SOME EXAMPLES OF TABULAR ALGORITHMS IN SYNTACTIC PATTERN RECOGNITION
T.Bellone*,E. Borgogno *, G. Comoglio *
*DIGET, Politecnico di Torino, Torino, Italy
tamara.bellone(@polito.it, enrico.borgogno@polito.it, giuliano.comoglio@polito.it

Commission VI, Working Group 3

KFY WORDS: Pattern Recognition, Image understanding, Algorithms

ABSTRACT:

Image understanding is a very important step in the course of data analysis in GIS. Syntactic Pattern Recognition of
models is a process, as used in Cartography and Remote Sensing, which makes possible the matching of parts of maps,
of images and 3D models with archetypes and patterns (parsers). The main item of the entire process is the so-called
Parsing, a device used in Linguistics, successively used in Cognition Disciplines. Simply, it must help decide whether a
data string (a phrase) can be a part of an existing pattern (language).

A number of algorithms are available for Parsing, for the needs of specific grammars: although not suited for any
i grammars, tabular methods help save time, as the Kasami method, remarkably simple to use: it works well in the case of
context-free grammars, as reduced to the so- called Chomsky’s normal form.

e R

1. Foreword

The so-called computer science revolution has also taken
place in the area of geodetic sciences, which eventually
are piaving a key role in it (Geomatics).

Even common people know that many mental preocesses
are based upon evaluation of contrast and difference: this
is, for instance, the art of seeing, and generally a good
approach in all cognitive sciences, also in Linguistics.
Language, indeed, is based upon blending of discrete
parts (phonemes, morphemes). Also, vision and speaking
are based upon principles not quite different. This is why
some present procedures of Geomatics may be referred to
logical and symbolic structures proper for Mathematical
Logic and Linguistics. Some improvements in GIS and
Digital Photogrammetry are referred to as Computer
Vision, Image Processing, Image Understanding,
Machine Learning, which are linked to developments of
Artificial Intelligence.

An easy case of this cultural melting is Syntactic Pattern
Recognition: it is a procedure, widely used in
Cartography and Remote Sensing, that trusts upon
matching of sections of maps and/or images or 3D
models with archetypes or objects (parsers). Also, parsing
1 a topic proper of Linguistics, which has been borrowed
from cognitive sciences; Artificial Intelligence in turn is

pattern primitives: each sub-pattern is identified by a
given set of pattern primitives.
The decision whether or not the representation belongs to
the class of patterns described by the given grammar or
syntax (is syntactically correct) is made by a “parser™.
Parsing is then the syntax analysis: this is an analogy
between the hierarchical (treelike) structure of patterns
and the syntax of language. Patterns are built up by sub-
patterns in various ways of composition, just sentences
are built up by words and sub-patterns are built up by
concatenating primitives (features) just words by
concatenating characters (Sester, 1990).
Parsing adaption to the GIS context can be thought for
selecting reference shapes from numerical cartography or
raster geocoded images. Phrases are cartographic objects
and language is the set of rules which define these objects
satisfy or not selecting criteria.
A double use of Parsing is possible in the framework of
GIS: both at the generation stage, and for the process of
query and data analysis.
The shape reconnaisance by parsing is of evident interest
for:
» map production, implementation and updating
through automatic extraction of shapes from raster
data;

based upon Logic and Linguistics (Mathematical Logic ~ » editing of existing maps (as association of codes to
and Mathematical Linguistics). not-still-coded shapes or perceiving of difference
A Syntactic Pattern Recognition system consists with between a closed polygon and an open line in order
three parts: pre-processing, pattern description and syntax to close it);

analysis. # query purposes, aimed to the extraction of raster

P Te-processing includes pattem encoding and

aDProxim.t[ion, filtering, restoration and enhancement.
€ Patiern representation procedure consists of pattern

tseZ%m&’-ntation and feature (primitive) extraction, in order

© Tepresent a pattern in terms of its sub-patterns and

oa

features or not-coded shapes from the database; an
ample variety of questions may be posed, as one
deals with new geometrical features which can be
classified as recursive shapes according to a
reference pattern.

In this paper a preliminary investigation of this problem
is done, showing some different approaches, and a brief
example of recognition of simple geometrical shape is
given.

2. The Theory of Formal Languages
In the theory of formal languages, a language is defined
as a set of sirings: a string is a finite sequence of symbols
chosen from some finite vocabulary. In natural languages,
a string is a sentence, and the sentences are sequences of
words chosen from some vocabulary of possible words.
A grammar is defined as a four-tuple:
G=(N,T,P,8)

where N and T are the non terminal and terminal
vocabularies of G, P is the set of production rules, and §
is the start symbol.
A formal language is indeed defined by:

® A terminal vocabulary of symbols (the words of

the natural language)

* A non terminal vocabulary of symbols (the

syntactic categories, ¢.g. noun, verh)

® A sct of productions (the phrase structure rules

of the language)

® The so called start symbol

We start from a special non terminal S, and S is replaced
by the string on the right side of a chosen production rule.
The process of rewriting a substring according to one of
the rewriting production rules continues until the string
consists only of terminal symbols:

S — aS|bS|¢

where the symbol | indicates “or” and & is the null string.
The succession of strings that result from the process is a
derivation from the grammar: to find a derivation (a
parse) for a given sentence (sequence) is called parsing.
As to the latter approach, let’s remind that in the Theory
of Formal languages Chomsky divides languages in
classes, thus forming a hierarchy of languages, based
upon different grammars:

* Unrestricted grammars (0-type grammars)

* Context-sensitive grammars (1-type grammars)

* Context-free grammars (2-type grammars)

* Regular grammars or finite state grammars
(3-type grammars)

The most general grammar is obviously the 0-type, which
bears no limits for rewriting rules: for the other types,
such restrictions are regularly increasing. Types 0 and 1
are able to describe natural languages as the other two,
much simpler to manage from a computational viewpoint,
are more suited into limited backgrounds and have been
hitherto used for artificial languages.

In the 1-type grammar, rewriting rules restraints bear that
the right side of a rule should have at least as many
symbols as the left side;

For the 2-type grammar, all rules should have just one
non-terminal symbol on the left side

44

For 3-type grammar, the right side has only one terminal
symbol, or one terminal symbol and a non-terminal one
for every production rule.

The language classes as arranged by Chomsky need a
number of reconnaissance devices (automata):

O-type languages: Turing machines

1-type languages: bounded automata

2-type languages: pushdown automata

3-type languages: finite state automata.

Although many classes of patterns appear context
sensitive, context sensitive - grammars have rarely been
used, because of their complexity. Context free
programmed grammars have been used , probably due to
their effectiveness in describing natural languages: they
arc able to capture much of natural and artificial
languages, but many problems required extensions.
Context free grammars cannot model all the
characteristics of natural languages. One example is the
conversion of sentences from active to passive voice,
Chomsky (1957) developed the theory of
transformational grammar, in which a sentence is derived
as a deep structure, then modified by transformational
rules and finally converted in surface form by
phonological rules. The deep structure is derived by a
context free grammar, which generates “proto” phrases:
strings like “the bridge crosses the river” and “the river is
crossed by the bridge™ have the same deep structure, but a
different surficial structure.

In syntactic pattern recognition problems, it is often
important to represent the two or three dimensional
structure of sentences in the languages. Traditional
context free grammars generate only one dimensional
string. Context free graph grammars have been developed
in order to construct a graph of terminal nodes instead of
a string of terminal symbols.

A statistic approach to language started as the scholars
realized the value of statistic methods in the recognition
of speech. Hidden Markov’s model was first used by the
same for modelling the language of “Evgenij Onegin™
(Markov, 1913). A grammar normally divides strings in
just two classes: the grammatically correct ones, and the
others. In any case, ambiguity is very frequent, and it is
even deliberately pursued as sometimes happens in
poetry. The simplest way of accounting for ambiguity is
the usage of a stochastic grammar.

3. Parsing Algorithms

In accordance with the needs of different grammars, a
certain number of Parsing algorithms are in use.

Parsing procedures may be top-down or bottom-up type,
as one starts from initial symbol S, operating
substitutions until only terminal symbols are present,
such as to fit the clause, or as one starts from the string
backward till the start symbol S.

Tabular procedures are time saving, however they are not
suitable to all grammar types.

As an example, in the following the tabular Kasami
method is used, which is remarkable for its semplicity: it
works with context-free grammars, previously reduced to
the Normal Chomsky Form.

S——

P —

Actually, some procedures use simplified context-free
grammars, based upon certain theorems, one of which
being the so called Chomsky’s Normal Form Theorem
(CNF): it states that a context free language may be
generated from a grammar, so that the production rules
shall have one of the following forms:

A—BC, B and C being non-terminal symbols

A —>a, a being a terminal symbol.

For instance, let us make up the CNF, starting with the
context-free grammar:

S — bA S — aB A —a
B — b A = aS B — 5§
A — bDAA B — uBB

Some well known algorithms may be used to convert a
general context free grammar into a Normal Form
according to Chomsky.

Rules A — aand B — b should first be available in the
canonical form. No rule exist in the foom C — D, so
(non terminal) variables can be directly substituted to
terminal symbols, the first rewriting rule being thus
substituted by both rules:

S = CA C] — b

Therefore, the following substitutions take place:

A— aS with A — C-S Cy = a,
S —- aB with S —» C,B C, = a
A— DAAA with A — CAA C; = b
B— BS with B — (S C5 = b
B— «BB with B - C6BB C6 — «
At last:

A — CAA, with A — C;D; and
B - CBB,withB — CD. and D, — BB

Once a context free garmmar has been transformed into
its. Chomsky's normal forma. Kasami's table can be
assembled, so that one can decide whether a string
belongs to the said grammar.
Be w= aja,....a, a string whose pertinence to a given
gramamr is to be tested, the grammar being already
reduced to the CNF.
The algorithm is basically a triangular parsing table,
whose elements are t; for | <i<ne | <j<n-i+]. Every
lj should have a value being a sub-set of N. The non
terminal symbol shall be into t; if, and only if:
A~ &@-y...a;4.,. The string shall belong to the said
language just in case S shall be found into t,,.
The table is assembled as follows:
® onestates ;=AIfA - o
" one states t; =A even for a single k, such that
b<k<j,if A— BCis to be found in P, having B
present in ty, and C in tiy 4.

Also, let us have the grammar;

"

S = AB,S — BC
A — BA, A = ¢
B—-CC,B—b
C — AB,C = «

and the baaba string.
The table which allows state whether the string belongs to
the language generated by the said grammar is as follows:

i

_ —>
1B AC AC B AC
l S,A B S8.C S,A

0 B B

0 S,A,C

S.AC

Since § belongs to the case t;5, we may state that the
string baaba is generated by the said grammar.

4. Application test

In order to evaluate how well such approach could be
applied to the automatic interpretation of images
(possibly for cartographic upgrading purposes or GIS
geometric query) preliminary tests have been carried out
onto simple geometric images.

It is here shown an example addressed to draft a possible
operational path for Parsing based pattern recognition of
simple geometric entities.

An appropriate test image has been created showing three
different geometric figures: a rectangle, a scalene triangle
and a equilateral triangle. The goal is to verify if the
implemented grammar could correctly decide if one
figure is or not an equilateral triangle.

The recognition process goes on in the following way:

» apreliminary identification, based on
radiometric/spectral discriminants, of the pixels of
the image probably belonging to the searched
objects is firstly carried out;

» the selected pixels are then grouped in different
distinct geometric entities using neighbourhood and
region growing criteria (different colors in the image
below);

\4

O

Fig. 1 Test image and polygon grouped pixels image.

» for each entity a frame window is clipped from the
original image and a Férstner filtering and
thresholding algorithm is applied in order to select
pixels most probably representing the vertices of the
figure which has to be recognized:;

» assuming that figures are closed polygons vertices
coordinates are used to define length and direction of the
connecting lines. These are the geometric primitives used
in the parsing grammar. A simple translation from
numbers to letters (defined when grammar has been
defined) allow to transfer information to the parsing
engine algorithm which has to decide if the object
belongs or not to the defined grammar, that is if that
polygon is or not an equilateral triangle.
All these steps have been implemented using the IDL
programming language. We do not intended to deeply
describe well known image processing algorithms.
Otherwise, we care to briefly describe how the parsing
algorithm works. It has firstly to be structured, defi mning
the deciding grammar. This is a static part of the
program; in fact ,once defined, it never changes during
the recognizing process. Changing grammar means to
change the program text. In the future we intend to define
a standard text file the user can fill off-line to define the
different grammars he wants to use. Such file could be
directly be read by the program while executing.
Grammar has been structured as a matrix, with a column
number equal to the number of the generic values A, and

with a row number equal to the maximum number of

values (terminal and non) that each generic value A; can
assume. Each generic value A, (first line) determines its
own column with the possible values it can assume.
Terminal values are listed in the last line. The matrix is a
sparse one.

The program reads the string corresponding to the
translation of the geometric primitives in characters and it
automatically generates the Kasami table for that string.
This table size obviously depends on the stringth length.
Strings belong to the grammar if S can be found in the
last row, first column of the Kasami table,

Used grammar is a context-free one and it is suitable for
the recognition of different size equilateral triangles:

S—>8A|C A]‘—)E!AIC Bj—)bBi
A;—b Ag—)ﬂB;C B,—b
A,—aB.C|B;—bB, |C—ec

The terminal values a, b and ¢ represent the following
primitives :

T

a b c

Such grammar reduced to the Chomsky Normal Form can
be defined as follows :

S—)A;A_; A;—)AIC A;-—)a

A|—=AA; A5—>A3C Bg—)B4B|

B4—>b A;—)b B_; Ag—)A;Ah
Aﬁ‘-)B_;C. B]—)b A]'—>A3A7 A7—)'B2C
B;—B,B; C—ec

It has been verified that the program can correctly label
as ‘equilateral triangles’ the ones corresponding to the
strings w ="abc” and y ="aabbcc’’; while it Jabels w =
“aba’ and y ="aabbca” as ‘not —equilateral triangles”.

5. Forecasts
Languages used 1o describe noisy and distorted patterns
are often ambiguous: one string or pattern can be
generated by more than one language, so patterns
belonging to different classes may have the same
description, but with different probabilities of occurrence
(Fu,1982)
Also, a pattern grammar may generateé some sfrings
which are unwanted. Context-free grammars and also
transformational grammars can represent the phrase
structure of a language, however they are not able to cope
with the real relative frequency or likelihood of a phrase.
The following different approaches have been proposed:

= approximation

* transformational grammars

= stochastic grammars

= similarity and error-correcting parsing
The use of approximation reduces the effect of noise and
distortion at the preprocessing and primitive extraction
stage.
The second approach defines the relations between the
noisy pattern and the corresponding noise-free pattern by
a transformational grammar.
When a nosy pattern has two or more structural
descriptions (it is accepted by two or more different
pattern grammars), it is proper to use stochaslic
grammars: to each production rule of the grammar is
assigned a probability of selection, a number between one
and zero. During the derivation process, productions are
selected for rewriting according to their assigned
probabilities: each string of the language has a probability
of occurrence computed as the product of the
probabilities of the rules in its derivation.
When a string has two or more parses, we can use the
more probable parse as a descarptlon of the string
(pattern): the most probable parse is that according to
which the generated string has the highest probability.
However, what we already know about probable
occurrence plays a meaningful role. The parsers are made
up according to a likelihood criterion. However, parsers
may also be built according to a further criterion, i.e. the
Bayes’s theorem.
In this case, some utter a priori information is required
about the starting probability to deal with one class of
patterns or another one.
When a distorted pattern cannot be accepted by any
grammar, an error-correcting parsing, based upon a
similarity criterion, can be used.
The above said test is the use of a normal context free
grammar over an equilateral triangle, that is a well
designed specimen,.
We mean in the next future to test a badly designed
specimen either by proper use of a normal grammar afier
a pre-treatment of the specnmen or usmg from the start

the correspondings stochastic context free grammar: a
final comparison of the results will prove which is the
best.
Furthermore, once stated whether to use a stochastic
grammar, one should choice the grammar type.
As already said, in GIS environment, the problem is the
reconnaissance of simple recursive features. Also the type
of the parsing algorithm is important for correct
operation.
A way of specifying a language is in terms of the strings
that are accepted by a recognition device. The simplest
recognizer is the finite-state automaton, which can accept
languages produced by finite state grammars (Aho,1972).
A finite state automaton is a model composed of states,
wich are connected by state transitions: the states
correspond to the non-terminal symbols, and the state
transitions correspond to the production rules of the
equivalent regular (finite state) grammar.
Recognizers for 0,1 and 2 type languages and extensions
(like programmed languages) have been introduced.
The theory of stochastic automata define the class of
languages accepted by stochastic automata.
A stochastic finite state automaton is a five-tuple:
SA=(Z,Q,M, my, F)
where X is a finite set of input symbols for the strings (the
alphabet) , Q is a finite set of internal states, M is a
mapping of X into the set of nxn stochastic state
transition matrices, m, is the n-dimensional initial state
distribution vector and F is a finite set of final states.
The alphabet X is equal to the set of terminal symbols
Vi.; the state set Q is the union of the set of non terminals
Vn and the states T and R, state of termination and of
rejection respectively; m, is a row vector with the
component equal to | in the position of state S, the other
components equal to 0; the state transition matrices M are
formed on the basis of the stochastic productions; finally
anvector iy represents the final state.
Indeed the generation process from a stochastic finite
state grammar can be assimilated to a finite state Markov
process: Hidden Markov Models (HMMs) and stochastic
regular grammars are equivalent.
Stochastic context free grammars are more powerful in
order to describe languages: additional rules allow to
create nested, long-distance pairwise correlations
between terminal symbols.
Since context sensitive grammars prove uneasy to handle,
as too complex, we shall compare the first two types,
finite state and context free grammars, to check their cost
in terms of difficulty and computation time.
A variety of Cocke-Younger-Kasami (CYK) algorithm
allows to find out an optimal parse tree (alignment
problem) for stochastic context free grammars in
Chomsky Normal Form; the so called “inside algorithm”
allows to find out probability of a given sequence (string)
if the grammar is previously known.
The inside algorithm can be compared with the forward
algorithm for HMMs, the same as the CYK algorithm
can be compared with the Viterbi algorithm used for
HMMs.

47

References

Aho, A., Ullman, J., 1972. The theory of Parsing
Translation, and Compiling. Prentice Hall, Englewood
Cliffs.

Chomsky, N., 1957. Syntactic structures. Mouton, The
Hague

Fu, K., 1974, Syntactic Methods in Pattern Recognition.
Academic Press, New York

Markov, A., 1913. An example of statistical investigation
in the text of “Cugene Onegin”. Proceedings of the
Academy of Sciences of St. Petersburg

Sester, M., 1992. Automatic model acquisition by
Learning. IAPRS Vol. XXIX, Part B3.

