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In Braess paradox the addiction of an extra resource creates a social dilemma in which the individual rationality leads to collective
irrationality. In the literature, the dynamics has been analyzedwhen considering impulsive commuters, i.e., those who switch choice
regardless of the actual difference between costs. We analyze a dynamical version of the paradox with nonimpulsive commuters,
who change road proportionally to the cost difference. When only two roads are available, we provide a rigorous proof of the
existence of a unique fixed point showing that it is globally attracting even if locally unstable. When a new road is added the system
becomes discontinuous and two-dimensional.We prove that still a unique fixed point exists, and its global attractivity is numerically
evidenced, also when the fixed point is locally unstable. Our analysis adds a new insight in the understanding of dynamics in social
dilemma.

1. Introduction

Assume that two different points of a network—an origin and
a destination—are connected by two possible roads only.The
Braess paradox states that, under specific conditions, adding
a third road to the network decreases the efficiency of the
network. This phenomenon is known in the transportation
field andmore general scientific literature (see [1–10]). Braess’
paradox occurs because commuters try to minimize their
own travel time ignoring the effect of their decisions on other
commuters on the network. As a result, the total travel time
may increase following an expansion of the network; in fact,
even if some commuters are better off using the new link, they
contribute to increase the congestion for other commuters.

The theoretical literature of the Braess paradox is partic-
ularly productive, especially in transportation, communica-
tion, and computer science (far from being exhaustive, see,
e.g., [10, 11]). Almost all the existing works have considered
the basic network similar to the one presented in this paper,
with the addition of a single link. Notably, [12] proposes

a broader class of Braess graphs. A measure of the robustness
of the dynamic network considering the influence of the
flow on other links when certain component (node or link)
is removed can be found in [13]. The empirical literature
provides evidence in support of the paradox. For example,
in [14] examples are reported that occurred on a modeled
network of the city ofWinnipeg, while [15] focus on a portion
of the Boston road network. The experimental works are
interested in studying the occurrence of the paradox in a
controlled setting (see, e.g., [16–20]), not only in basic but
also in augmented networks.This literature provides evidence
in strong support of the paradox in some cases (see [18]),
while statistically significant, but weaker support in some
other cases (see [16, 17, 19, 20]). A comparison of public versus
private monitoring using the same participants is performed
in [21] to investigate how the type of monitoring affects route
choice. Interest in possible behaviors and composition of
the population facing the basic network can be found in
[22] which analyze the data gathered from the observation
of an experiment with human participants, codes artificial
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behaviors emerged by mean of grounded theory, and uses
ABM simulations. For a review on ABM with special focus
on spacial interactions and networks see [23].

The paradox has also been presented in a dynamic game
framework. A discrete time dynamic population model with
social externalities and two available choices is studied in [24]
simulating an adaptive adjustment process, and in particular
with impulsive commuters in [25].

Following the clinical psychology literature (see [26]),
impulsive commuters have been introduced in the analysis of
binary choices with externalities in [25, 27] when considering
commuters whose switching rate only depends on the sign
of the difference between payoffs, no matter how much they
differ. This approach has been used to consider choices both
in small and in large groups in [28] and also when consid-
ering the introduction of a third choice which dramatically
changes the dynamics in terms of complexity (as analyzed in
[29]).

Analyzing the Braess paradox in terms of a ternary choice
game shows new interesting dynamical characteristics that
are investigated in [30], with a particular interest in the
coexistence of several equilibria. Nevertheless, as illustrated
in [22, 31], considering only impulsive commuters is not suffi-
cient to describe the dynamics observed in experiments with
human participants. Furthermore, as impulsive commuters
consider only the sign and not the size of difference between
costs, the population dynamics does not depend on the cost
functions as long as the indifference point remains the same.
In this paper, we consider a different behavior suggested by
AmnonRapoport (We are grateful to him for this helpful sug-
gestion.) and which was used in [22] for artificial commuters.
Although the full analysis of a homogenous—yet different—
population seems to provide a limited contribution, it may be
a step forward to analyze the aggregate decision behavior in
social dilemmas. In fact, in order to analyze heterogeneous
populations, it is important to well understand the dynamics
properties of component behaviors. In particular, we consider
commuters which are concerned not only about the sign
difference in payoffs but also on the relative difference. This
kind of behavior is similar to the one considered in [32],
where the propensity to switch choice is modulated by the
difference between payoffs. Unlike the impulsive adjustment
process, which makes the commuters change their choice as
soon as a better choice occurs regardless of the difference,
we consider a decision strategy which prescribes a change
to the best available choice proportionally to the reported
difference. Intuitively, this strategy seems to be more robust.
The main result of the present work is that it is in fact robust.
By contrast to the strategy considered in [30], whichmay lead
to a stable cycle of any period, the strategy considered in this
paper leads to a globally attracting fixed point. Depending
on the parameters, this unique fixed point may be locally
stable or unstable. However, the trajectories are convergent,
in a few steps, to the fixed point. This result is rigorously
proved for the case of a binary choice problem. For the
ternary choice problem an analogous result is evidenced as
well.

The plan of the work is as follows. In Section 2 the
formalization of the dynamic model is reported. Section 2.1

includes the detailed description of the case with only two
roads, which is represented by a one-dimensional piecewise
smooth continuous map. We prove the existence of a unique
fixed point, which may be locally stable or unstable in one
partition. We prove that in any case it is globally attracting,
that is, all the trajectories are ultimately converging to the
fixed point. The case extended to three roads is considered
in Section 3 and it is reduced to a two-dimensional piecewise
smooth discontinuousmap.We prove the existence of a unique
fixed point, which may be locally attracting or not. We have
only numerical evidence that also in this more general case,
the fixed point is globally attracting. This can be rigorously
proved for the particular cases in which the fixed point
belongs to the boundaries of the domain of interest. The last
section is devoted to the conclusions.

2. The Dynamic Model with Two Roads

The Braess paradox can be illustrated by Figure 1 as follows.
Assume there is a unitary mass of commuters from start (𝑆)
to end (𝐸) and there are two roads: one passing through left
(𝐿) and the other through right (𝑅). The cost of each road is
given by the sumof the time spent along each segment. In this
network, segments 𝑆-𝑅 and 𝐿-𝐸 do not depend on traffic and
they cost 𝑎

𝐿
and 𝑎
𝑅
, respectively. On the contrary, time spent

along segments 𝑆-𝐿 and 𝑅-𝐸 is proportional to the number
of travellers and therefore, they cost 𝑏

𝐿
(1 − 𝑥) and 𝑏

𝑅
𝑥, where

𝑥 ∈ [0, 1] is the fraction of the population using segment𝑅-𝐸.
At the Nash equilibrium commuters are distributed in such a
way that both roads (𝑆-𝐿-𝐸 and 𝑆-𝑅-𝐸) have equal cos;, that
is, a fraction (𝑎

𝑅
+𝑏
𝑅
−𝑎
𝐿
)/(𝑏
𝐿
+𝑏
𝑅
) of commuters will choose

𝑆-𝐿-𝐸 and a fraction (𝑎
𝐿
+ 𝑏
𝐿
− 𝑎
𝑅
)/(𝑏
𝐿
+ 𝑏
𝑅
) will choose 𝑆-𝑅-

𝐸. For example, assume as in [22] that 𝑎 := 𝑎
𝐿
= 𝑎
𝑅
= 27

and 𝑏 := 𝑏
𝐿
= 𝑏
𝑅
= 24. Then, the symmetry of costs makes

the population to split exactly into two equal fractions at the
Nash equilibrium ((𝑎

𝑅
+ 𝑏
𝑅
− 𝑎
𝐿
)/(𝑏
𝐿
+ 𝑏
𝑅
) = 1/2), so that

the travel time for both roads is 24(1/2) + 27 = 39. Now
we assume that a very fast road is built connecting 𝐿 to 𝑅
at cost 𝑑 = 3. As we will see in Section 3, at the new Nash
equilibrium commuters are distributed in such a way that the
three roads (𝑆-𝐿-𝐸, 𝑆-𝐿-𝑅-𝐸, and 𝑆-𝑅-𝐸) have equal cost; that
is, a fraction (𝑑+𝑏

𝑅
−𝑎
𝐿
)/𝑏
𝑅
of commuters will choose 𝑆-𝐿-𝐸,

a fraction (𝑑 + 𝑏
𝐿
−𝑎
𝑅
)/𝑏
𝐿
will choose 𝑆-𝑅-𝐸, and the rest will

choose 𝑆-𝐿-𝑅-𝐸. In the numerical example, this means that
the entire population will choose 𝑆-𝐿-𝑅-𝐸 (since in the other
two roads the fraction of commuter is (𝑑 + 𝑏 − 𝑎)/𝑏 = 0) with
a total travel cost of 𝑏

𝐿
+𝑏
𝑅
+𝑑 = 51. According to [19], this is

considered paradoxical as it shows how adding extra capacity
to a network can reduce overall performance. More correctly,
it is just counterintuitive and the mathematical reason is
that there is a distinction between Nash equilibria and
optima.

We consider the original network first made of two roads
only (i.e., without the link 𝐿-𝑅) as in Figure 1(a).

As in [24] this process can be modeled as a discrete time
dynamical system considering commuters facing a binary
choice between paths 𝑆-𝐿-𝐸 and 𝑆-𝑅-𝐸. For the sake of brevity
these paths will be denoted as 𝐿 and 𝑅, respectively. To this
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Figure 1: Basic network with the addition of the link from 𝐿 to 𝑅 in (b) and without in (a).

purpose, assume the set of commuters is normalized to the
interval [0, 1]. At each time period 𝑡 ≥ 0, 𝑥𝑅

𝑡
≥ 0 indicates the

fraction of commuters choosing 𝑅 and 𝑥𝐿
𝑡
≥ 0 the fraction of

those choosing 𝐿, given by 𝑥𝐿
𝑡
= 1 − 𝑥

𝑅

𝑡
. Therefore, the travel

times are given by

𝐿 = 𝑎
𝐿
+ 𝑏
𝐿
𝑥
𝐿
,

𝑅 = 𝑎
𝑅
+ 𝑏
𝑅
𝑥
𝑅
,

(1)

where 𝑎
𝐿
, 𝑎
𝑅
, 𝑏
𝐿
, 𝑏
𝑅
> 0 and can be written as

𝐿 (𝑥
𝑅
) = 𝑎
𝐿
+ 𝑏
𝐿
(1 − 𝑥

𝑅
) ,

𝑅 (𝑥
𝑅
) = 𝑎
𝑅
+ 𝑏
𝑅
𝑥
𝑅
.

(2)

This way, the travel times on the two roads are equal (and
the commuters are indifferent) when 𝐿(𝑥𝑅) = 𝑅(𝑥𝑅); that is,
when 𝑥𝑅 = 𝑥∗, where

𝑥
∗
=
𝑎
𝐿
+ 𝑏
𝐿
− 𝑎
𝑅

𝑏
𝐿
+ 𝑏
𝑅

. (3)

We say that the threshold 𝑥∗ is feasible when 𝑥∗ ∈ [0, 1].
However, 𝑥∗ = 0 (resp., 𝑥∗ = 1) clearly corresponds to the
case in which the whole population chooses action 𝐿 (resp.,
𝑅), and we shall see that this is indeed satisfied in the model
described in the next subsection. We obtain the following
constraints on the parameters in order to have 𝑥∗ ∈ (0, 1),
which we assume henceforth

𝑘
1
= 𝑎
𝐿
+ 𝑏
𝐿
− 𝑎
𝑅
> 0,

𝑘
2
= 𝑎
𝑅
+ 𝑏
𝑅
− 𝑎
𝐿
> 0.

(4)

2.1. The One-Dimensional PWS Map and Its Dynamics.
Commuters are homogeneous and at each period decide
their strategy considering the previous period travel costs
assuming they will remain the same. At time 𝑡+1 the fraction

𝑥
𝑅

𝑡
is common knowledge and each commuter observes the

respective travel costs either 𝐿(𝑥𝑅
𝑡
) or 𝑅(𝑥𝑅

𝑡
), depending on

their choice. The commuters decide their future action at
time 𝑡 + 1 comparing the costs 𝐿(𝑥𝑅

𝑡
) and 𝑅(𝑥𝑅

𝑡
). We assume

the commuters are nonimpulsive and myopically minimize
their costs. That is, they change strategy proportionally to
the difference between their chosen road and the best one,
where the best road is the fastest. We introduce parameters
𝛿
𝐿
∈ (0, 1) and 𝛿

𝑅
∈ (0, 1) as switching rates, that is,

the propensity for moving either to 𝐿 or to 𝑅, respectively.
With nonimpulsive commuters these rates are adjusted by the
normalized difference of travel costs. The difference 𝐿(𝑥𝑅

𝑡
) −

𝑅(𝑥
𝑅

𝑡
) is normalized by the largest value of this difference,

denoted by 𝑘
1
and obtained in correspondence of 𝑥𝑅

𝑡
= 0.

Therefore we have 𝑘
1
= 𝐿(0) − 𝑅(0) = 𝑎

𝐿
+ 𝑏
𝐿
− 𝑎
𝑅
as

already introduced in (4). Thus commuters are switching
road proportionally to the side of the payoff difference. Sim-
ilarly we can give a reason with respect to the difference
𝑅(𝑥
𝑅

𝑡
) − 𝐿(𝑥

𝑅

𝑡
) to get a normalizing value. Now the largest

value is obtained in correspondence of 𝑥𝐿
𝑡
= 0; that is, 𝑥𝑅

𝑡
= 1,

andwe get 𝑘
2
= 𝑅(1)−𝐿(1) = 𝑎

𝑅
+𝑏
𝑅
−𝑎
𝐿
as already introduced

in (4).
The resulting dynamics is 𝑥𝑅

𝑡+1
= 𝐹(𝑥

𝑅

𝑡
) with 𝑥𝑅

𝑡
∈ [0, 1]

and the map 𝐹 : [0, 1] → [0, 1] is defined as

𝐹 (𝑥
𝑅
)

:=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑓
𝐿
(𝑥
𝑅
)

= 𝑥
𝑅
+ 𝛿
𝑅

𝐿 (𝑥
𝑅
) − 𝑅 (𝑥

𝑅
)

𝑘
1

(1 − 𝑥
𝑅
)

if 0 ≤ 𝑥𝑅 ≤ 𝑥∗

𝑓
𝑅
(𝑥
𝑅
)

= 𝑥
𝑅
− 𝛿
𝐿

𝑅 (𝑥
𝑅
) − 𝐿 (𝑥

𝑅
)

𝑘
2

𝑥
𝑅 if 𝑥∗ ≤ 𝑥𝑅 ≤ 1.

(5)
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Substituting from (2) and rearranging we obtain

𝐹 (𝑥
𝑅
) :=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑓
𝐿
(𝑥
𝑅
) = 𝛿
𝑅
+ (1 − 𝛿

𝑅
− 𝛿
𝑅

𝑏
𝐿
+ 𝑏
𝑅

𝑘
1

)𝑥
𝑅

+𝛿
𝑅

𝑏
𝐿
+ 𝑏
𝑅

𝑘
1

(𝑥
𝑅
)
2

if 0 ≤ 𝑥𝑅 ≤ 𝑥∗

𝑓
𝑅
(𝑥
𝑅
) = (1 + 𝛿

𝐿

𝑘
1

𝑘
2

)𝑥
𝑅

−𝛿
𝐿

𝑏
𝐿
+ 𝑏
𝑅

𝑘
2

(𝑥
𝑅
)
2

if 𝑥∗ ≤ 𝑥𝑅 ≤ 1.

(6)

From the definition of 𝑥∗ given in (3), it can also be written
as

𝑥
∗
=
𝑎
𝐿
+ 𝑏
𝐿
− 𝑎
𝑅

𝑏
𝐿
+ 𝑏
𝑅

=
𝑘
1

𝑏
𝐿
+ 𝑏
𝑅

=
𝑘
1

𝑘
1
+ 𝑘
2

, (7)

at which we have 𝐿(𝑥∗) = 𝑅(𝑥∗), it is also 𝑓
𝐿
(𝑥
∗
) = 𝑓
𝑅
(𝑥
∗
)

and thus 𝐹 is continuous in 𝑥∗ and it is a fixed point as
𝐹(𝑥
∗
) = 𝑥
∗. We have the following proposition.

Proposition 1. Map 𝐹 is continuous in [0, 1] and under the
conditions given in (4) 𝑥∗ = 𝑘

1
/(𝑏
𝐿
+ 𝑏
𝑅
) ∈ (0, 1) is the unique

fixed point.

Proof. Only the uniqueness is left to prove. The equation
𝑓
𝐿
(𝑥
𝑅
) = 𝑥

𝑅 has two solutions: 𝑥𝑅 = 𝑥∗ and 𝑥𝑅 = 1 which
is larger than 𝑥∗ and thus a virtual fixed point. The equation
𝑓
𝑅
(𝑥
𝑅
) = 𝑥

𝑅 has two solutions: 𝑥𝑅 = 𝑥∗ and 𝑥𝑅 = 0 which
is smaller than 𝑥∗ and thus a virtual fixed point. Thus, the
unique solution is 𝑥𝑅 = 𝑥∗.

Clearly the fixed point may be locally stable or instable,
depending on the slopes of the functions on the right and left
sides of 𝑥∗. However, we shall see that in any case it is globally
attracting.That is, any i.c. in the interval [0, 1] has a trajectory
which converges to 𝑥∗.

Proposition 2. The fixed point 𝑥∗ = 𝑘
1
/(𝑏
𝐿
+ 𝑏
𝑅
) ∈ (0, 1) is

globally attracting.

Proof. Even if 𝐹(𝑥𝑅) is not smooth in its fixed point (as
indeed 𝑥∗ is a kink point of this map), the two components
𝑓
𝐿
(𝑥
𝑅
) and 𝑓

𝑅
(𝑥
𝑅
) are smooth in 𝑥∗ so that the left and right

side derivatives of 𝐹(𝑥𝑅) in 𝑥∗ are well defined: 𝐹󸀠
−
(𝑥
∗
) =

lim
𝑥
𝑅
→𝑥
∗−𝐹
󸀠
(𝑥
𝑅
) = 𝑓
󸀠

𝐿
(𝑥
∗
) and𝐹󸀠

+
(𝑥
∗
) = lim

𝑥
𝑅
→𝑥
∗+𝐹
󸀠
(𝑥
𝑅
) =

𝑓
󸀠

𝑅
(𝑥
∗
).

We have

𝑓
󸀠

𝐿
(𝑥
𝑅
) = (1 − 𝛿

𝑅
− 𝛿
𝑅

𝑏
𝐿
+ 𝑏
𝑅

𝑘
1

) + 2𝛿
𝑅

𝑏
𝐿
+ 𝑏
𝑅

𝑘
1

𝑥
𝑅
, (8)

𝑓
󸀠

𝐿
(𝑥
∗
) = 1 − 𝛿

𝑅

𝑘
2

𝑘
1

, (9)

while

𝑓
󸀠

𝑅
(𝑥
𝑅
) = (1 + 𝛿

𝐿

𝑘
1

𝑘
2

) − 2𝛿
𝐿

𝑏
𝐿
+ 𝑏
𝑅

𝑘
2

𝑥
𝑅
, (10)

𝑓
󸀠

𝑅
(𝑥
∗
) = 1 − 𝛿

𝐿

𝑘
1

𝑘
2

. (11)

From

𝑓
󸀠󸀠

𝐿
(𝑥
𝑅
) = 2𝛿

𝑅

𝑏
𝐿
+ 𝑏
𝑅

𝑘
1

> 0, 𝑓
󸀠󸀠

𝑅
(𝑥
𝑅
) = −2𝛿

𝐿

𝑏
𝐿
+ 𝑏
𝑅

𝑘
2

< 0

(12)

we have that on the left side of the fixed point the function is
convex, while on the right side of the fixed point the function
is concave.

Notice that 𝑘
2
/𝑘
1
only depends on 𝑎

𝐿
, 𝑏
𝐿
, 𝑎
𝑅
, 𝑏
𝑅
, and it is

positive under our assumptions. Depending on the values of
the ratio 𝑘

2
/𝑘
1
we can classify the right/left stability of the

fixed point 𝑥∗. From (9) we clearly have always 𝑓󸀠
𝐿
(𝑥
∗
) < 1;

thus the stability/instability on the left side of the fixed point
depends on the condition 𝑓󸀠

𝐿
(𝑥
∗
) > −1, which holds if and

only if

𝑘
2

𝑘
1

<
2

𝛿
𝑅

. (13)

Similarly, from (11) we clearly have always 𝑓󸀠
𝑅
(𝑥
∗
) < 1, and

the stability/instability on the right side of the fixed point
depends on the condition 𝑓󸀠

𝑅
(𝑥
∗
) > −1, which holds if and

only if

𝑘
2

𝑘
1

>
𝛿
𝐿

2
. (14)

And clearly we have the following sequence of inequalities (to
be used below):

0 <
𝛿
𝐿

2
< 𝛿
𝐿
< 1 <

1

𝛿
𝑅

<
2

𝛿
𝑅

. (15)

To investigate the local stability of the fixed point we consider
three intervals for 𝑘

2
/𝑘
1
:

(i) 0 < 𝑘
2
/𝑘
1
≤ 𝛿
𝐿
/2

(ii) 𝛿
𝐿
/2 < 𝑘

2
/𝑘
1
< 2/𝛿

𝑅

(iii) 2/𝛿
𝑅
≤ 𝑘
2
/𝑘
1
.

In case (i) it is 𝑓󸀠
𝑅
(𝑥
∗
) ≤ −1, moreover, it is easy to see

that for any 𝑥𝑅 ∈ [𝑥∗, 1] it is 𝑓󸀠
𝑅
(𝑥
𝑅
) < 𝑓

󸀠

𝑅
(𝑥
∗
) and thus

the function on the right side of the fixed point is strictly
decreasing and expansive: each point on the right side of the
fixed point is mapped to the left side of the fixed point in one
iteration. While on the left side of the fixed point the convex
function 𝑓

𝐿
(𝑥
𝑅
) has 𝑓󸀠

𝐿
(𝑥
∗
) = 1 − 𝛿

𝑅
(𝑘
2
/𝑘
1
) > 0 (as this

holds for 𝑘
2
/𝑘
1
< 1/𝛿

𝑅
which is satisfied in this interval).This

implies that the point of local minimum on the left side, say
𝑥
𝑅

𝑙,𝑚
, is smaller than the fixed point, 𝑥𝑅

𝑙,𝑚
< 𝑥
∗. Then the fixed

point is unique and the map is a contraction in the interval
𝑊
𝑠

loc = [𝑥
𝑅

𝑙,𝑚
, 𝑥
∗
], and an absorbing interval which is mapped

into 𝑊𝑠loc in one iteration is given by 𝐽 = [𝑥𝑅
𝑙,𝑚
, 𝑓
−1

𝑅
(𝑥
𝑅

𝑙,𝑚
)]

when 𝑓
𝑅
(1) = 1 − 𝛿

𝐿
< 𝑥
𝑅

𝑙,𝑚
, or 𝐽 = [𝑥𝑅

𝑙,𝑚
, 1] when 𝑓

𝑅
(1) =

1 − 𝛿
𝐿
≥ 𝑥
𝑅

𝑙,𝑚
. Any initial condition belonging to [0, 1] \ 𝐽

has a trajectory which is mapped into 𝐽 in a finite number of
iterations.Thus𝑥∗ is globally attracting. An example is shown
in Figure 2(a).

Similarly we can reason when 𝑘
2
/𝑘
1
belongs to the third

interval. In fact, in case (iii) it is 𝑓󸀠
𝐿
(𝑥
∗
) ≤ −1, moreover, it is
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Figure 2: Qualitative shapes of the map. In (a) case (i), when 0 < 𝑘
2
/𝑘
1
≤ 𝛿
𝐿
/2, the fixed point is locally unstable on the right side. In (b)

case (iii), when 2/𝛿
𝑅
≤ 𝑘
2
/𝑘
1
, the fixed point is locally unstable on the left side.
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Figure 3: Qualitative shapes of the map in case (ii), when 𝛿
𝐿
/2 < 𝑘

2
/𝑘
1
≤ 2/𝛿

𝑅
and the fixed point is locally stable on both sides.

easy to see that for any 𝑥𝑅 ∈ [0, 𝑥∗] it is 𝑓󸀠
𝐿
(𝑥
∗
) < 𝑓
󸀠

𝐿
(𝑥
∗
) and

thus the function on the left side of the fixed point is strictly
decreasing and expansive: each point on the left side of the
fixed point is mapped to the right side of the fixed point in
one iteration. While on the right side of the fixed point the
concave function 𝑓

𝑅
(𝑥
𝑅
) has 𝑓󸀠

𝑅
(𝑥
∗
) = 1 − 𝛿

𝐿
(𝑘
1
/𝑘
2
) > 0 (as

this holds for 𝑘
2
/𝑘
1
> 𝛿
𝐿
which is satisfied in this interval).

This implies that the point of local maximum on the right
side, say 𝑥𝑅

𝑟,𝑀
, is larger than the fixed point, 𝑥𝑅

𝑟,𝑀
> 𝑥
∗. Then

the map is a contraction in the interval 𝑊𝑠loc = [𝑥
∗
, 𝑥
𝑅

𝑟,𝑀
],

and an absorbing interval which is mapped into𝑊𝑠loc in one
iteration is given by 𝐽 = [𝑓−1

𝐿
(𝑥
𝑅

𝑟,𝑀
), 𝑥
𝑅

𝑟,𝑀
] when 𝑓

𝐿
(0) =

𝛿
𝑅
> 𝑥
𝑅

𝑟,𝑀
, or 𝐽 = [0, 𝑥𝑅

𝑟,𝑀
] when 𝑓

𝐿
(0) = 𝛿

𝑅
≤ 𝑥
𝑅

𝑟,𝑀
. Any

initial condition belonging to [0, 1] \ 𝐽 has a trajectory which
is mapped into 𝐽 in a finite number of iterations. Thus 𝑥∗ is
globally attracting. An example is shown in Figure 2(b).

When 𝑘
2
/𝑘
1
belongs to the interval in (ii), 𝛿

𝐿
/2 < 𝑘

2
/𝑘
1
<

2/𝛿
𝑅
, we have that the fixed point is locally stable on both

sides. Moreover, inside this interval we can distinguish three
regions, as already showed in (15), that is:

(a) 𝛿
𝐿
/2 < 𝑘

2
/𝑘
1
≤ 𝛿
𝐿
with 0 < 𝑓󸀠

𝐿
(𝑥
∗
) < 1 and

−1 < 𝑓
󸀠

𝑅
(𝑥
∗
) < 0, as in Figure 3(a)

(b) 𝛿
𝐿
< 𝑘
2
/𝑘
1
< 1/𝛿

𝑅
with 0 < 𝑓󸀠

𝐿
(𝑥
∗
) < 1 and

0 < 𝑓
󸀠

𝑅
(𝑥
∗
) < 1, as in Figure 3(b)
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(c) 1/𝛿
𝑅
≤ 𝑘
2
/𝑘
1
< 2/𝛿

𝑅
with −1 < 𝑓󸀠

𝐿
(𝑥
∗
) < 0 and

0 < 𝑓
󸀠

𝑅
(𝑥
∗
) < 1, as in Figure 3(c).

In case (a) we have that the point of local minimum on
the left side, say 𝑥𝑅

𝑙,𝑚
, is smaller than the fixed point,𝑥𝑅

𝑙,𝑚
< 𝑥
∗.

Then themap is a contraction in the interval𝑊𝑠loc = [𝑥
𝑅

𝑙,𝑚
, 𝑥
∗
],

and on the right side the map is decreasing, so that an
absorbing interval which is mapped into𝑊𝑠loc in one iteration
is given by 𝐽 = [𝑥𝑅

𝑙,𝑚
, 𝑓
−1

𝑅
(𝑥
𝑅

𝑙,𝑚
)]when𝑓

𝑅
(1) = 1−𝛿

𝐿
< 𝑥
𝑅

𝑙,𝑚
, or

𝐽 = [𝑥
𝑅

𝑙,𝑚
, 1]when𝑓

𝑅
(1) = 1−𝛿

𝐿
≥ 𝑥
𝑅

𝑙,𝑚
. Any initial condition

belonging to [0, 1] \ 𝐽 has a trajectory which is mapped into 𝐽
in a finite number of iterations.Thus 𝑥∗ is globally attracting.

In case (c) we can reason similarly, we have that the point
of local maximum on the right side, say 𝑥𝑅

𝑟,𝑀
, is larger than

the fixed point, 𝑥𝑅
𝑟,𝑀
> 𝑥
∗. Then the map is a contraction in

the interval 𝑊𝑠loc = [𝑥
∗
, 𝑥
𝑅

𝑟,𝑀
], and on the left side the map

is decreasing, so that an absorbing interval which is mapped
into 𝑊𝑠loc in one iteration is given by 𝐽 = [𝑓−1

𝐿
(𝑥
𝑅

𝑟,𝑀
), 𝑥
𝑅

𝑟,𝑀
]

when 𝑓
𝐿
(0) = 𝛿

𝑅
> 𝑥
𝑅

𝑟,𝑀
, or 𝐽 = [0, 𝑥𝑅

𝑟,𝑀
] when 𝑓

𝐿
(0) =

𝛿
𝑅
≤ 𝑥
𝑅

𝑟,𝑀
. Any initial condition belonging to [0, 1] \ 𝐽 has

a trajectory which is mapped into 𝐽 in a finite number of
iterations. Thus 𝑥∗ is globally attracting.

In case (b) we have that the point of local minimum on
the left side, say 𝑥𝑅

𝑙,𝑚
, is smaller than the fixed point, 𝑥𝑅

𝑙,𝑚
<

𝑥
∗ and also that the point of local maximum on the right

side, say 𝑥𝑅
𝑟,𝑀

, is larger than the fixed point, 𝑥𝑅
𝑟,𝑀
> 𝑥
∗.

Then the map is a contraction in the interval 𝑊𝑠loc =

[𝑥
𝑅

𝑙,𝑚
, 𝑥
𝑅

𝑟,𝑀
] which includes the fixed point, and an absorbing

interval which is mapped into𝑊𝑠loc in one iteration is given
by 𝐽 = [𝑓−1

𝐿
(𝑥
𝑅

𝑟,𝑀
), 𝑓
−1

𝑅
(𝑥
𝑅

𝑙,𝑚
)], or 𝐽 = [0, 𝑓−1

𝑅
(𝑥
𝑅

𝑙,𝑚
)] or 𝐽 =

[𝑓
−1

𝐿
(𝑥
𝑅

𝑟,𝑀
), 1] or [0, 1], depending under obvious conditions

on the values of 𝛿
𝐿
and 𝛿

𝑅
. When 𝐽 ⊂ [0, 1] then any initial

condition belonging to [0, 1] \ 𝐽 has a trajectory which is
mapped into 𝐽 in a finite number of iterations. Thus 𝑥∗ is
globally attracting.

We notice that in Proposition 2 we prove that when the
fixed point 𝑥∗ is internal to the interval [0, 1] then it is
globally attracting. Let us turn to comment the two extrema,
which occur when 𝑥∗ = 0 or 𝑥∗ = 1. These solutions clearly
exist and are also globally attracting. In fact, the case 𝑥∗ = 0
corresponds to 𝑘

1
= 𝐿(0)−𝑅(0) = 𝑎

𝐿
+𝑏
𝐿
−𝑎
𝑅
= 0 and only the

function 𝑓
𝑅
(𝑥
𝑅
) is applied in the interval [0, 1] and from the

concavity of the function we have that this fixed point is glob-
ally attracting even if the eigenvalue is equal to 1. The other
case 𝑥∗ = 1 corresponds to 𝑘

2
= 𝑅(1)−𝐿(1) = 𝑎

𝑅
+𝑏
𝑅
−𝑎
𝐿
= 0,

and only the function 𝑓
𝐿
(𝑥
𝑅
) is applied in the interval [0, 1]

and from the convexity of the function we have that this fixed
point is globally attracting even if the eigenvalue is equal to 1.

3. The Dynamics in the Expanded
Network with Three Roads

As it is well known, the Braess paradox introduces a new link
and shows how this opportunity worsens both the individual
and collective payoffs. This link introduces a new alternative:
now the commuters are facing three choices, where the new

one consists of path 𝑆-𝐿-𝑅-𝐸 (see Figure 1(b)), which will be
denoted as 𝑀 in the following. Models with three choices
were introduced in [29] as it concerns discrete time and [33]
as it concerns continuous time. In this paper we analyze the
dynamics when the travel time 𝑑 for the new resulting link
varies in a range that makes this link a dominant choice for
some values and a dominated choice for others. It is worth to
observe that in particular when the travel time on link 𝐿-𝑅 is
zero, the paradoxical result still holds.

Now assume that commuters switch roadwhenever travel
time has become larger; that is, the other road is less costly
and therefore more attractive. We indicate by 𝑥𝐿 ≥ 0 the
fraction of population choosing action 𝐿, by 𝑥𝑀 ≥ 0 the
fraction choosing action 𝑀, and by 𝑥𝑅 ≥ 0 the fraction
choosing action 𝑅, with the constraint 𝑥𝐿 + 𝑥𝑅 + 𝑥𝑀 = 1.
The travel times are given, respectively, as

𝐿 = 𝑎
𝐿
+ 𝑏
𝐿
(𝑥
𝐿
+ 𝑥
𝑀
) ,

𝑀 = 𝑏
𝐿
(𝑥
𝐿
+ 𝑥
𝑀
) + 𝑏
𝑅
(𝑥
𝑀
+ 𝑥
𝑅
) + 𝑑,

𝑅 = 𝑎
𝑅
+ 𝑏
𝑅
(𝑥
𝑀
+ 𝑥
𝑅
) .

(16)

By using the constraint let us define the fraction of population
choosing𝑀 as 𝑥𝑀 = 1 − 𝑥𝐿 − 𝑥𝑅 ≥ 0, so to consider only
two variables, x = (𝑥𝐿, 𝑥𝑅) ∈ R2

+
, and the phase space is the

triangle

𝐷
2
= {x = (𝑥𝐿, 𝑥𝑅) ∈ R2

+
: 0 ≤ 𝑥

𝐿
+ 𝑥
𝑅
≤ 1} . (17)

After substituting the expression of 𝑥𝑀 in the travel times we
get

𝐿 (x) = 𝑎𝐿 + 𝑏𝐿 (1 − 𝑥
𝑅
) ,

𝑀 (x) = 𝑏𝐿 (1 − 𝑥
𝑅
) + 𝑏
𝑅
(1 − 𝑥

𝐿
) + 𝑑,

𝑅 (x) = 𝑎𝑅 + 𝑏𝑅 (1 − 𝑥
𝐿
) .

(18)

The vertices of the phase space𝑃∗
𝐿
(1, 0),𝑃∗

𝑀
(0, 0), and𝑃∗

𝑅
(0, 1)

represent states in which the whole population chooses,
respectively, actions 𝐿,𝑀, and 𝑅.

Since commuters are interested in minimizing travel
time, we denote by 𝑅

𝐴
the region in which the choice 𝐴

(where𝐴 is 𝐿,𝑀, or 𝑅) is preferable. These regions are called
dominance regions of 𝐴. We have the following definition of
the dominance regions:

𝑅
𝐿
= {x ∈ 𝐷2 : 𝐿 (x) ≤ 𝑀 (x) , 𝐿 (x) ≤ 𝑅 (x)} ,

𝑅
𝑀
= {x ∈ 𝐷2 : 𝑀 (x) ≤ 𝐿 (x) , 𝑀 (x) ≤ 𝑅 (x)} ,

𝑅
𝑅
= {x ∈ 𝐷2 : 𝑅 (x) ≤ 𝐿 (x) , 𝑅 (x) ≤ 𝑀 (x)} .

(19)
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Figure 4: Dominance regions in the three choices network with different values of the cost parameter 𝑑 of the map F: at 𝑎
𝐿
= 27, 𝑏

𝐿
= 30,

𝑎
𝑅
= 18, 𝑏

𝑅
= 30 and (a) 𝑑 = 6, (b) 𝑑 = 3, (c) 𝑑 = 0.

By using the expressions in (18) we get the following defini-
tions for the regions

𝑅
𝐿
= {x ∈ 𝐷2 : 𝑥𝐿 ≤ 𝑥∗𝐿 ,

𝑎
𝐿
+ 𝑏
𝐿
(1 − 𝑥

𝑅
) ≤ 𝑎
𝑅
+ 𝑏
𝑅
(1 − 𝑥

𝐿
)} ,

𝑅
𝑀
= {x ∈ 𝐷2 : 𝑥𝐿 ≥ 𝑥∗𝐿, 𝑥𝑅 ≥ 𝑥∗𝑅} ,

𝑅
𝑅
= {x ∈ 𝐷2 : 𝑎

𝑅
+ 𝑏
𝑅
(1 − 𝑥

𝐿
) ≤ 𝑎
𝐿
+ 𝑏
𝐿
(1 − 𝑥

𝑅
) ,

𝑥
𝑅
≤ 𝑥
∗𝑅
} ,

(20)

where we have introduced

𝑥
∗𝐿
= 1 −

𝑎
𝐿
− 𝑑

𝑏
𝑅

=
𝑑 − 𝑎
𝐿
+ 𝑏
𝑅

𝑏
𝑅

,

𝑥
∗𝑅
= 1 −

𝑎
𝑅
− 𝑑

𝑏
𝐿

=
𝑑 − 𝑎
𝑅
+ 𝑏
𝐿

𝑏
𝐿

.

(21)

The boundaries of the three regions are given by segments of
straight lines of equations

𝑉
1
: 𝑥
𝐿
= 𝑥
∗𝐿
,

𝑉
2
: 𝑥
𝑅
= 𝑥
∗𝑅
,

𝑉
3
: 𝑎
𝐿
+ 𝑏
𝐿
(1 − 𝑥

𝑅
) = 𝑎
𝑅
+ 𝑏
𝑅
(1 − 𝑥

𝐿
) ,

(22)

and it is immediate to see that the point x∗ = (𝑥∗𝐿, 𝑥∗𝑅)
satisfies also the third equation; that is, it belongs to all the
three straight lines, x∗ ∈ 𝑉

𝑖
for 𝑖 = 1, 2, 3.

Using the geometric representation in the triangle 𝐷2
the dominance regions are illustrated in Figure 4 (via an
example) using different colors. Three cases are shown, for
different values of the parameter 𝑑, in order to illustrate how
the region𝑅

𝑀
depends on the parameters of the third branch.

The point x∗ = (𝑥∗𝐿, 𝑥∗𝑅) is the unique point on the
boundaries 𝑉

𝑖
of all the three regions. Thus for our model we

have to require 𝑥∗𝐿 ≥ 0, 𝑥∗𝑅 ≥ 0, and 𝑥∗𝐿 + 𝑥∗𝑅 ≤ 1, leading
to 𝑥∗𝑀 = 1 − 𝑥∗𝐿 − 𝑥∗𝑅. In order to have three regions in𝐷2

it must be 𝑥∗𝐿 > 0, 𝑥∗𝑅 > 0, and 𝑥∗𝐿 + 𝑥∗𝑅 < 1. The equality
in one of these three conditions implies the disappearance of
one region. For example, when 𝑥∗𝐿 = 0, then 0 ≤ 𝑥∗𝑅 ≤ 1
and 𝑥∗𝑀 = 1 − 𝑥∗𝑅, leaving only the two regions 𝑅

𝑅
and 𝑅

𝑀

and so on.
The conditions 𝑥∗𝐿 ≥ 0, 𝑥∗𝑅 ≥ 0, and 𝑥∗𝐿 + 𝑥∗𝑅 ≤ 1 lead

to the constraints that will be assumed satisfied henceforth:

0 ≤
𝑎
𝐿
− 𝑑

𝑏
𝑅

≤ 1, 0 ≤
𝑎
𝑅
− 𝑑

𝑏
𝐿

≤ 1,

𝑎
𝐿
− 𝑑

𝑏
𝑅

+
𝑎
𝑅
− 𝑑

𝑏
𝐿

≥ 1.

(23)

We notice that from the third condition in (23) we have the
values of 𝑑 for which the third region is really present in 𝐷2;
that is:

0 ≤ 𝑑 ≤
𝑎
𝐿
𝑏
𝐿
+ 𝑎
𝑅
𝑏
𝑅
− 𝑏
𝐿
𝑏
𝑅

𝑏
𝑅
+ 𝑏
𝐿

. (24)

Commuters are homogeneous and minimize their next
period travel cost. At time 𝑡+1 the vector x

𝑡
becomes common

knowledge, and each commuter can observe the travel costs
𝐿(x
𝑡
),𝑀(x

𝑡
), and 𝑅(x

𝑡
). We assume that if at time 𝑡 a fraction

𝑥
𝐿

𝑡
chooses path 𝐿, a fraction 𝑥𝑅

𝑡
chooses action 𝑅 and travel

costs are such that 𝑅(x
𝑡
) < 𝐿(x

𝑡
) and 𝑅(x

𝑡
) < 𝑀(x

𝑡
), then

both a fraction of the 𝑥𝐿
𝑡
commuters who chose action 𝐿 and

a fraction of the (1 − 𝑥𝐿
𝑡
− 𝑥
𝑅

𝑡
) commuters who chose action

𝑀 will switch to path 𝑅 in the next time period 𝑡 + 1. The
fraction of switching commuters is given by the switching
propensities 𝛿

𝐿
, 𝛿
𝑀
, 𝛿
𝑅
modulated by the relative differences

in payoffs. This happens whenever a path gives a smaller
travel cost. In other words, at any time 𝑡 all the commuters
decide their future action at time 𝑡 + 1 comparing the costs
𝐿(x
𝑡
),𝑀(x

𝑡
), and 𝑅(x

𝑡
). As in the one-dimensional case, here

also the differences of travel costs are normalized dividing
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each difference by the constants giving the related maximum
value, given in the different cases as follows:

𝑘
1
= max

x [
𝐿 (x) − 𝑅 (x)]

= [𝐿 (1, 0) − 𝑅 (1, 0)] = 𝑎𝐿 + 𝑏𝐿 − 𝑎𝑅,

𝑘
2
= max

x [
𝑅 (x) − 𝐿 (x)]

= [𝑅 (0, 1) − 𝐿 (0, 1)] = 𝑎𝑅 + 𝑏𝑅 − 𝑎𝐿,

𝑘
3
= max

x [
𝐿 (x) − 𝑀 (x)]

= [𝐿 (1, 𝑥
𝑅
) −𝑀(1, 𝑥

𝑅
)] = 𝑎

𝐿
− 𝑑, ∀𝑥

𝑅
∈ [0, 1] ,

𝑘
4
= max

x [
𝑀 (x) − 𝐿 (x)]

= [𝑀(0, 𝑥
𝑅
) − 𝐿 (0, 𝑥

𝑅
)] = 𝑑 + 𝑏

𝑅
− 𝑎
𝐿
, ∀𝑥

𝑅
∈ [0, 1] ,

𝑘
5
= max

x [
𝑅 (x) − 𝑀 (x)]

= [𝑅 (𝑥
𝐿
, 1) − 𝑀(𝑥

𝐿
, 1)] = 𝑎

𝑅
− 𝑑, ∀𝑥

𝐿
∈ [0, 1] ,

𝑘
6
= max

x [
𝑀 (x) − 𝑅 (x)]

= [𝑀(𝑥
𝐿
, 0) − 𝑅 (𝑥

𝐿
, 0)] = 𝑑 + 𝑏

𝐿
− 𝑎
𝑅
, ∀𝑥

𝐿
∈ [0, 1] .

(25)

The resulting dynamics are described by a two-dimensional
map x

𝑡+1
= F(x

𝑡
) defined as

F : x
𝑡+1
=

{{

{{

{

F
𝐿
(x
𝑡
) if x

𝑡
∈ 𝑅
𝐿

F
𝑀
(x
𝑡
) if x

𝑡
∈ 𝑅
𝑀

F
𝑅
(x
𝑡
) if x

𝑡
∈ 𝑅
𝑅
,

(26)

where

F
𝐿
:

{{{{{{{{

{{{{{{{{

{

𝑥
𝐿

𝑡+1
= 𝑥
𝐿

𝑡
+ 𝛿
𝐿
(
𝑅 (x
𝑡
) − 𝐿 (x

𝑡
)

𝑎
𝑅
+ 𝑏
𝑅
− 𝑎
𝐿

𝑥
𝑅

𝑡

+
𝑀(x
𝑡
) − 𝐿 (x

𝑡
)

𝑑 + 𝑏
𝑅
− 𝑎
𝐿

𝑥
𝑀

𝑡
)

𝑥
𝑅

𝑡+1
= (1 − 𝛿

𝐿

𝑅 (x
𝑡
) − 𝐿 (x

𝑡
)

𝑎
𝑅
+ 𝑏
𝑅
− 𝑎
𝐿

)𝑥
𝑅

𝑡
,

F
𝑀
:

{{{{

{{{{

{

𝑥
𝐿

𝑡+1
= (1 − 𝛿

𝑀

𝐿 (x
𝑡
) − 𝑀(x

𝑡
)

𝑎
𝐿
− 𝑑

)𝑥
𝐿

𝑡

𝑥
𝑅

𝑡+1
= (1 − 𝛿

𝑀

𝑅 (x
𝑡
) − 𝑀(x

𝑡
)

𝑎
𝑅
− 𝑑

)𝑥
𝑅

𝑡
,

F
𝑅
:

{{{{{{{{

{{{{{{{{

{

𝑥
𝐿

𝑡+1
= (1 − 𝛿

𝑅

𝐿 (x
𝑡
) − 𝑅 (x

𝑡
)

𝑎
𝐿
+ 𝑏
𝐿
− 𝑎
𝑅

)𝑥
𝐿

𝑡

𝑥
𝑅

𝑡+1
= 𝑥
𝑅

𝑡
+ 𝛿
𝑅
(
𝐿 (x
𝑡
) − 𝑅 (x

𝑡
)

𝑎
𝐿
+ 𝑏
𝐿
− 𝑎
𝑅

𝑥
𝐿

𝑡

+
𝑀(x
𝑡
) − 𝑅 (x

𝑡
)

𝑑 + 𝑏
𝐿
− 𝑎
𝑅

𝑥
𝑀

𝑡
) .

(27)

By construction we have that F maps 𝐷2 into itself. In fact,
to show that F : 𝐷2 → 𝐷

2 it is enough to show that

given (𝑥𝐿
𝑡
, 𝑥
𝑅

𝑡
) ∈ 𝐷

2 then (𝑥𝐿
𝑡+1
, 𝑥
𝑅

𝑡+1
) = F(𝑥𝐿

𝑡
, 𝑥
𝑅

𝑡
) ∈ 𝐷

2.
From (𝑥𝐿

𝑡
, 𝑥
𝑅

𝑡
) ∈ 𝐷

2 we have that 0 ≤ 𝑥𝐿
𝑡
+ 𝑥
𝑅

𝑡
≤ 1 and

𝑥
𝐿

𝑡
+ 𝑥
𝑅

𝑡
+ 𝑥
𝑀

𝑡
= 1. Then if (𝑥𝐿

𝑡+1
, 𝑥
𝑅

𝑡+1
) = F
𝐿
(𝑥
𝐿

𝑡
, 𝑥
𝑅

𝑡
), we have

𝑥
𝐿

𝑡+1
+ 𝑥
𝑅

𝑡+1
= 𝑥
𝐿

𝑡
+ 𝑥
𝑅

𝑡
+ 𝛿
𝐿

𝑀(x
𝑡
) − 𝐿 (x

𝑡
)

𝑑 + 𝑏
𝑅
− 𝑎
𝐿

𝑥
𝑀

𝑡

≤ 𝑥
𝐿

𝑡
+ 𝑥
𝑅

𝑡
+ 𝑥
𝑀

𝑡
= 1,

(28)

𝑥
𝐿

𝑡+1
≥ 0, and 𝑥𝑅

𝑡+1
≥ 0; thus (𝑥𝐿

𝑡+1
, 𝑥
𝑅

𝑡+1
) ∈ 𝐷
2. If (𝑥𝐿

𝑡+1
, 𝑥
𝑅

𝑡+1
) =

F
𝑀
(𝑥
𝐿

𝑡
, 𝑥
𝑅

𝑡
) we have 0 ≤ 𝑥𝐿

𝑡+1
≤ 𝑥
𝐿

𝑡
and 0 ≤ 𝑥𝑅

𝑡+1
≤ 𝑥
𝑅

𝑡
; thus

(𝑥
𝐿

𝑡+1
, 𝑥
𝑅

𝑡+1
) ∈ 𝐷
2. If (𝑥𝐿

𝑡+1
, 𝑥
𝑅

𝑡+1
) = F
𝑅
(𝑥
𝐿

𝑡
, 𝑥
𝑅

𝑡
) we have

𝑥
𝐿

𝑡+1
+ 𝑥
𝑅

𝑡+1
= 𝑥
𝐿

𝑡
+ 𝑥
𝑅

𝑡
+ 𝛿
𝑅

𝑀(x
𝑡
) − 𝑅 (x

𝑡
)

𝑑 + 𝑏
𝐿
− 𝑎
𝑅

𝑥
𝑀

𝑡

≤ 𝑥
𝐿

𝑡
+ 𝑥
𝑅

𝑡
+ 𝑥
𝑀

𝑡
= 1,

(29)

𝑥
𝐿

𝑡+1
≥ 0, and 𝑥𝑅

𝑡+1
≥ 0; thus (𝑥𝐿

𝑡+1
, 𝑥
𝑅

𝑡+1
) ∈ 𝐷
2.

Substituting from (18) we can rewrite the functions in
explicit form as

F
𝐿
:

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑥
𝐿

𝑡+1
= 𝛿
𝐿
+ (1 − 𝛿

𝐿
− 𝛿
𝐿

𝑏
𝑅

𝑘
4

)𝑥
𝐿

𝑡

−𝛿
𝐿

𝑏
𝐿

𝑘
2

𝑥
𝑅

𝑡
+ 𝛿
𝐿

𝑏
𝐿

𝑘
2

(𝑥
𝑅

𝑡
)
2

+𝛿
𝐿
𝑏
𝑅
(
1

𝑘
4

−
1

𝑘
2

)𝑥
𝐿

𝑡
𝑥
𝑅

𝑡
+ 𝛿
𝐿

𝑏
𝑅

𝑘
4

(𝑥
𝐿

𝑡
)
2

𝑥
𝑅

𝑡+1
= (1 − 𝛿

𝐿
− 𝛿
𝐿

𝑏
𝐿

𝑘
2

)𝑥
𝑅

𝑡

+𝛿
𝐿

𝑏
𝑅

𝑘
2

𝑥
𝐿

𝑡
𝑥
𝑅

𝑡
− 𝛿
𝐿

𝑏
𝐿

𝑘
2

(𝑥
𝑅

𝑡
)
2

,

F
𝑀
:

{{{{

{{{{

{

𝑥
𝐿

𝑡+1
= (1 + 𝛿

𝑀

𝑘
4

𝑘
3

)𝑥
𝐿

𝑡
− 𝛿
𝑀

𝑏
𝑅

𝑘
3

(𝑥
𝐿

𝑡
)
2

𝑥
𝑅

𝑡+1
= (1 + 𝛿

𝑀

𝑘
6

𝑘
5

)𝑥
𝑅

𝑡
− 𝛿
𝑀

𝑏
𝐿

𝑘
5

(𝑥
𝑅

𝑡
)
2

,

F
𝑅
:

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑥
𝐿

𝑡+1
= (1 − 𝛿

𝑅
− 𝛿
𝑅

𝑏
𝑅

𝑘
1

)𝑥
𝐿

𝑡

+𝛿
𝑅

𝑏
𝐿

𝑘
1

𝑥
𝐿

𝑡
𝑥
𝑅

𝑡
− 𝛿
𝑅

𝑏
𝑅

𝑘
1

(𝑥
𝐿

𝑡
)
2

𝑥
𝑅

𝑡+1
= 𝛿
𝑅
+ (1 − 𝛿

𝑅
− 𝛿
𝑅

𝑏
𝐿

𝑘
6

)𝑥
𝑅

𝑡

−𝛿
𝑅

𝑏
𝑅

𝑘
1

𝑥
𝐿

𝑡
+ 𝛿
𝑅

𝑏
𝐿

𝑘
1

(𝑥
𝑅

𝑡
)
2

+𝛿
𝑅
𝑏
𝐿
(
1

𝑘
6

−
1

𝑘
1

)𝑥
𝐿

𝑡
𝑥
𝑅

𝑡
+ 𝛿
𝑅

𝑏
𝑅

𝑘
6

(𝑥
𝐿

𝑡
)
2

.

(30)

Differently from the one-dimensional map 𝐹 considered in
the previous section, the two-dimensional map F is not
continuous in 𝐷2. More precisely, the functions F

𝐿
, F
𝑀
,

and F
𝑅
are continuous, and thus F is continuous in the

interior of each region inwhich the different definitions apply.
However, in general, except for the point x∗, the map F is not
continuous along the borders 𝑉

𝑖
, 𝑖 = 1, 2, 3, of the regions

𝑅
𝐿
, 𝑅
𝑀
, and 𝑅

𝑅
. In fact, it is easy to see that considering
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Figure 5: Graphics of the three functions defining (a) 𝑥𝐿
𝑡+1

and (b) 𝑥𝑅
𝑡+1

, with parameters 𝑎
𝐿
= 29, 𝑏

𝐿
= 16, 𝑎

𝑅
= 19, 𝑏

𝑅
= 24, 𝑑 = 8, 𝛿

𝐿
= 0.5,

𝛿
𝑀
= 0.8, and 𝛿

𝑅
= 0.6.

a point (𝑥𝐿, 𝑥𝑅) belonging to one of the lines defined in (22)
at the boundary of two regions only, we have that the two
functions defined on the two different regions lead to two
different points of𝐷2. An example of how the three functions
defining 𝑥𝐿

𝑡+1
behave is shown in Figure 5(a), and the three

functions defining 𝑥𝑅
𝑡+1

are illustrated in Figure 5(b), showing
that F is continuous only in x∗.

The point x∗ in which the three regions are in contact
and F is continuous is clearly particular. In fact, solving the
equation 𝐿(x) = 𝑀(x) we have the unique solution 𝑥𝐿 = 𝑥∗𝐿
while solving the equation 𝑅(x) = 𝑀(x) we have the unique
solution𝑥𝑅 = 𝑥∗𝑅. It follows that at the point x∗ = (𝑥∗𝐿, 𝑥∗𝑅)
we have the same cost in each choice, as 𝐿(x∗) = 𝑀(x∗) =
𝑅(x∗), so that at the point x∗ the commuters are indifferent to
any available choice andnone of themwill switch choice.Thus
F(x∗) = x∗ and x∗ is a stationary state. Under the conditions
in (23) the point x∗ is feasible, belonging to 𝐷2. We can now
prove that this is indeed the unique fixed point of map F.

Proposition 3. The point x∗ = (𝑥∗𝐿, 𝑥∗𝑅) given in (21) is the
unique fixed point of the map F, belonging to 𝐷2 when the
conditions in (23) hold.

Proof. The proof of this proposition follows directly from the
observation that

F (x) = x if and only if 𝐿 (x) = 𝑀 (x) = 𝑅 (x) . (31)
One way is already proved as we have detected the fixed point
starting from the solution of 𝐿(x) = 𝑀(x) and 𝑅(x) = 𝑀(x),
showing that it is the unique point x∗. Vice versa, let us look
for the solutions of F(x) = x. We have the following systems
(where 𝑥𝑀 = 1 − 𝑥𝐿 − 𝑥𝑅):

F
𝐿
:

{{{{{{{

{{{{{{{

{

𝑥
𝐿
= 𝑥
𝐿
+ 𝛿
𝐿
(
𝑅 (x) − 𝐿 (x)

𝑘
2

𝑥
𝑅

+
𝑀(x) − 𝐿 (x)

𝑘
4

𝑥
𝑀
)

𝑥
𝑅
= (1 − 𝛿

𝐿

𝑅 (x) − 𝐿 (x)
𝑘
2

)𝑥
𝑅

if x ∈ 𝑅
𝐿
,

F
𝑀
:

{{{

{{{

{

𝑥
𝐿
= (1 − 𝛿

𝑀

𝐿 (x) − 𝑀 (x)
𝑎
𝐿
− 𝑑

)𝑥
𝐿

𝑥
𝑅
= (1 − 𝛿

𝑀

𝑅 (x) − 𝑀 (x)
𝑎
𝑅
− 𝑑

)𝑥
𝑅

if x ∈ 𝑅
𝑀
,

F
𝑅
:

{{{{{{{

{{{{{{{

{

𝑥
𝐿
= (1 − 𝛿

𝑅

𝐿 (x) − 𝑅 (x)
𝑘
1

)𝑥
𝐿

𝑥
𝑅
= 𝑥
𝑅
+ 𝛿
𝑅
(
𝐿 (x) − 𝑅 (x)

𝑘
1

𝑥
𝐿

+
𝑀(x) − 𝑅 (x)

𝑘
6

𝑥
𝑀
)

if x ∈ 𝑅
𝑅
,

(32)

or, equivalently (we recall that 𝛿
𝐿
, 𝛿
𝑀
, and 𝛿

𝑅
are different

from zero),

F
𝐿
:

{{{

{{{

{

𝑅 (x) − 𝐿 (x)
𝑘
2

𝑥
𝑅
+
𝑀(x) − 𝐿 (x)

𝑘
4

𝑥
𝑀
= 0

𝑅 (x) − 𝐿 (x)
𝑘
2

𝑥
𝑅
= 0

if x ∈ 𝑅
𝐿
,

F
𝑀
:

{{{

{{{

{

𝐿 (x) − 𝑀 (x)
𝑎
𝐿
− 𝑑

𝑥
𝐿
= 0

𝑅 (x) − 𝑀 (x)
𝑎
𝑅
− 𝑑

𝑥
𝑅
= 0

if x ∈ 𝑅
𝑀
,

F
𝑅
:

{{{

{{{

{

𝐿 (x) − 𝑅 (x)
𝑘
1

𝑥
𝐿
= 0

𝐿 (x) − 𝑅 (x)
𝑘
1

𝑥
𝐿
+
𝑀(x) − 𝑅 (x)

𝑘
6

𝑥
𝑀
= 0

if x ∈ 𝑅
𝑅
.

(33)

Considering the equation F
𝐿
(x) = x, we see that it is certainly

satisfied for 𝑥𝑅 = 0 and 𝑥𝑀 = 0, which leads to the
corner point with 𝑥𝐿 = 1. However, if the fixed point is an
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interior point of 𝐷2 then the point (1, 0) does not belong to
the proper region 𝑅

𝐿
; that is, it is a virtual fixed point. Clearly

this equation is satisfied when 𝐿(x) = 𝑀(x) and 𝐿(x) = 𝑅(x),
which occurs only at the point x∗. It is possible to have x∗ =
(1, 0) and this occurs for (𝑎

𝐿
− 𝑑)/𝑏

𝑅
= 0 and (𝑎

𝑅
− 𝑑)/𝑏

𝐿
= 1.

Thus we can state that the only solution of F
𝐿
(x) = x in 𝑅

𝐿

is given by the fixed point x∗. Similarly we can reason in the
other regions.

It is worth to mention that particular cases are obtained
when the fixed point x∗ belongs to a boundary of the region
𝐷
2. For example, when 𝑥∗𝑅+𝑥∗𝐿 = 1 and 𝑥∗𝑀 = 0, then only

the two regions𝑅
𝐿
and 𝑅

𝑅
are involved.This occurs when the

parameters satisfy

𝑑 =
𝑎
𝐿
𝑏
𝐿
+ 𝑎
𝑅
𝑏
𝑅
− 𝑏
𝐿
𝑏
𝑅

𝑏
𝑅
+ 𝑏
𝐿

, 0 ≤
𝑎
𝐿
− 𝑑

𝑏
𝑅

≤ 1,

0 ≤
𝑎
𝑅
− 𝑑

𝑏
𝐿

≤ 1.

(34)

From (𝑎
𝑅
− 𝑑)/𝑏

𝐿
= (𝑎
𝑅
+ 𝑏
𝑅
− 𝑎
𝐿
)/(𝑏
𝑅
+ 𝑏
𝐿
) we have 𝑥∗𝑅 =

1−(𝑎
𝑅
−𝑑)/𝑏

𝐿
= (𝑎
𝐿
+𝑏
𝐿
−𝑎
𝑅
)/(𝑏
𝑅
+𝑏
𝐿
) = 𝑘
1
/(𝑏
𝑅
+𝑏
𝐿
) = 𝑥
∗ as

in the one-dimensional map studied in Section 2, and 𝑥∗𝐿 =
1 − 𝑥
∗𝑅
= 1 − (𝑎

𝐿
− 𝑑)/𝑏

𝑅
= 𝑘
2
/(𝑏
𝑅
+ 𝑏
𝐿
) = 1 − 𝑘

1
/(𝑏
𝑅
+ 𝑏
𝐿
) =

1−𝑥
∗. From themapsF

𝐿
andF
𝑅
in (27) and for the parameters

occurring in this case, it can be seen that 𝑥𝐿
𝑡+1
= 1−𝑥

𝑅

𝑡+1
holds

in both, so that the dynamics can be studied by using only
the variable 𝑥𝑅

𝑡
and the resulting one-dimensional map is as

follows:

𝐹 (𝑥
𝑅
)

:=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑓
𝐿
(𝑥
𝑅
)

= 𝑥
𝑅
+ 𝛿
𝑅

𝐿 (𝑥
𝑅
)−𝑅 (𝑥

𝑅
)

𝑘
1

(1 − 𝑥
𝑅
)

if 0 ≤ 𝑥𝑅 ≤ 𝑥∗

𝑓
𝑅
(𝑥
𝑅
)

= 𝑥
𝑅
− 𝛿
𝐿

𝑅 (𝑥
𝑅
) − 𝐿 (𝑥

𝑅
)

𝑘
2

𝑥
𝑅 if 𝑥∗ ≤ 𝑥𝑅 ≤ 1,

(35)

which corresponds to the system already studied in Section 2.
As we have seen, this fixed point is globally attracting, even if
locally we can have the eigenvalue on some side larger than 1
in modulus.

The case with 𝑥∗𝐿 = 0, so that 0 ≤ 𝑥∗𝑅 ≤ 1 and 𝑥∗𝑀 =
1 − 𝑥
∗𝑅, leaves only the two regions 𝑅

𝑅
and 𝑅

𝑀
. This occurs

when the parameters satisfy

𝑎
𝐿
− 𝑑

𝑏
𝑅

= 1, 0 ≤
𝑎
𝑅
− 𝑑

𝑏
𝐿

≤ 1. (36)

From the maps F
𝑀

and F
𝑅
in (27) it can be seen that 𝑥𝐿

𝑡

converges to𝑥∗𝐿 = 0 so that the resulting asymptotic dynamic

behavior can be studied via the one-dimensional map given
by 𝑥𝑅
𝑡+1
= 𝑇(𝑥

𝑅

𝑡
) with 𝑥𝑅

𝑡
∈ [0, 1] (and 𝑥𝑀

𝑡
= 1 − 𝑥

𝑅

𝑡
), given by

𝑇 (𝑥
𝑅
)

:=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑇
𝐿
(𝑥
𝑅
)

= 𝑥
𝑅
+ 𝛿
𝑅

𝑀(𝑥
𝑅
) − 𝑅 (𝑥

𝑅
)

𝑘
6

(1 − 𝑥
𝑅
)

if 0 ≤ 𝑥𝑅 ≤ 𝑥∗

𝑇
𝑅
(𝑥
𝑅
)

= 𝑥
𝑅
− 𝛿
𝑀

𝑅 (𝑥
𝑅
) −𝑀(𝑥

𝑅
)

𝑎
𝑅
− 𝑑

𝑥
𝑅 if 𝑥∗ ≤ 𝑥𝑅 ≤ 1,

(37)

where𝑀(𝑥𝑅) − 𝑅(𝑥𝑅) = 𝑎
𝐿
+ 𝑏
𝐿
(1 − 𝑥

𝑅
) − 𝑎
𝑅
− 𝑏
𝑅
.

The case with 𝑥∗𝑅 = 0, so that 0 ≤ 𝑥∗𝐿 ≤ 1 and
𝑥
∗𝑀
= 1 − 𝑥

∗𝐿, leaves only the two regions 𝑅
𝐿
and 𝑅

𝑀
. This

occurs when the parameters satisfy 0 ≤ (𝑎
𝐿
− 𝑑)/𝑏

𝑅
≤ 1,

(𝑎
𝑅
− 𝑑)/𝑏

𝐿
= 1. From the maps F

𝑀
and F

𝐿
in (27) it can

be seen that 𝑥𝑅
𝑡
converges to 𝑥∗𝑅 = 0 so that the resulting

asymptotic dynamic behavior can be studied via the one-
dimensional map given by 𝑥𝐿

𝑡+1
= 𝑇(𝑥

𝐿

𝑡
) similar to the one

obtained in (37) with obvious changes.
By using arguments as in Section 2, it can be shown that

these one-dimensional systems have a unique fixed point
which is globally attracting (although it can be locally stable
or unstable).

In order to study the local stability of the fixed point of
the two-dimensional map F, we can use the linearization of
the different definitions in the fixed point, which leads to the
following Jacobian matrices, one for each region 𝑅

𝐿
, 𝑅
𝑀
, and

𝑅
𝑅
, that we denote, respectively, with 𝐽

𝐿
, 𝐽
𝑀
, and 𝐽

𝑅
:

𝐽
𝐿
(x∗) = (
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𝐿
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𝑘
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𝑏
𝑅
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𝑘
6

𝑘
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𝑘
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𝑘
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𝛿
𝐿
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𝑅
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𝑘
6

𝑘
1
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𝑘
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𝑘
1

),
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𝑀

𝑘
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𝑘
3

0

0 1 − 𝛿
𝑀

𝑘
6

𝑘
5

),

𝐽
𝑅
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𝑅

𝑘
5

𝑘
2

𝛿
𝑅
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2

𝛿
𝑅

𝑘
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𝑘
2

1 + 𝛿
𝑅
− 𝛿
𝑅

𝑏
𝐿

𝑏
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6
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𝐿

𝑏
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𝑘
5

𝑘
2

).

(38)

The two real eigenvalues of the Jacobian matrix in 𝑅
𝑀
are

in explicit form and both are smaller than +1. However, they
can be larger than −1 or not. Also the eigenvalues of the other
jacobian matrices can be in modulus smaller or larger than
1. However, the global dynamics observed numerically give
always trajectories which are convergent to the fixed point x∗,
at any set of allowed parameters values.
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Figure 6: Examples of trajectories converging to the unique fixed point with parameters (a) 𝑎
𝐿
= 28, 𝑏

𝐿
= 24, 𝑎

𝑅
= 8, 𝑏

𝑅
= 24, 𝑑 = 5, 𝛿

𝐿
= 0.4,

𝛿
𝑀
= 0.3, 𝛿

𝑅
= 0.7 and i.c. 𝑥𝐿 = 0.8, 𝑥𝑅 = 0.05; (b) 𝑎

𝐿
= 29, 𝑏

𝐿
= 16, 𝑎

𝑅
= 15, 𝑏

𝑅
= 25, 𝑑 = 7, 𝛿

𝐿
= 0.5, 𝛿

𝑀
= 0.8, 𝛿

𝑅
= 0.6 and i.c. 𝑥𝐿 = 0.05,

𝑥
𝑅
= 0.9. Dots are linked by a continuous line for illustrative purpose only.

This global attractivity in the two-dimensional map is
difficult to be proved rigorously; however the results in the
particular cases commented above, that is, when the fixed
point x∗ belongs to the boundary of 𝐷2, suggests that the
same result is true also when the fixed point is in the interior
of𝐷2.

In Figure 6 we show some examples: in Figure 6(a) we
can see a trajectory starting at 𝑅

𝑅
; in Figure 6(b) a trajectory

whose initial point in 𝑅
𝐿
is mapped into 𝑅

𝑀
. The shape of

the functions in the case of Figure 6(b) is similar to the one
shown in Figure 5.

4. Conclusion

In this paper we have analyzed a dynamical version of the
Braess paradox with nonimpulsive commuters, who change
road proportionally to the cost difference.We were interested
to prove that with nonimpulsive commuters there exists a
unique equilibrium both in the original network with two
choices and in the ternary one,when a single link is added.We
have shown that both models are quite robust. We were able
to provide an analytical proof of the global attractivity of the
unique fixed point in the one-dimensional case, when only
two roads are available andweusednumerical techniques and
simulations to give evidence in the two-dimensional case (i.e.,
when a new road is added), as a rigorous proof can be done
only for particular border cases.

A limitation of our contribution is considering homo-
geneous populations in spite of the fact that the evidence
supports heterogeneity. Nevertheless, heterogeneity of com-
muters’ behavior cannot be easily classified; yet, even when

conducting experiments, common individual patterns are
just identified and classified. On the other hand, when
observing the aggregate behavior, inmany cases the literature
provides evidence in support of the paradox outcome, that
is, the convergence to the Nash equilibrium. The impulsive
agents in [30] react faster than the proportional agents
presented in this paper; yet, as a population they fail to
achieve the Nash equilibria in certain cases, while in this
paper the aggregate behavior does not. We proposed this
aggregate behavior because it replies the convergence to the
Nash equilibria and at the same time it may be the result
of modeling some observed individual behaviors, such as
imitation and free riding.

Taking into account the limitation of homogeneous pop-
ulation analysis, a natural extension of our contribution is
considering heterogeneous populations with both impulsive
and nonimpulsive commuters. We have reasons to believe
that in such a case some properties of the different behaviors
are inherited and some are lost. Therefore the results we
provide in this paper match those for impulsive populations
and are paramount to extend the analysis to more realistic
cases. In fact—as the empirical results show—heterogeneous
populations dynamics provide a better fit of what has been
observed when considering human participants interaction.

Furthermore, it will be interesting to consider general-
izations to networks with richer architectures. Finally, we
observe that, since with the class of behavior we consider
in this paper that dynamics depends on the shape of the
cost functions, it will be interesting to extend the analysis to
nonlinear cost functions.
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