UHWERSITA
| DEGLI STUDI

[T1S AperTO

DI TORINO
AperTO - Archivio Istituzionale Open Access dell'Universita di Torino
An Abstract Annotation Model for Skeletons
This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1508808 since 2016-10-16T15:41:147
Publisher:
Springer

Published version:
DOI:10.1007/978-3-642-35887-6_14
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

23 April 2024

An abstract annotation model for skeletons

Marco Aldinucci!, Sonia Campa?, Peter Kilpatrick®, Fabio Tordini', and
Massimo Torquati?

L Computer Science Department, University of Torino, Italy
{aldinuc,fabio.tordini}@di.unito.it
2 Computer Science Department, University of Pisa, Italy
{campa,torquati}@di.unipi.it
3 Computer Science Department, Queen’s University Belfast, UK
p.-kilpatrick@qub.ac.uk

Abstract. Multi-core and many-core platforms are becoming increas-
ingly heterogeneous and asymmetric. This significantly increases the
porting and tuning effort required for parallel codes, which in turn often
leads to a growing gap between peak machine power and actual applica-
tion performance. In this work a first step toward the automated opti-
mization of high level skeleton-based parallel code is discussed. The paper
presents an abstract annotation model for skeleton programs aimed at
formally describing suitable mapping of parallel activities on a high-level
platform representation. The derived mapping and scheduling strategies
are used to generate optimized run-time code.

1 Introduction

One central challenge of parallel programming today is to achieve performance
portability across a range of architectures. Most application programs are cur-
rently written at the low level of C or Fortran, combined with a communication
library such as MPI; moreover, they are often tuned toward one specific ma-
chine configuration. Since parallel computers are typically replaced within five
years, parallel programs which have a longer life span have to be re-tuned or
redesigned. In addition, programming at this low level of abstraction is cumber-
some and error-prone. Recent trends in platform design exacerbate the problem:
platforms are increasingly heterogeneous, e.g. including many general-purpose
and specialized cores, parallel accelerators (GPUs), soft cores (FPGAs). As a
consequence, even the development and tuning of applications for a specific ma-
chine configuration is complex and time consuming.

In sequential programming, the problem of having to recode for different
machines was apparent three decades ago. The software engineering solution to
this issue was to introduce levels of abstraction, effectively yielding a tree of re-
finements, from the problem specification to alternative target programs [1]. The
derivation of a target program then follows a path down this tree. The transition
from one node to the next can be described formally by a semantics-preserving
program transformation or refinement. Conceptually, porting a program to a

different machine configuration means backtracking to a previous node on the
path and then following another path to a different target program.

This approach is not yet popular in the parallel programming setting. For
example, typically parallel accelerators such as GPUs are programmed by di-
rectly leveraging on low-level accelerator-specific APIs (e.g. NVidia CUDA and
OpenCL). Although these programming frameworks have been designed to keep
narrow the gap between CPU and GPU programming style, there are still several
differences, many of them emanating from the different nature of the architecture
and even from the different models of computation of the GPUs. For example,
when dealing with GPUs the programmer finds that all hardware facilities that
are traditionally used to simplify the programming model have been removed
(e.g. cache-coherence, branch prediction, virtual memory, global synchroniza-
tions) and so he/she must use very low-level mechanisms and must take into
account a range of board specific information in order to obtain acceptable per-
formance (e.g. local memory size, correct memory alignment, number of context,
memory interleaving, etc.). Furthermore, the selection of which parts of an ap-
plication should be executed on the GPU is completely the responsibility of the
programmer and even if the code can be easily identified, there is no guarantee
that it will be faster on the GPU than on a CPU. The programmer also has
to manage data movement between the host processor’s main shared memory
and the GPU’s core local memory taking care of memory alignment. Therefore
porting code to GPUs, or developing from scratch an efficient code for GPUs,
is not an easy task and can be a huge drain on resources. The typical code op-
timization curve grows very slowly and requires lots of performance testing and
tuning, especially in industrial contexts where standard procedures for accurate
testing and validation have to be performed.

Since the nineties, the “skeletons” research community [2] has been working
on high-level languages and methods for parallel programming [3-6]. Skeleton
programming requires the programmer to write a program using well-defined
abstractions (called skeletons) derived from higher-order functions that can be
parameterized to execute problem-specific code. Skeletons are parallel ab-initio
and do not expose to the programmer the complexity of concurrent code, for
example synchronization, mutual exclusion and communication. They instead
specify abstractly common patterns of parallelism — typically in the form of para-
metric orchestration patterns — which can be used as program building blocks,
and can be composed or nested like constructs of a programming language. A
typical skeleton set includes the pipeline, the task farm, reduction and scan.
For a given skeleton, usually, many efficient implementations for a given target
platform may exist. Skeletons exhibit well-defined functional semantics, i.e. what
18 computed. As they describe parallelism exploitation paradigms, they also ex-
hibit extra-functional behaviour, i.e. how results are computed [7], which can be
also expressed by different realizations of the same pattern. For example, the
functional composition operator o can be interpreted as pipeline or as sequence
of functions. We believe that the patterns/skeletons approach, which has been
demonstrated to be effective for multi-core platforms (e.g. TBB [8] and Fastflow

[9] among others) can be used also with heterogeneous architectures to obtain a
good trade-off between performance and code portability.

After incubation for over two decades in a quite restricted research commu-
nity, skeletons gained renewed popularity with the arrival of multi-core plat-
forms, the consequent diffusion of parallel programming frameworks, and their
adoption in some successful programming frameworks, such as Intel Threading
Building Block (TBB) [8]. Despite being complex to program, current multi-
cores are almost uniform machines and in many cases they can be programmed
with decent performance as if they were symmetric multiprocessors. However,
this uniformity is progressively decaying with each new generation of machine:
the current generation of multi-cores exhibit non-uniform memory access (typ-
ically cc-NUMA, i.e. cache-coherent Non Uniform Memory Access), while the
next generation (e.g. IBM PowerEN, Intel MIC) will have specialized cores and
accelerators to gain peak performance on critical tasks, and a non-uniform con-
nection latency among cores and memory modules.

The heterogeneity and reduced connectivity of forthcoming platforms will
make it all the more important for a programming framework to have the ability
to generate parallel code according to different orchestration patterns and to
map them on to different platforms in such a way that each task is run in the
best suited executor and the synchronization and communication patterns are
efficiently supported by the targeted platform. Currently, this activity is largely
left to programmer expertise and is not effectively supported by development
tools.

This work aims to make a step toward the formalization and the automation
of this process. In particular, program refinement is proposed as an abstract tool
to deal with the problem of the mapping of parallel activities onto heterogeneous
cores (i.e. CPUs and GPUs). These parallel activities are assumed to be automat-
ically generated by a high-level skeletal programming framework. In particular,
skeletons are annotated with mapping information along a process of refine-
ments. The first step annotates the tree with functional and extra-functional
information such as data access, data dependencies, parallelism degree and so
on; the next step maps the annotated tree on the given platform, taking into
account the underlying target architecture; the last step executes the mapped
tree and constantly notifies performance data to the upper levels so that, in case
of performance degradation and driven by a suitable a performance model, the
skeleton tree can be rewritten in a functional equivalent but better performing
one. This is envisaged as the first step on the path to automated optimization
of parallel codes onto heterogeneous platforms. In this respect, important mile-
stones will include definition of a complete set of attributes to abstractly describe
the key features of a specific parallel architecture, and the definition of suitable
performance models able to drive the optimization process across the tree of re-
finements. These activities are currently ongoing in the ParaPhrase EC-STREP
project.

The remainder of the paper is structured as follows: Sec. 2 introduces typical
parallel programming patterns, while Sec. 3 introduces the abstract annotation

model which drives the mapping and rewriting of a user program refactored as
a skeleton program. Sec. 4 provides some preliminary results of our approach
implementation obtained on a heterogeneous platform. Finally, Sec. 5 discusses
related work and Sec. 6 concludes the paper.

2 Parallelism Paradigms and Patterns

Attempts to reduce programming effort by raising the level of abstraction date
back at least three decades. Notable results have been achieved by the skeletal
approach [2,10, 11], enabling pattern-based parallel programming. This approach
appears to be becoming increasingly popular after reinforcement by several suc-
cessful parallel programming frameworks [12-15].

Algorithmic skeletons capture common parallel programming paradigms (e.g.
ForAll, MapReduce, Divide&Conquer, etc.) and make them available to the pro-
grammer as high-level programming constructs equipped with well-defined func-
tional and extra-functional semantics [7]. Ideally, algorithmic skeletons address
the difficult problems of parallel programming (i.e. concurrency exploitation,
orchestration, mapping, tuning) moving them from the application design to de-
velopment tools by capturing and abstracting the common paradigms of parallel
programming and providing them with efficient implementations, i.e. a toolkit
of code generation techniques and a pre-optimized run-time support.

Differences between algorithmic skeletons and parallel design patterns lie
mainly in the motivations leading to these two apparently distinct concepts
and in the research environments where they have been developed: the parallel
programming community for algorithmic skeletons and the software engineering
community for parallel design patterns. As far this work is concerned, the two
concepts can be seen as synonymous.

Traditionally, in skeletal (and parallel pattern-based) programming the com-
putation is organized according to application-independent high-level paradigms,
which are usually categorized in three classes:

1. Data Parallelism is a method for parallelizing a single task by processing in-
dependent data elements in parallel. Data parallelism also supports loop-level
parallelism where successive iterations of a loop working on independent or
read-only data are parallelized in different flows-of-control and concurrently
executed. map and reduce are instances of data parallelism.

2. Task Parallelism consists of running the same or different code on different
executors (cores, machines, etc.). Task parallelism is usually explicit in the
algorithm. Different flows-of-control (threads, processes, etc.) may commu-
nicate with one another as they work. Communication usually takes place
to pass data from one thread/process to one or many others. The farm is a
typical representation of such class of patterns

3. Stream Parallelism consists in the parallel processing of different items of a
data stream, which can be either the input data or generated by the appli-
cation’s internal programming mechanisms (e.g. via asynchronous function

Seq Annot. Exec Perf/
Refactor | Par pgm - Annotate =>| Map —>| Run =>>| Monitor
pgm 4 tree file data
>

Rewrite «¢ Perf.
- Model

Fig. 1: Sketch of the proposed approach

calls). It can be used when there exists a partial or total order in a compu-
tation; the pipeline is a paradigmatic stream parallel pattern.

Pragmatically, a given computational problem typically admits several algorith-
mic solutions exploiting patterns in different classes, or different compositions
of them. In addition, in many cases, patterns in different classes can simulate
one another. The extent of this generality is dependent on the set of patterns
provided by a specific framework, which can also be designed to target one or
more application scenarios [15].

After Cole’s seminal work [2], early proposals for skeletal programming frame-
works have focused mainly on distributed memory platforms (e.g. clusters of
workstations, grid); some of them, e.g. Google’s MapReduce [13], have evolved
in mainstream programming tools [16]. Recent proposals, following the platform
architecture trend, have shifted the focus to include multi-cores and the shared
address model; in addition to academic initiatives such as FastFlow (Sec. 4), it is
worth mentioning consolidated industrial products such as the Intel Threading
Building Block (TBB) library [8] and, to a limited extent, the Microsoft Task
Parallel Library [17].

More recently, the skeletal approach has been proposed for GPGPUs and
hybrid architectures: the SkePU framework is an example [18].

Some of these skeleton frameworks explicitly include stream parallelism as
a major source of concurrency exploitation [12,7,14,8]: rather than allowing
programmers to connect stages into arbitrary graphs, basic forms of stream
parallelism are provided to the programmer in high-level constructs such as
pipeline (modelling computations in stages), farm (modelling parallel compu-
tation of independent data tasks), and loop (supporting generation of cycles in
a stream graph and typically used in combination with a farm body to model
Divide&Conquer computations).

3 A refinement process for skeletons

3.1 Approach overview

Our approach to parallelization via skeletons is depicted in Fig. 1. The starting
point of the refinement process is a sequential program in which the user (or

eventually a tool) detects those parts of the code which can be parallelized. Par-
allelism can be introduced by a tool-assisted Refactoring process in which the
user identifies patterns that can be captured by high level constructs (or calls
to libraries) taking sequential code as parameter(s). This Refactoring process
results in a high level program written as a composition of patterns/skeletons,
i.e. a skeleton tree. The remainder of the development involves successively re-
fining this skeleton through a series of stages to an implementation on a target
architecture.

The Annotate phase uses a set of annotation rules to annotate the skeleton
tree with an abstract description of the target architecture incorporating infor-
mation such as number CPUs, number of GPUs, etc. In essence this annotated
tree represents a set of possible mappings of tree to architecture.

The Map phase specializes the set of mappings implicit in the annotation
tree to a particular mapping of components to resources. It uses more detailed
target architecture specific detail (such as bandwidth of connections, speed of
processors, etc.) and is informed by a performance model [19,20] which allows
qualitative assessment of alternative mapping strategies. The mapping phase
produces an execution file that will be used by the architecture level for actively
running the application (Run phase).

In addition to the above process of deriving an initial running program, one
can envisage also a Rewrite phase which allows restructuring of the program as
a result of feedback obtained from the running program. This Rewrite phase
restructures the program in accordance with well-know functional equivalences
between parallel patterns, again informed by the performance model. The result
is a new (functionally equivalent) skeleton tree and so a new annotate phase can
be commenced.

In the following section we will give a formal representation of the skeletons
included in our semantic framework in order to define the Annotate and Map
phases which are the focus of the current paper.

3.2 Skeleton definition

Data and stream parallelism can be conveniently expressed using high-level pat-
terns with well-defined functional semantics [21, 7, 22], whereas task parallelism,
in the most general form, often subsumes low-level parallelism exploitation where
synchronizations (as well as functional semantics) are deeply interwoven in the
business code. For this reason, usually, they are not embedded in high-level
pattern-based programming frameworks. In the following we use a generic two-
tier pattern-based programming language including stream and data parallelism.
Data parallel patterns can be nested within stream parallel patterns, but not
vice-versa.

Let P be a pattern-based program, and P, a non-cyclic pattern-based pro-
gram, i.e. a program not exhibiting cyclic data-dependencies among patterns.
Let Py, and Py, be stream and data parallel high-level patterns, respectively
which can be composed as follows:

P =P | parloop(Ppe, E)

Pnc = 7)sp | Pdp

Psp ::= Pne © Ppc | farm(P)

Pap ::= map(Seq) | reduce(Seq) | Seq
Seq := (seq code)

E = (seq expression)

Here, for the sake of simplicity, the iterative usage of skeletons via the loop
pattern, which can also be used to implement Divide&Conquer, is limited to
the top level in order to simplify skeleton composition. Notice that in the most
general case the loop pattern, if nested within other patterns, can receive data
items from two different streams (input and feedback streams) and this requires
proper management of non-determinism among them to avoid deadlock.

Patterns are assumed to exhibit a pure functional semantics, i.e. they can be
defined as higher-order functions fully determined by their input-output behav-
ior. As happens in the FastFlow framework [9], the approach can be extended to
higher-order functions exhibiting a shared state. For example, using Ocaml-like
notation to define the functional behavior, farm and pipeline skeletons can be
described as follows:

let farm f x = (£ x);;
let pipeline f g x = (g(f x));;
let map f x = Array.map f Xx;;

where streams, i.e. a (finite or infinite) sequence of values of the same type, are
represented as lists. Patterns working on streams can be modelled accordingly,

e.g.
let stream_parallel f x::y = (f x)::(stream_parallel f y);;

In P, the stream items are potentially computed in parallel. As an example,

the farm skeleton uses a set of independent processing elements to compute the
input tasks. Each time a new input task is available one of these resources is
selected for the execution of the task, possibly using some kind of auto scheduling
policy. The pipeline skeleton uses independent processing elements to compute
the different stages in such a way that computation of stage i relative to task j
can proceed concurrently (in parallel) with both the computation of stage ¢ — 1
for task 7 + 1 and the computation of stage ¢ + 1 for task j — 1.
On the other hand, in Pg, the parallel computation is applied to the input data
as a whole. As an example, the map skeleton splits the input data collection
into chunks on the basis of different policies and the same function is applied in
parallel to each chunk by a different executor.

3.3 Skeleton rewriting

As already mentioned, a skeleton is often defined by a functional semantics (what
is computed) and a non-functional semantics (how results are computed) and it is
useful to make distinction, even informally, between them. Examples of a formal
definition of (functional and non-functional) semantics for parallel patterns and
streams can be found in [7,22].

The functional semantics allows programmers to “compute” the function
denoted by a pattern-based program. It also allows reasoning about program
equivalence, in terms of the results computed, or to define semantics-preserving
program transformations [21,23]. These transformations can also be driven by
some kind of analytical performance model associated with patterns, in such
a way that only those rewritings leading to efficient implementations of the
pattern are considered [24,25,21]. For instance, one can easily determine that
the following two programs actually compute the same result, even if they exhibit
different parallel behaviors:

let progh f g = stream_parallel (pipeline f g);;
let progB f g = stream_parallel (farm (pipeline f g));;

Also, streaming patterns can be normalized by reducing nesting of any depth
of farm and o (i.e. pipeline in this context) to a farm(pipeline())) [25].

Because patterns carry both a functional and non-functional semantics (thus
the intent of the code [26]) they can also be used to support a generative ap-
proach to machine-specific run-time generation and optimization. For example,
in the FastFlow framework (see Sec. 4), patterns are used to generate graphs of
parallel activities and their orchestration in terms of (true) data dependencies.

We can refine this approach on a formal basis by defining a semantics allow-
ing augmentation of the skeletal description provided by the application graph
with mapping information and synchronization requirements with respect to the
specific target architecture at hand. When the skeleton graph can be “rewritten”
to a semantically equivalent one but enriched with information related to (po-
tentially) optimal mapping, we can achieve better generation and optimization
of the actual run-time to the specific machine at hand.

3.4 Annotation semantics

Preliminary notation. For the sake of simplicity, we will provide an abstraction
of a target architecture including one CPU (i.e a set of cores) and one or more
GPUs, although our approach can be easily extended to a number of CPUs and
GPUs available in a system. We will denote the set of n > 0 cores on the same
CPU as

CPU = {coreg,corey,...,core,}

representing the set of available cores on a given CPU.

GPU = {gpuo, gpu1, - - ., gpur }

represents the set of available GPUs on a given architecture (k > 0).

Moreover, we assume that given a skeleton P, the mapping of P onto a given
architecture z (x € CPU or € GPU) is represented by the notation P,; thus
Pore, will define the mapping of skeleton P locally onto corer; Pyp,, will define
the mapping of P onto the i-th GPU available in the system; if P is a com-
posite skeleton whose mapping could involve a set of computational resources
X = {coreg,core;} € CPU, then Px will define the mapping between P and
the sub-architecture represented by X.

Seq annotation. Our goal is to define an abstract semantics driving suitable
mappings among (compositions of) skeletons as defined by Section 3 and the
available abstract architectures at hand.

The base case is represented by the Seq skeleton, which will be simply mapped
onto one of the cores available on the current CPU

x € CPU = {corey, ..., core,}
Seq — Seq,

(1)

or, since it could be encapsulated by a data parallel skeleton, it can be mapped

onto a GPU
x € GPU = {gpug, . ..,gpun}

Seq — Seq,

(2)

Farm annotation. Each instance of a farm will be rewritten in a notation high-
lighting the emitter (E) and the collector (C), in order to potentially allow
different mappings of all the nodes composing such a skeleton. Thus, hold that

farm(P) = farm(E, P,C)

There are two possible configurations in mapping a farm: i) all the nodes are
allocated on different cores of the same CPU:
E—E,NP—>PyrNC—-C,Nz,z€ CPUNz #2NY CCPU —{z,z2} 3)
farm(E, P,C) — farm(E,, Py,C,)

i) emitter and collector are mapped onto different cores of the same CPU while
the workers can be mapped onto a GPU

co,clECPU/\XQGPU/\E—>ECO/\P—>PX/\C—>CCI (4)
farm(E, P,C) — farm(E.,, Px,C.,)

With respect to such a rule we have to point out that in order to make suitable
mappings, we should also take into account how the communication costs for
moving data to and from the GPU influence the performance. In fact, placing
the workers onto a GPU could be worthwhile if a huge set of tasks is ready to be
delivered by the emitter for computation so that the workers can execute in a
“dataparallel-like” mode on the set of input tasks; or, such mapping could be a
good choice in those cases in which the task is, actually, a data parallel structure
to be computed. Thus, while rule 4 is a good starting point for formalizing the
mapping of workers onto a GPU, it needs to be further studied and enriched by
data description details.

Parloop annotation. The parloop skeleton can be mapped to host the inner
skeleton on any architecture while the condition is hosted on a CPU architecture:

T2 EOPU/\(Xl CCPUV X, QCTY]DU)/\P—)PXI/\E‘*)E‘X2
parloop(P, E) — parloop(Px,, E.,)

()

Since the evaluation of E defines whether the loop stops or continues to iterate,
the rule above asserts that E is always evaluated on a CPU, while P (being a
data parallel or a stream parallel skeleton) could be mapped onto a CPU or a
GPU. Theoretically, if an iteration of P has been evaluated on z;, the system
memory of that node could still provide an up-to-date representation of data
needed to proceed in the computation.

Map/Reduce annotation. Map and reduce can both be mapped on a CPU or a
GPU architecture

xt CGPUVz CCPUASeq— Seq,
map(Seq) — map(Seq),

(6)

r CGPUVx CCPUASeq— Seq,
reduce(Seq) — reduce(Seq),

(7)

Pipeline annotation. How a pipeline will be mapped depends at first on whether
its stages are represented by stream parallel or data parallel skeletons, i.e. how
data will flow through the graph and which dependencies among them are ex-
ploited. In the former case, the stages have to be placed on different cores (in
order to exploit parallelism), but possibly of the same CPU (in order to minimize
stream transfer costs):

r#yANz,y€ CPUNP — P, ANP" = P/ NP, P" € Py,
P'oP” — PLo Py

(8)
In the latter case, a pipeline of data parallel skeletons can be mapped onto

different cores (for instance, one stage per core) or onto different GPUs

r#yA(x,y € CPUVx,y€ GPU)AP' = P, ANP" — P/ \NP',P" € Py,
P’oP”—)PéoPé’

(9)
However, the pipeline of two data parallel stages could imply some synchroniza-
tion steps between stages in the event of functional dependencies. For this reason,
if the system provides just one GPU, the pure functional pipelining of two or
more data parallel skeletons has to be rewritten in terms of a composition of
stages (denoted by “;”) because of the presence of some synchronization points
that can serialize the execution.
P'— P, ANP"— Pl Agpue GPU

/ /" / . 1
P'oP" — PPl

(10)

@

Comp annotation. Comp is a skeleton (represented by “;” syntax) defining the
sequential composition of two sub-skeletons which will be executed sequentially.
This pattern is particularly useful in those rewritings in which part of a skele-
ton tree has to “collapse” into a sequential piece of code to provide improved
performance, for example, in terms of communication costs.

r=Yy
P, P" — P Py

(11)
The composed skeletons are mapped both on to the same target node.

3.5 Mapping strategies

Data parallelism onto heterogeneous architectures. Let us assume we have the
skeleton composition
map(Seq1) o map(Seqs)

Which suitable mappings can be provided, if the abstract target architecture is
represented by the system S = {cpug, cpui, gpug} where CPU = {cpuyg, cpuy }
and GPU = {gpuo} and §GPU = 1 represents the cardinality of the GPU set?
As skeletons, Seq; and Seqq can be indifferently placed onto a CPU or a GPU
architecture (rules 1 and 2), and so two branches are possible for the mapping
of the two outer maps, since it holds that

Seq; — (Seq1)s AVz.xz € S
map(Seq1) — map(Seq1).,

and
Seqs — (Seq), AVx.z € S

map(Seqa) — map(Seqa)..

However, at a higher level of the skeleton graph, the maps are composed by a
pipeline operation. Recalling that our system provides just one GPU and two
cores, we have two different options: i) we could place the pipeline on the same
GPU but in a compositional manner so that they can eventually communicate
via a shared memory system, i.e. by applying rule 10

map(Seq1) — map(Seqi)gpu A map(Seqa) — map(Seqa) gpu
map(Seqi) o map(Seqz) — map(Seqi) gpu; map(Seqa) gpu

i1) we could place the pipeline so that the first map is executed on cpu; and the
second one on cpus and the stages will then communicate via a stream of data,
thus applying rule 9.

cpug, cpur € CPU A map(Seqr) — map(Seqi) cpu, A map(Seqz) — map(Seqa)cpu,

map(Sefh) o map(sefh) — map(Seql)cpuo o map(Squ)cpul

Which of these two options will be actually chosen will depend on the ability
of the system to make predictions on the cost of each configuration. Provid-
ing the semantics with a cost model allowing an estimation of each candidate
configuration will be the goal of future work.

noise Seq 8 cores 8 cores
(1 CPU) + 24 CPUs —+ 1 GPUs

10 % 320s 18s 19s
50% 162.1s 6.5s 23s |
90 % 2900 s 109 s 28s Lena 30% - Restored Lena 50% - Restored Lena 90% - Restored

PSNR=35.1 MAE=1.2 PSNR=31.9 MAE=2.3 PSNR=22.5 MAE=11.3

Fig.2: Left) Execution time of different configuration of the Detect+ Restore
functions on Lena image. Right) Restoration result with PSNR (Peak Signal-to-
Noise Ratio) and MAE (Mean Absolute Error).

Bringing down data transfer costs. Let now assume that we have the following
skeleton composition

Seql o Seq2 o Seq3

From a functional perspective the pipeline operation exploits the associative
properties so that

(Seql o Seq2) o Seq3 = Seql o (Seq2 o Seq3)

However, from a mapping point of view, these two options could imply very dif-
ferent performance effects: for example, let us suppose that a number of dual-core
CPUs are available so that CPUy = {coreq, core1} and CPU; = {cores, cores}:
the better mappings are those assigning cores belonging to the same CPU to
(possibly) contiguous stages. Thus, while

(Seqlcoreg o S€q2corel) o Squcoreg

(Seqlcorel o Squcoreo) o Squcorerz
Seqlcorel o (S€q2corez o Squcoreg)

Seqlcoreo o (S€q200r62 o Squcoreg)

would be good combinations since they minimize the extra-CPU communication
to just one occurrence, all the other combinations, such as for example

Seqlcoreo o (Seq200r62 o Squcorel)
will need two extra-CPU communications, maybe accessing a shared memory or

even across the network in the case of a cluster. In Sec. 4 we will see a concrete
instantiation of this principle applied to a specific architecture.

4 Preliminary results

In the current section we will exemplify the proposed methodology through some
examples implemented on top of FastFlow, a parallel programming framework
aimed at simplifying the development of applications for multi-core platforms,
whether these applications are brand new or ports of existing legacy codes [27].
FastFlow promotes pattern-based programming and has been specifically de-
signed to efficiently support fine-grained parallel computations. The FastFlow
patterns can be arbitrarily nested to model increasingly complex parallelism
exploitation patterns. The FastFlow implementation guarantees an efficient exe-
cution of the skeletons on currently available multi-core systems by building the
skeletons themselves on top of a library of lock-free producer/consumer queues.
The workstation on which we performed the tests is a “homogeneous” Intel
Nehalem microarchitecture equipped with 4 eight-core double context Xeon E7-
4820 @2.0GHz with 18MB L3 shared cache, 256K L2, and 24 GBytes of main
memory with Linux x86_64.

Current multi-core machines, such as Intel or AMD multi-core platforms are
typically programmed and managed as if they were symmetric multiprocessors.
However, the relation between performance and mapping of parallel activities
onto core can be easily shown. For example, Fig. 3 reports the latency of three dif-
ferent implementations of the FastFlow Single-Producer Single-Consumer queue
on the tested platform: a bounded array-based queue (SPSC), a dynamically
linked-list queue (dSPSC) and an unbounded array-based queue (uSPSC). All
implementations are lock-free and particularly optimized to avoid cache invalida-
tions [28].The queue implementations are compared on three different mappings
for the producer (P) and the consumer (C): 1) P and C are placed on two differ-
ent hardware contexts of the same core; 2) P and C are placed on two different
cores of the same socket; 3) P and C are placed on two different sockets. As can
be seen, the dSPSC queue is particularly sensitive to mapping as the latency
from one mapping to another changes the performance more than two orders of
magnitude. This gap is expected to grow in forthcoming platforms with increas-
ing core count and platform heterogeneity.

In the Table of Fig. 3, we report the performance obtained when running
a very simple benchmark test where one 3 stage pipeline computes a stream
of 1M tasks (double elements). Each stage is connected with the previous and
following one (if present) using the FastFlow dSPSC unbounded queue. The first
stage mainly generates the stream of tasks whereas the other two stages apply on
each input a function computing a trigonometric computation. The third stage of
the pipeline (s3) is the most computationally demanding. In this test we consider
4 possible mapping strategies for the three stages on the considered architecture.
The best performance is obtained when the first 2 stages are mapped on the same
core (different contexts) of the first CPU and the third stage is mapped on the
second CPU (mappingC in the Table). In this way we are able to obtain a good
trade-off between communication costs and computation. In fact, the first and
the second stage do not interfere too much when placed on the same context since
the first stage does not perform any significant numerical computation; instead,

mapping strategies Compl. Time (ms)

512

— s — -
p5g | == USPSC f mappingA 360
) dspsC i mappingB 530
S 128 . .
2 : mappingC 295
o 64 J .
. mappingD 480
£ a3 T ‘I’
3
g 16 - 1 — mappingA) s1,s2,s3 on adjacent cores of CPU1;
S — mappingB) sl on CPU1, s2 on CPU2 and s3 on
8 { H H CPU3;
4 — mappingC) sl and s2 on the same context of one
64 1k 8k 64 1k 8k 64 1k 8k core of CPU1 and s3 on CPU2;
Diff. Contexts Diff. Cores Diff. CPUs — mappingD) s2 and s3 on the same context of one

core of CPU1 and sl on CPU2.

Fig.3: Left) Latency of 3 different implementations of FastFlow queues tested
with three different mapping for the Producer and the Consumer threads [27].
Right) Performance obtained for the 3-stage pipeline(sl,s2,s3) benchmark vary-
ing the stage mapping.

they are able to benefit from the lower level cache to increase communication
performance.

In order to validate the proposed methodology we describe a prototypical
example, an image restoration application. The edge-preserving denoiser is a
two-step filter for removing salt-and-pepper noise (see Fig. 2). In the first step,
an adaptive median filter is used to identify the set of noisy pixels; in the second
step, these pixels are restored according to an iterative variational approach up to
convergence. The detailed description of the sequential algorithm is beyond the
scope of this paper; it ensures state-of-the-art restoration quality and execution
time, and is able to restore also very noisy images (e.g. up to 90% random noisy
pixels) [29]. The same algorithm can also be used to restore video streams by
iterating frame-by-frame the detect-denoise filters.

Pattern/Skeleton selection. Let ReadImg, Detect, Restore, WriteImg, Fizpoint
be chunks of sequential code (e.g. functions, i.e. Seq). The core of the edge-
preserving denoiser can be sketched as

Img=Readlmg;

NoisySet=Detect(Img);

while (! Fizpoint(M AE((Img)){Img=Restore(Img,NoisySet); }
WriteImg(Img);

which can be iterated in a loop to realize a video version that simply repeats
the same process on successive video frames. Notice that the Restore process
is iterated up to fizpoint times by way of the Fixpoint function. The fizpoint
is reached when the restoration process brings no improvement in the “quality”
of the image across two successive iteration. The quality of the image is usually
measured in term of Peak Signal-to-Noise Ratio (PSNR) or Mean Absolute Error

(MAE). The video version can be sketched as follows:

while(true){
Img=Readlmg;
NoisySet=Detect (Img) ;
while (! Fiaxpoint(M AE(Ing))){Img=Restore(Img,NoisySet);}
WriteImg(Ing);
}

where the two filters Detect and Denoise are both executed sequentially and
successively. Again, the latter filter is iterated up to fixpoint times. In order to
detect when the fizpoint value is reached, the M AF filter has to be computed at
each iteration. Computing M AFE requires the analysis of the whole image Img.
The visual effect on a noisy image of the two filters is shown in Fig. 2 right),
together with the quality measures obtained (PSNR and MAE). The two prin-
cipal filters can be parallelized in a data-parallel fashion using the map pattern,
as follows:

while(true){
Img=Readlmg;
NoisySet=map(Detect(Ing));
while (! Fiaxpoint(M AE(Ing))){Ing=map(Restore(Img,NoisySet));}
WriteImg(Img) ;

}

The M AFE computation can be also parallelized in a data-parallel fashion
using the reduce pattern. In addition, the parallelized versions of Restore and
MAE can be composed and executed in a parallel loop in such a way that the
whole restoration loop can be wrapped and possibly offloaded to an accelerator.
while(true){

Img=ReadlImg;

NoisySet=map(Detect (Img)) ;

parloop((Fix=reduce(M AE,Ing))o(Img=map(Restore(Img,NoisySet))),!Fix);
WriteImg(Img) ;

}

Annotate. From a semantic perspective and by following the syntax presented
in this proposal, the preceding piece of code can be represented as

map(Seqp) o parloop((reduce(Seqpr) o map(Seqr)), E)

where we assume Seq(Detect(Img)) = Seqp, Seq(Restore(Img, NoisySet)) =
Seqr, Seq(M AE) = Seqy; and E =!Fix; our set of rules is then able to derive
for us the annotation of the syntax tree associated to this composite skeleton as
follows:

})eni })eni

Map parloo;@ Seq parloo;@
| —

CENYAD A

Reduce Map Reduce Map

Seq Seq Seq Seq

Fig.4: The annotated skeleton tree of the application: its implementation and
performance are parametric w.r.t. 1,2,z , 2"

map(Seqp) o parloop((reduce(Seqpr) o map(Seqr)), E)
—{let x1, zo two cores, rule 9 holds and Seqp — Seqp., hold }

map(Seqpz,) © parloop((reduce(Seqnr) o map(Seqr)), E)z,
—{ rule 5 and 2/, 2" potentially fresh id}
map(Seqpz,) o parloop((reduce(Seqns)z © map(Seqrzr))s Exy)y

The annotated tree associated with such mapping evaluation is depicted in
Fig. 4 (left) where x1,xq,2’, 2" could identify a set of different or overlapping
cores. In addition, each of x1,x2,2’,2” can also be either CPU or GPU cores.
The performance model provides the information needed to choose the mapping
which gives the best performance.

It is worth pointing out that at this level the semantic framework could
also be able to define (under specific performance requirements) an alternative
skeleton tree, functional equivalent to the preceding one for which a new set
of mapping alternatives could hold. Fig. 4 suggests a possible rewriting of the
skeleton in which map(Seqp,) has been rewritten as sequential and the pipeline
iterated by parloop has collapsed in a comp. Such skeleton could be eligible if, for
instance, the costs involved in the implementation of the map and the pipeline
are too high with respect to a sequential execution, possibly because of a too
fine grain computation.

Mapping. According to the methodology introduced in Sec. 3, the parallelized
versions of Detect and Restore can be mapped onto different processors (i.e.
x1 # 2, resulting in different performance figures. For example, Fig. 2 presents,
together with the sequential execution time, the performance when the Detect
and Restore filters are executed in parallel using, respectively, 8 and 24 cores

of the 32 cores of the Intel workstation described at the beginning of this sec-
tion. Alternatively, the restoration loop can be offloaded to a GPGPU (NVidia
Tesla 448 cores) with even better results. In this mapping process, the described
methodology is intended to ensure that only appropriate compositions of pat-
terns are mapped onto the GPGPU.

5 Related Work

Early proposals of pattern-based parallel programming frameworks have been
focused mainly on distributed memory platforms, such as clusters of worksta-
tions and grids [12,30]. Google MapReduce [13] brings to the mainstream of
out-of-core data processing the map-reduce paradigm. All these skeleton frame-
works provide several parallel patterns (algorithmic skeletons) covering mostly
task and data parallelism. These patterns can usually nested to model more
complex parallelism exploitation patterns according to the constraints imposed
by the specific programming framework. More recent pattern-based frameworks,
following the platform architecture trend, have shifted the focus to multi-cores
and the shared address model; in addition to FastFlow, it is worth mentioning
the Intel Threading Building Block (TBB) library [8], and to a limited extent
the Microsoft Task Parallel Library [17]. All of them are certainly higher-level
compared to the Pthread library that has been used in the shared memory imple-
mentations of classification algorithms previously mentioned. The main features
of these and other frameworks are surveyed in [11].

Programming frameworks based on algorithmic skeletons have been recently
introduced to alleviate the task of the application programmer when targeting
data parallel computations on GPUs. In Muesli [31] the programmer must ex-
plicitly indicate whether GPUs are to be used for data parallel skeletons. SkePU
[18] provides programmers with GPU implementations of map and reduce skele-
tons and relies on StarPU for the execution of stream parallel skeletons (pipe
and farm).

In addition to pattern-based frameworks, other high-level programming frame-
works also aim to simplify the design of efficient applications on multi-cores
and thus are related to FastFlow and to the present work. Streamlt [14] is
an explicitly parallel programming language based on the Synchronous Data
Flow model that enables the assembly of program modules (called filters) in
a pipeline fashion, possibly with a FeedbackLoop, or according to a SplitJoin
data-parallel schema. Streaming applications are also targeted by TBB through
the pipeline construct, which also provides programmers with thread-safe con-
tainers and some parallel patterns (called “algorithms”); TBB does not support
any kind of non-linear streaming network, which thus has to be embedded in a
pipeline with significant programming and performance drawbacks. Intel’s Con-
current Collections (CnC), which declaratively models concurrent activities as
data streams and control dependencies, has been recently proposed as a candi-
date substrate for parallel patterns [32]. OpenMP [33] is a popular thread-based
framework for multi-core architectures mostly targeting data parallel program-

ming even if it is currently being extended to incorporate stream processing.
OpenMP supports, by way of language pragmas, the low-effort parallelization
of sequential programs; however, these pragmas are mainly designed to exploit
loop-level data parallelism (e.g. do-independent). CnC and OpenMP do not na-
tively support either farm or DivideédConquer patterns, even though they can
be simulated with lower-level features.

MCUDA [34] is a framework to mix CPU and GPU programming. In MCUDA
it is mandatory to define kernels for all available devices but the framework can
not make any assumptions about the relative performance of the supported de-
vices.

Recently OpenACC [35] has been proposed by some major vendors as a pos-
sible new standard for programming GPUs and HW accelerators in general. Like
OpenMP it is based on a set of pragma directives allowing automatic acceleration
of loops and parallel regions by directly offloading computation on the accelera-
tor. Our approach differs from #pragma-based approaches because we require an
explicit parallelization of the code thus making it possible to avoid cluttering the
sequential code with complex directives. Furthermore, in our vision, the declar-
ative approach gives, in many cases, less control to the programmer and hence
lessens the possibility to exploit all the available parallelism in the application.

Overall, our approach aims to provide a high-level programming model based
on algorithmic skeletons and a high-level skeleton-based intermediate represen-
tation with mapping annotations, which are used for taking mapping decisions.
In our vision such an approach is able to ensure portability of the parallel code
onto different heterogeneous platforms while maintaining good performance.

6 Conclusions

The mapping problem, and in general the optimization of parallel code for cur-
rent and next generation parallel platforms is a particularly important problem
as it might significantly affect performance and efficiency of applications. Ide-
ally, solutions to this problem should address performance portability while not
requiring excessive effort on the part of the application developer. In this re-
spect, the pattern-based approach has been demonstrated to have the potential
to address the problem. In this position paper we have stated the problem and
the approach we are undertaking to define an intermediate formalism to support
the compilation and the optimization of patterns on heterogeneous multi-core
and many-core platforms. The intermediate language basically aims to equip
patterns with several platform attributes in such a way that suitable mapping
and scheduling heuristics aimed at generating optimized run-time code can be
derived.

Acknowledgment The work described in this paper is supported by the
EU ParaPhrase project (http://www.paraphrase-ict.eu, 2011-2014).

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Parnas, D.L.: On the design and development of program families. IEEE Trans.
on Software Engineering SE-2(1) (March 1976) 1-9

. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computa-

tions. Research Monographs in Par. and Distrib. Computing. Pitman (1989)
Botorog, G.H., Kuchen, H.: Skil: An imperative language with algorithmic skele-
tons for efficient distributed programming. In: Proc. of the 5th International Sym-
posium on High Performance Distributed Computing (HPDC’96), IEEE Computer
Society Press (1996) 243-252

Darlington, J., Guo, Y., Jing, Y., To, H-W.: Skeletons for structured parallel
composition. In: Proc. of the 15th Symposium on Principles and Practice of Parallel
Programming. (1995)

Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., Vanneschi, M.: P3L: A Struc-
tured High level programming language and its structured support. Concurrency
Practice and Experience 7(3) (May 1995) 225-255

Hamdan, M., King, P., Michaelson, G.: A scheme for nesting algorithmic skele-
tons. In Hammond, K., Davie, T., Clack, C., eds.: Proc. of the 10th International
Workshop on the Implementation of Functional Languages (IFL’98), Department
of Computer Science, University College London (1998) 195-211

Aldinucci, M., Danelutto, M.: Skeleton based parallel programming: functional and
parallel semantics in a single shot. Computer Languages, Systems and Structures
33(3-4) (October 2007) 179-192

Intel Corp.: Threading Building Blocks. (2011)

Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level
and efficient streaming on multi-core. In Pllana, S., Xhafa, F., eds.: Programming
Multi-core and Many-core Computing Systems. Parallel and Distributed Comput-
ing. Wiley (2012)

Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing 30(3) (2004) 389-406

Gonzélez-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks:
High-level structured parallel programming enablers. Software: Practice and Ex-
perience 40(12) (2010) 1135-1160

Vanneschi, M.: The programming model of ASSIST, an environment for parallel
and distributed portable applications. Parallel Computing 28(12) (December 2002)
1709-1732

Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: Usenix OSDI ’04. (December 2004) 137-150

Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A language for streaming
applications. In: Proc. of the 11th Intl. Conference on Compiler Construction (CC),
London, UK, Springer (2002) 179-196

Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. Comm. of the ACM 52(10) (2009) 56-67
Apache Software Foundation: Hadoop. (2008) http://hadoop.apache.org/.
Leijen, D., Hall, J.: Optimize managed code for multi-core machines. MSDN
Magazine (October 2007)

Enmyren, J., Kessler, C.W.: Skepu: a multi-backend skeleton programming library
for multi-gpu systems. In: Proceedings of the fourth international workshop on
High-level parallel programming and applications. HLPP ’10, New York, NY, USA,
ACM (2010) 5-14

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Aldinucci, M., Coppola, M., Danelutto, M.: Rewriting skeleton programs: How
to evaluate the data-parallel stream-parallel tradeoff. In Gorlatch, S., ed.: Proc
of CMPP: Intl. Workshop on Constructive Methods for Parallel Programming,
Fakultét fiir mathematik und informatik, Uni. Passau, Germany (May 1998) 44—
58

Skillicorn, D.B., Cai, W.: A cost calculus for parallel functional programming. J.
Parallel Distrib. Comput. 28(1) (1995) 65-83

Aldinucci, M., Gorlatch, S., Lengauer, C., Pelagatti, S.: Towards parallel program-
ming by transformation: The FAN skeleton framework. Parallel Algorithms and
Applications 16(2-3) (March 2001) 87-121

Caromel, D., Henrio, L., Leyton, M.: Type safe algorithmic skeletons. In: 16th
Euromicro Intl. Conference on Parallel, Distributed and Network-Based Processing
(PDP), Toulouse, France, IEEE (February 2008) 45-53

Gorlatch, S., Lengauer, C., Wedler, C.: Optimization rules for programming with
collective operations. In: Proc. of the 13th International Parallel Processing Sympo-
sium & 10th Symposium on Parallel and Distributed Processing (IPPS/SPDP’99).
IEEE Computer Society Press (1999) 492-499

Skillicorn, D.B., Cai, W.: A cost calculus for parallel functional programming.
Journal of Parallel and Distributed Computing 28 (1995) 65-83

Aldinucci, M., Danelutto, M.: Stream parallel skeleton optimization. In: Proc.
of PDCS: Intl. Conference on Parallel and Distributed Computing and Systems,
Cambridge, Massachusetts, USA, IASTED, ACTA press (November 1999) 955-962
Pottenger, B., Eigenmann, R.: Idiom recognition in the Polaris parallelizing com-
piler. In: Proc. of the 9th Intl. Conference on Supercomputing (ICS ’95), New
York, NY, USA, ACM Press (1995) 444448

Aldinucci, M., Torquati, M.: FastFlow website. (2009) http://mc-fastflow.
sourceforge.net/.

Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: An
efficient unbounded lock-free queue for multi-core systems. In: Proc. of 18th Intl.
Euro-Par 2012 Parallel Processing. LNCS, Rhodes Island, Greece, Springer (2012)
Aldinucci, M., Drocco, M., Giordano, D., Spampinato, C., Torquati, M.: A parallel
edge preserving algorithm for salt and pepper image denoising. Technical Report
138/2011, Universita degli Studi di Torino, Dip. di Informatica, Italy (May 2011)
Kuchen, H.: A skeleton library. In Monien, B., Feldman, R., eds.: Proc. of 8th
Euro-Par 2002 Parallel Processing. Volume 2400 of LNCS., Paderborn, Germany,
Springer (August 2002) 620629

Ernsting, S., Kuchen, H.: Data parallel skeletons for gpu clusters and multi-gpu
systems. In: Proceedings of PARCO 2011, IOS Press (2011)

Newton, R., Schlimbach, F., Hampton, M., Knobe, K.: Capturing and composing
parallel patterns with Intel CnC. In: Proc. of USENIX Workshop on Hot Topics
in Parallelism (HotPar 2010), Berkley, CA, USA (June 2010)

Park, I., Voss, M.J., Kim, S.W., Eigenmann, R.: Parallel programming environment
for OpenMP. Scientific Programming 9 (2001) 143-161

Stratton, J.A., Stone, S.S., mei W. Hwu, W.: MCUDA: An efficient implementa-
tion of CUDA kernels for multi-core CPUs. In Amaral, J.N.; ed.: Languages and
Compilers for Parallel Computing, 21th Intl. Workshop (LCPC). Volume 5335 of
LNCS., Springer (2008) 16-30

Khronos Compute Working Group: OpenACC Directives for Accelerators. (Novem-
ber 2012) http://www.openacc-standard.org.

