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Abstract. In the current work we present a detailed analysis of the hydride phase formation in 

industrial Pd/C nanocatalysts by means of combined in situ X-ray absorption spectroscopy 

(EXAFS), X-ray diffraction (XRD) and volumetric measurements for the temperatures from -

10 to 50  ̊C in the hydrogen pressure range from 0 to 1000 mbar. α- and β- hydride phases are 

clearly distinguished in XRD. For the first time, H/Pd atomic ratio were obtained by theoretical 

fitting of the near-edge region of the absorption spectra (XANES) and compared with 

volumetric measurements. 

1. Introduction 

Palladium-based nanomaterials play an important role in various fields such as medicine, chemistry, 

biology and catalysis [1]. In a number of industrial application, supported palladium nanoparticles 

catalyse hydrogenation reactions (e.g. hydrogenation of alkenes). In the presence of hydrogen, Pd 

catalyst may undergo one of its hydride phases which nature affects its catalytic performance [2]. 

Determination of the hydride phase in the palladium Pd nanoparticles is an important step in order to 

investigate the active phase of the nanocatalyst. Being element specific, EXAFS technique reflects Pd-

Pd interatomic distance increase which is proportional to the number of hydrogen absorbed in the 

nanoparticle and is not affected by the molecular hydrogen adsorbed on the support surface. At the 

same time, phase specific XRD allows to discriminate between α- and β- hydride phases even in the 

mixed phase region [3], while EXAFS is able to detect the increase of the average Pd-Pd distance 

upon H intercalation [4]. In the current work we present a detailed investigation by means of in situ 

EXAFS and XRD of the hydride phase formation in industrial catalysts (Chimet S.p.A.) consisting of 

palladium deposited on an amorphous carbon support. The X-ray data is complemented by volumetric 

measurements.  
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2. Materials and methods 

5 wt.% Pd on carbon catalyst were supplied by Chimet S.p.A. and it has been prepared by deposition-

precipitation method on a wood-based activated carbon (surface area = 980 m2g-1; pore volume = 0.62 

cm3g-1). Transmission electron microscopy measurements indicated the averaged size of the 

nanoparticles to be in the range of 3 – 4 nm. Pd black powder was used as a reference sample.  

 

   

Figure 1. TEM images of the Pd/C nanocatalyst. 

 

EXAFS and XRD data were collected at the BM01B (Swiss-Norwegian Beamline) of the European 

Synchrotron Radiation Facility (ESRF), Grenoble, France. Sample was loaded inside 1 mm glass 

capillary connected to a remotely controlled gas rig enabling to control the hydrogen pressure during 

the experiment. Nitrogen blower positioned above the sample was used to control the temperature. 

EXAFS spectra were collected in the transmission mode in the energy range around the Pd K-edge 

from 24.1 to 25.4 keV. Pd foil was measured simultaneously for energy calibration. Analysis of 

EXAFS spectra was performed with the Demeter software [5]. XRD patterns were measured using a  

= 0.50544 Å radiation and collected by a 2D Image Plate detector. Rietveld analysis of the diffraction 

profiles was performed by means of Jana2006 code [6].  

Synchrotron measurements was complemented with volumetric adsorption isothermal data measured 

on a Micromeritics ASAP 2020 sorption analyser connected to a H2 cylinder (99.9999vol% purity, 

Rivoira) in the NIS centre of the University of Turin. 

3. Results and discussion 

3.1. EXAFS analysis 

Palladium K-edge absorption spectra and diffraction patterns were collected during the formation of 

the palladium hydride induced by stepwise increasing of the hydrogen pressure from 0 to 1000 mbar. 

The evolution of absorption and diffraction data are shown in Figure 2 (left and righ part, 

respectively). The increase of Pd-Pd interatomic distances leads to the shift of the EXAFS oscillations 

to the lower energies. At the same time, indicative features of hydride phase are observed in the near-

edge (XANES) region, which is in agreement with our previous results [7, 8].  Single-shell analysis of 

EXAFS indicates Pd-Pd distance increase from 2.74 to 2.82. The obtained coordination number N = 

9.3 is consistent with the particle size of about 3 nm [9]. Debye-Waller parameter increase from 0.005 

to 0.008 is caused by the coexistence of α- and β- phases with slightly different interatomic 

parameters. As determined from XRD, the difference Rβ - Rα is about 0.05 Å: this difference is beyond 

the limit of standard EXAFS resolution of local structure distortion [10] with relatively short k 

interval (up to 12 Å -1).  
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Figure 2. (left) Pd K-edge XANES and difference XANES taken at 20 °C. Black and red lines 

correspond to bare and hydride (final) palladium nanoparticles respectively, coloured lines represent 

intermediate states. (b) X-ray powder diffraction patterns from bare (black) to hydride (red) palladium 

nanoparticles taken at 20 °C. For better visualization, the patterns are shifted in vertical direction. 

 

 
Figure 3. (left) Comparison of Pd-Pd interatomic distances obtained from EXAFS (circles) with cell 

parameter determined by XRD (crosses). Black dashed curved corresponds to the Pd black isotherm. 

(right) XRD measurements (crosses, blue line) vs volumetric data (squares. dashed navy line).   

 

3.2. XRD analysis 

In order to reduce the number of variables, Rietveld refinement was performed in several steps. At the 

first step, initial and final XRD profiles (palladium in the metallic and hydride form, respectively) 

were used to obtain profile shape, asymmetry and background. Then, cell parameters (for α- and β- 

phases), zero angle shift and phase concentrations were refined for each pattern. At the last step zero 

shift values were averaged and fixed, and only cell parameters of α- and β- phases and their 

concentrations were optimized.  
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For comparison with EXAFS averaged cell parameters were calculated. Palladium hydride isotherms 

obtained by single-shell Fourier analysis of EXAFS and Rietveld analysis of XRD data are shown in 

Figure 3 (left). To quantify the hydrogen present in the palladium at each pressure, volumetric 

measurements were performed. Assuming that the amount of hydrogen adsorbed in the carbon support 

is linearly proportional to the hydrogen pressure, this contribution was subtracted resulting in a similar 

isotherm as obtained from XRD and EXAFS (Figure 3 right). 

3.3. Volumetric measurements 

Volumetric data shown in figure 3 (right) provide quantitative information on the amount of hydrogen 

absorbed by palladium nanoparticles which allows to derive how interatomic distance depends on the 

hydrogen loading. However, several difficulties in conducting volumetric measurements exists in the 

case of the nanoparticles. First, the method is not element selective, and one has to perform separate 

measurement for the support itself, which is needed to be subtracted in order to obtain proper Pd-H 

isotherm. Second, experimental data reflects also adsorption of hydrogen on the surface of 

nanoparticles, and on the non-palladium species in the sample. This results in the non-zero H/Pd ratio 

for hydrogen pressures even less than 0.1 mbar. Third, the method cannot be applied in reaction 

conditions to estimate the H/Pd loading in the working nanocatalyst.  

 

 
Figure 4. Comparison of H/Pd atomic ratio during hydrogen absorption by the palladium 

nanoparticles obtained by volumetric method (black line) and theoretical fitting of XANES (blue 

squares). Volumetric curve is shifted by 0.1 to lower H/Pd ratio. 

3.4. XANES fitting 

As was shown in figure 2 (left) the presence of hydrogen can be monitored by difference XANES. In 

order to obtain hydrogen concentration we used multidimensional interpolation approach of FitIt-3 

[11]. Following the procedure described in our previous work [8] the hydrogen concentration were 

fitted to obtain the minimum of root-mean-square difference between experimental and theoretical 

[12] difference spectra. The interatomic distances were set as obtained from EXAFS, while hydrogen 

loading x in theoretical models of PdHx clusters was changing from 0 to 0.5. The results of the fit are 

presented in Figure 4 together with volumetric data. In order to overcome the effect of non-zero 

hydrogen absorption in the low-pressure region, discussed in section 3.3, volumetric curve was shifted 

by 0.1 to lower H/Pd ratio.  
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4. Conclusions 

We have performed a systematic study of hydride formation in the industrial palladium nanocatalysts 

by means of element-specific EXAFS and XANES, phase-specific XRD performed simultaneously on 

the same sample, measured under the same temperature and hydrogen pressure and independently 

complemented by volumetric measurements. The results obtained from these three techniques are in 

excellent agreement. We illustrate the advantage of diffraction measurements to get detailed 

information on the phase fractions which cannot be obtained from EXAFS.   

We underline the importance of XANES analysis and show the indicative features of hydride 

formation region in the near edge region. Quantitative analysis of XANES using theoretically 

calculated spectra was shown to be in a good agreement with volumetric data. This shows for the first 

time, that XANES data can give quantitative information on H/Pd ratio in the conditions where 

volumetric measurements cannot be performed, highlighting the relevance of these method for in situ 

catalytic experiments. 

The obtained pressure-composition isotherms provide deeper understanding of Pd-H phase transitions 

in the palladium nanoparticles and can be used as a reference for more complex catalytic experiments.  
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