where it is absent, thus creating a1016

new hotspot of infestation. On the other hand, a random LDD event involving1017

T. sinensis can only contribute to the effectiveness of biological control if the1018

parasitoid lands in a region populated by the pest and devoid of the parasitoid.1019

If it lands in an area where the pest is absent, the event has no effect. If it lands1020
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close to a parasitoid sweeping wave, that region would have been swept in any1021

case, and thus the effect is also limited. Thus, it seems reasonable to assume1022

that LDDs do not improve the chances of achieving control, and, if anything,1023

they diminish them.1024

An anonymous reviewer states that “researcher collecting oak gall wasp know1025

that galls are easier to find on forest margins, along roads, that is in open areas”1026

while acknowledging that “there is nothing published on the subject”. Of course1027

we cannot rule out the possibility that the diffusion coefficients of the insects1028

may be larger in proximity of the forest margins, or the presence of other similar1029

edge effects. But we also cannot rule out that these anecdotal reports may be1030

due, at least in part, to selection biases (galls being easier to see and collect along1031

roads and forest margins, rather than in the thick). Unfortunately, lacking any1032

published quantitative observation of any edge phenomena, we feel that the best1033

course of action is to maintain the model as simple as possible, just as we did1034

discussing about boundary conditions in section 2.1. The spatially extended1035

pest–parasitoid dynamics illustrated in this paper is a robust property of the1036

model equations and occurs in the bulk of the domain, and is not overly affected1037

by what happens at the edges of the domain. We are thus confident that what1038

we have discussed so far would remain qualitatively valid even if future studies1039

(that we would consider as important and timely) recognized the objective and1040

non–negligible presence of edge phenomena. At that point the model may be1041

reconsidered and improved to incorporate the new findings.1042

Even with all the caveats that we discussed in this section, the overall mes-1043

sage remains the same: biological control of D. kuriphilus with T. sinensis may1044

be an effective option, but success should be expected only if one is prepared to1045

carefully track the distribution of both species and to suppress any new hotspots1046

(or recolonization waves) with further releases of the parasitoid.1047
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5. Appendix1048

5.1. Approximations of the space-independent solution of the gall wasp equations1049

Let us define yn(t) = \mathrm{l}\mathrm{o}\mathrm{g}(1 - vn(t)). Substituting in (11) we obtain1050 \left\{                   

\.un(t) =  - \mu 
\bigl( 
1 + eyn(t)

\bigr) 
un(t) + vn - 1(1)

\.yn(t) =  - ED\mu un(t)

un(0) = 0

yn(0) = 0

(32)

Observe that in (32), because the egg density vn obeys 0 \leq vn < 1, then1051

 - \infty < y \leq 0, and thus it is 1 < 1 + eyn(t) \leq 2. This implies that1052

vn - 1(1)

\mu 

\bigl( 
1 - e - \mu t

\bigr) 
> un(t) \geq 

vn - 1(1)

2\mu 

\bigl( 
1 - e - 2\mu t

\bigr) 
(33)

Using these inequalities in the second of (32) and from vn(t) = 1 - eyn(t), follow1053

the inequalities1054

1 - e - 
ED
\mu (e - \mu t+\mu t - 1)vn - 1(1) > vn(t) > 1 - e - 

ED
4\mu (e - 2\mu t+2\mu t - 1)vn - 1(1). (34)

By evaluating the above expression at time t = 1 one finds that the year–over–1055

year evolution of the end of season egg density vn(1) may be approximated by1056

the map (12) with the constants (13).1057

Note that the approximation from below, obtained by choosing k - in (13),1058

is very accurate if the density of eggs laid in the previous year is low. In fact,1059

by taking vn - 1(1) arbitrarily close to zero it is possible, from (33), to keepun(t)1060

as small as one wishes, for all t \in [0, 1], and, from the second of (32) also yn(t)1061

may be kept as close to zero as one wishes, for all t \in [0, 1]. Therefore, the1062

quantity 1 + eyn(t) may be kept arbitrarily close to 2, which is the value used1063

by the approximation from below. Conversely, if vn - 1(1) is close to one, and1064

the product ED\mu is much larger than one, then 1+ eyn(t) will rapidly approach1065

the value 1. Therefore, we expect the approximation from above to be more1066

accurate at high densities of eggs laid in the previous year.1067
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5.2. Exact space-independent solution of the equations for T. sinensis1068

By imposing no-flux boundary conditions on pn, assuming that \nabla vn - 1 =1069

\nabla qn - 1 = 0, the equations (18) and the conditions (19) become1070 \left\{                   

\.pn(t) =  - \tau  - 1 (vn - 1(1) - qn(t)) pn(t)

\.qn(t) = ET \tau 
 - 1 (vn - 1(1) - qn(t)) pn(t)

pn(0) = qn - 1(\eta \tau )

qn(0) = 0

. (35)

Dividing the first by the second we have1071

\.pn =  - 1

ET
\.qn,

and thus, by integration and using the initial conditions, we find1072

pn(qn(t)) =  - qn(t)

ET
+ qn - 1(\eta \tau ).

Substituting this expression in the second of the equations (35) we obtain a1073

first-order, autonomous equation for qn which yields the following solution1074 \left\{                     

\left\{     
pn(t) =

\=qn - 1(ET \=qn - 1 - \=vn - 1) \mathrm{e}\mathrm{x}\mathrm{p}( t
\tau (ET \=qn - 1 - \=vn - 1))

\=qn - 1ET \mathrm{e}\mathrm{x}\mathrm{p}( t
\tau (ET \=qn - 1 - \=vn - 1)) - v\ast 

n - 1

qn(t) =
\=vn - 1\=qn - 1ET (1 - \mathrm{e}\mathrm{x}\mathrm{p}( t

\tau (ET \=qn - 1 - \=vn - 1)))
\=vn - 1 - \=qn - 1ET \mathrm{e}\mathrm{x}\mathrm{p}( t

\tau (ET \=qn - 1 - \=vn - 1))

, ET \=qn - 1 \not = \=vn - 1

\left\{     pn(t) = \=vn - 1\tau 
ET (\=vn - 1t+\tau )

qn(t) =
\=v2
n - 1t

\=vn - 1t+\tau 

, ET \=qn - 1 = \=vn - 1

where, for brevity, we have defined the shorthands \=qn - 1 = qn - 1(\eta \tau ), \=vn - 1 =1075

vn - 1(1). It can be verified, by expanding the exponentials in power series, that1076

the above solution is a smooth function of the quantity ET \=qn - 1  - \=vn - 1.1077

5.3. Mathematical properties of the space–independent map1078

5.3.1. Boundedness of the global dynamics1079

The map (23), formally, does not allow for the extinction of either species.1080

Specifically, the map has the property that, if ET , \eta , k > 0 and 0 < vn, qn then1081

0 < vn+1, qn+2 < 1.1082
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This assert becomes apparent by rewriting the map in the following form1083 \left\{               
qn+1 =

\left\{       
\Biggl( 

1 - e\eta (ET qn - vn)

vn

ET qn
 - e\eta (ET qn - vn)

\Biggr) 
vn, ET qn \not = vn\Bigl( 

vn
\eta  - 1+vn

\Bigr) 
vn, ET qn = vn

vn+1 = 1 - e - k(vn - qn+1)

(36)

It is straightforward to verify that1084

0 < [1 - \mathrm{e}\mathrm{x}\mathrm{p} (\eta (ET qn  - vn))]
\bigl[ 
vnE

 - 1
T q - 1

n  - \mathrm{e}\mathrm{x}\mathrm{p} (\eta (ET qn  - vn))
\bigr]  - 1

< 1

both if ET qn < vn and if ET qn > vn. Obviously, it it also1085

0 < vn
\bigl[ 
\eta  - 1 + vn

\bigr]  - 1
< 1,

which is relevant in the case ET qn = vn. Therefore, from the equation for qn+11086

in (36) we have 0 < qn+1 < vn. Using this inequality in the equation for vn+11087

in (36) we have 0 < vn+1 < 1, and, therefore 0 < qn+2 < vn+1 < 1.1088

5.3.2. Nullclines and the coexistence fixed point1089

We defined v - nullcline as the set of pairs (vn, qn+1) such that vn+1 = vn.1090

From the second equation in (23), we find that the v - nullcline has the following1091

explicit expression1092

qn+1(vn) = vn +
1

k
\mathrm{l}\mathrm{o}\mathrm{g} (1 - vn) (37)

whose graph is the red line in the right panel of Figures 3, 4, 5. A simple1093

calculation shows that if (vn, qn+1) is above the v - nullcline, then vn+1 < vn,1094

and if it is below, then vn+1 > vn. If k > 1 then the v - nullcline has a maximum1095

at1096

vmx =
k  - 1

k
, qmx =

k  - 1 - \mathrm{l}\mathrm{o}\mathrm{g}(k)

k
. (38)

It also has a zero at vn = 0, and at a value larger than vmx and smaller than1097

1, which does not have a simple explicit expression, and corresponds to the1098

non-zero fixed point of Skellam’s map (12).1099

Analogously we defined the q - nullcline as the set of pairs (vn, qn) such that1100

qn+1 = qn. The q - nullcline has an obvious branch which is qn = 0. From1101
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the first equation in (23), if vn, qn \not = 0 and ET qn \not = vn, we have the following1102

implicit definition of the q - nullcline1103

vn  - qn
vn

e\eta (ET qn - vn) =
ET  - 1

ET
. (39)

In the case ET qn = vn > 0, it is straightforward to verify from (23) that1104

only the point (vn, qn) =
\bigl( 
\eta  - 1(ET  - 1) - 1, \eta  - 1(ET  - 1) - 1E - 1

T

\bigr) 
belongs to the1105

q - nullcline, shown as the green curve in the right panel of Figures 3, 4, 5. If1106

qn \rightarrow 0, the q - nullcline tends to the value1107

vz =
1

\eta 
\mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
ET

ET  - 1

\biggr) 
. (40)

Note that, if ET > 1 then the right–hand side of (39) is larger than 0 and smaller1108

than 1. Thus, for fixed \eta and vn \not = vz, if ET \rightarrow \infty either there is no solution to1109

(39), or qn \rightarrow vn from below. This observation suggests that for realistic values1110

of the parameters (that is \eta not much smaller than 1 and ET quite larger than1111

10), taking qn \approx vn for vn > vz should give a reasonably good approximation1112

of the q - nullcline.1113

With respect to the new variable z = qn/vn, the implicit expression (39)1114

may be made explicit, and one finds1115

vn(z) =
1

\eta (ET z  - 1)
\mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
ET  - 1

ET  - ET z

\biggr) 
(41)

Note that 0 < z < 1 because qn = qn+1 < vn. It can be checked that this is a1116

strictly growing function of z, which is smooth even at z = E - 1
T . (In order to1117

verify the positive sign of the derivative the identity \mathrm{l}\mathrm{o}\mathrm{g}(x) \leq x - 1 can be useful.)1118

Thus the minimum of this function is attained in the limit z \rightarrow 0, where vn \rightarrow vz:1119

for vn < vz the equation (39) has no solution. We also observe that, because1120

v\prime n(z) > 0, to each value of z corresponds a unique value of qn(z) = zvn(z).1121

Therefore, calling \zeta the inverse function of (41), we have that the equation (39)1122

implicitly defines a unique continuous function qn(vn) = vn\zeta (vn) of vn, that1123

we shall call the non-zero branch of the q - nullcline, and that q\prime n(vn) > 0, as1124

depicted by the green line in the right panel of Figures 3, 4, 5.1125

From the first equation in (43) below, (see also the surrounding discussion)1126

it is clear that, for states not belonging to the q - nullcline having arbitrarily1127
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small qn, if vn < vz then qn+1 < qn, and if vn > vz then qn+1 > qn. Thus,1128

since the non-zero branch of the q - nullcline is unique, by the theorem of the1129

persistence of sign, if a state (vn, qn) lies on the left of the q - nullcline, then1130

qn+1 < qn; if it lies on the right, then qn+1 > qn.1131

Fixed points are the intersection of the v - nullcline and of the q - nullcline.1132

There is always the fixed point (vn, qn) = (0, 0). If k > 1 then there is also the1133

fixed point (vn, qn) = (v\ast , 0) where v\ast is the non-zero fixed point of Skellam’s1134

map (12).1135

If k > 1 and vz < v\ast , then the non–zero branch of the q - nullcline (which is1136

a growing function of vn) must cross at at least one point the v - nullcline (which1137

is positive and has a zero at vn = 0 and a zero at vn = v\ast ). We call this is a1138

coexistence fixed point, because both vn and qn are larger than 0. Note that,1139

except for unrealistically low values of k, the non-zero fixed point of Skellam’s1140

map is very close to one. Thus, an approximate criterion for the existence of a1141

coexistence fixed point is vz < 1. Using the expression (40) and the definition1142

of ET (see Table 2), setting vz = 1 one obtains the approximate threshold (24).1143

We have ample numerical evidence, corroborated by asymptotic results, that1144

there is only one coexistence fixed point, although we cannot exclude that for1145

some finely–tuned value of the parameters more than one coexistence fixed point1146

could exist.1147

In the realistic range of parameters, a very rough approximation of the po-1148

sition of the coexistence fixed point may be obtained by approximating the1149

v - nullcline as1150

qn+1(vn) \approx 
\biggl( 
1 - 1

k

\biggr) 
vn

and the q - nullcline as the straight line connecting the points1151

(vn, qn) =
\bigl( 
\eta  - 1(ET  - 1) - 1, \eta  - 1(ET  - 1) - 1E - 1

T

\bigr) 
\mathrm{a}\mathrm{n}\mathrm{d} (vn, qn) = (1, 1) .

Looking for the intersection of these straight lines we find1152 \left\{     vc =
k(ET - 1)

ET [\eta (ET - 1) - 1]+k(ET - 1) ,

qc =
(k - 1)(ET - 1)

ET [\eta (ET - 1) - 1]+k(ET - 1) .

(42)
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More accurate approximations of the q - nullcline (and thus of the coexistence1153

fixed point) can be worked out by evaluating (41) at the values zm such that1154

ET  - 1

ET  - ET zm
= e\eta ET /m

for distinct values of the arbitrary parameter m. This yields explicit expressions1155

of points (vn(zm), qn(zm)) lying on the q - nullcline among which it is possible1156

to interpolate with any standard method.1157

5.3.3. Cycles around the fixed point1158

The cyclic dynamics generated by the map (23) may be qualitatively under-1159

stood through the following argument. For small qn, the map (23) becomes, at1160

leading order1161 \left\{     qn+1 = (1 - e - \eta vn)ET qn +O(q2n)

vn+1 =
\bigl( 
1 - e - kvn

\bigr) 
+O(qn)

. (43)

Let us assume that initially vn, albeit much larger than qn, is small enough to1162

satisfy the inequality (1 - e - \eta vn) < E - 1
T , that is vn < vz (see eq. 40). Thus1163

the egg density of T. sinensis decreases from one year to the next as long as1164

this remains true. In this regime D. kuriphilus is at leading order decoupled1165

from its parasitoid, and its egg density obeys Skellam’s map (12). Therefore,1166

assuming k > 1, vn will grow with n until it approaches the non-zero fixed point1167

of Skellam’s map, which, for realistic values of k, has a numerical value very close1168

to 1. At this point the egg density of T. sinensis will be growing in time, but1169

it may require several years before reaching an O(1) magnitude. Thus, starting1170

from very small values of vn and even smaller values of qn, we have that the1171

sequence of states, seen in a diagram qn vs vn, as in the right panel of Figure 5,1172

first moves horizontally (vn growing, qn very close to 0) and then vertically (vn1173

very close to 1, qn growing). When qn reaches O(1) the approximation (43) no1174

longer applies, and it is convenient to rewrite the map (23) as (36), and then1175
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(assuming ET qn \not = vn) as1176 \left\{       
qn+1 =

\Biggl( 
e - \eta (ET qn - vn)  - 1

vn
ET qn

e - \eta (ET qn - vn)  - 1

\Biggr) 
vn

vn+1 = 1 - e - k(vn - qn+1)

(44)

With qn = O(1) for large (realistic) values of ET the parenthesis appearing in1177

the first equation approaches 1 from below. Thus we have qn+1 \approx vn, which1178

leads to a cancellation in the exponent appearing in the second equation, causing1179

a sharp drop in the value of vn+1 with respect to vn. Thus the system jumps1180

from a state (vn \approx 1, qn = O(1)) close to right edge of Figure 5 (right panel) to a1181

state close to its upper edge (vn+1 \approx O(1), qn+1 \approx 1) or, more often, depending1182

on the exact value of qn, to a state close to its upper-left corner (vn+1 \ll 1,1183

qn+1 \approx 1). The next year, since qn \approx 1 the value in the parenthesis becomes1184

even closer to one, and the cancellation occurs again with greater violence. The1185

ensuing further drop in the value of D. kuriphilus’ egg density may be as large1186

as ten orders of magnitude, with the parameters of Figure 5. Therefore, in1187

the turn of just two years, T. sinensis wipes out almost all the population of1188

D. kuriphilus and, consequently, its own, because of the constraint qn+1 < vn.1189

The dynamics then is well described by the approximate map (25) showing that1190

the pest begins to rebuild its own population, while the parasitoid population1191

declines. Thus the cycle starts again.1192

Note that the cycles need not be exactly periodic. In fact, the intervals of1193

exponential growth of qn and the subsequent cancellation events could produce1194

a quasi–periodic or maybe even a chaotic dynamics (however we did not inves-1195

tigate this issue). More importantly, small differences in the value of qn before1196

the cancellation events can make a large difference in the number of orders of1197

magnitude lost after the events, and thus in the number of years needed to1198

re–grow up to O(1).1199
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