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A Semi-supervised Approach to Measuring User

Privacy in Online Social Networks

Ruggero G. Pensa and Gianpiero Di Blasi

Department of Computer Science
University of Torino, Italy
ruggero.pensa@unito.it

Abstract. During our digital social life, we share terabytes of infor-
mation that can potentially reveal private facts and personality traits
to unexpected strangers. Despite the research efforts aiming at provid-
ing efficient solutions for the anonymization of huge databases (including
networked data), in online social networks the most powerful privacy pro-
tection is in the hands of the users. However, most users are not aware
of the risks derived by the indiscriminate disclosure of their personal
data. With the aim of fostering their awareness on private data leakage
risk, some measures have been proposed that quantify the privacy risk
of each user. However, these measures do not capture the objective risk
of users since they assume that all user’s direct social connections are
close (thus trustworthy) friends. Since this assumption is too strong, in
this paper we propose an alternative approach: each user decides which
friends are allowed to see each profile item/post and our privacy score is
defined accordingly. We show that it can be easily computed with mini-
mal user intervention by leveraging an active learning approach. Finally,
we validate our measure on a set of real Facebook users.

Keywords: privacy metrics, active learning, online social networks

1 Introduction

Online social networks are among the main traffic sources in the Internet. At
the end of 2014, they attracted more than 31% of the worldwide internet traf-
fic towards the Web. Facebook, the most famous social networking platform,
drives alone 25% of the whole traffic. As a comparison, Google search engine
represents just over 37% of the global traffic1. More than two billions people are
estimated to be registered in at least one of the most popular social media plat-
forms (Facebook hits the goal of one billion users in 2012). Overall, the number
of active “social” accounts are more than two billions. The famous “six degrees
of separation” theory has been far exceed in Facebook, where an average degree
of 3.57 has been recently observed2. Consequently, social network users are con-
stantly exposed to privacy leakage risks. Although most users do not disclose

1 Source: http://www.alexa.com/
2 https://research.facebook.com/blog/three-and-a-half-degrees-of-

separation/



very sensitive facts (private life events, diseases, political ideas, sexual prefer-
ences, and so on), they are simply not aware of the risks due to the disclosure
of less sensitive information, such as GPS tags, photos taken during a vacation
period, page likes, or comments on news. As an example, the research project
myPersonality [14] carried out at the University of Cambridge has shown that,
by leveraging Facebook user’s activity (such as ”Likes” to posts or fan pages) it
is possible to “guess” some very private traits of the user’s personality. Accord-
ing to another study, it is even possible to infer some user characteristics from
the attributes of users who are part of the same communities [18]. As a conse-
quence, privacy has become a primary concern among social network analysts
and Web/data scientists. Also, in recent years, many companies are realizing
the necessity to consider privacy at every stage of their business. In practice,
they have been turning to the principle of Privacy by Design [5] by integrating
privacy requirements into their business model.

Despite the huge research efforts aiming at providing efficient solutions to
the anonymization of huge databases (including networked data) [3, 25], in on-
line social networks the most powerful privacy protection is in the hands of the
users: they, and only they, decide what to publish and to whom. Even though
social networking sites (such as Facebook), notify their users about the risks of
disclosing private information, most people are not aware of the dangers due to
the indiscriminate disclosure of their personal data when they surf the net. Some
social media provide advanced tools for controlling the privacy settings of the
user’s profile [24]. However, yet a large part of Facebook content is shared with
the default privacy settings and exposed to more users than expected [17]. Ac-
cording to Facebook CTO Bret Taylor, even though most people have modified
their privacy settings3, in 2012, still “13 million users [in the United States] said
they had never set, or didn’t know about, Facebook’s privacy tools4”.

Some studies try to foster risk perception and awareness by “measuring”
users’ profile privacy according to their privacy settings [16, 23]. These met-
rics usually require a separation-based policy configuration: in other terms, the
users decide “how distant” a published item may spread in the network. Typical
separation-based privacy policies for profile item/post visibility include: visible
to no one, visible to friends, visible to friends of friends, public. However, this
policy fails when the number of user friends becomes large. According to a well-
known anthropological theory, in fact, the maximum number of people with
whom one can maintain stable social (and cybersocial) relationships (known as
Dunbar’s number) is around 150 [10, 20], but the average number of user friends
in Facebook is more than double 5. This means that many social links are weak
(offline and online interactions with them are sporadic), and a user who sets the

3 http://www.zdnet.com/article/facebook-cto-most-people-have-modified-

their-privacy-settings/
4 http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-

privacy/index.htm
5 http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-

facebook/



privacy level of an item to “visible to friends” probably is not willing to make
that item visible to all her friends.

To address this limitation, in this paper we propose a circle-based formulation
of the privacy score proposed by Liu and Terzi [16]. We assume that a user may
set the visibility of each action and profile item separately for each other user in
her friend list. For instance, a user u may decide to allow the access to all photo
albums to friends f1 and f2, but not to friend f3. In our score, the sensitivity
and visibility of profile item i published by user u are computed according to
the set of u’s friends that are allowed to access the information provided by i.
Since the expression of explicit allow/deny policy for each friend and each item
may require huge labeling efforts, we also propose an active learning labeling
approach to limit the number of manual operations. We show experimentally
that i) our circle-based definition of privacy score better capture the real privacy
leakage risk and ii) the active learning approach provides accurate results in
terms of both predicted privacy settings and final privacy score.

The remainder of the paper is organized as follows: we briefly review the
related literature in Section 2; the overview and the theoretical details of our
score are presented in Section 3; the active learning approach is presented in
Section 4; Section 5 provides the report of our experimental validation; finally,
we draw some conclusions in Section 6.

2 Related work

Most research efforts in social network privacy are devoted to the identification
and formalization of privacy breaches and to the anonymization of networked
data [25]. All these works focus on how to share social networks owned by com-
panies or organizations masking the identities or the sensitive connections of the
individuals involved. However, increasing attention is being paid to the privacy
risk of users caused by their information-sharing activities (e.g., posts, likes,
shares). In fact, since disclosing information on the web is a voluntary activity,
a common opinion is that users should care about their privacy during their
interaction with other social network users. Thus, another branch of research
has focused on investigating strategies and tools to enhance the users’ privacy
awareness and help them act more safely during their day-to-day social network
activity. In [6] the authors present an online game, called Friend Inspector, that
allows Facebook users to check their knowledge of the visibility of their shared
personal items and provides recommendations on how to improve privacy set-
tings. Instead, Fang and LeFevre [11] propose a social networking privacy wizard
based on active learning. The wizard iteratively asks the user to allow or deny
the visibility of profile items to selected friends and assign privileges to the rest of
the user’s friends using a classifier. [4] presents a tool to detect unintended infor-
mation loss in online social networks by quantifying the privacy risk attributed
to friend relationships in Facebook. The authors show that a majority of users’
personal attributes can be inferred from social circles. In [22] the authors present
a privacy protection tool that measures the inference probability of sensitive at-



tributes from friendship links. In addition, they suggest self-sanitization actions
to regulate the amount of leakage. [12], instead, introduces a machine learning
technique to monitor users’ privacy settings and recommend reasonable privacy
options. Other approaches to privacy control in social networks investigate the
problem of the risk perception. In [1, 2], for instance, the authors propose to
provide users with a measure of how much it might be risky to have interactions
with them, in terms of disclosure of private information. They use an active
learning approach to estimate user risk from few required user interactions.

The privacy measure we propose in this paper is closely related to the work
of Liu and Terzi [16]. They propose a framework to compute a privacy score
measuring the users’ potential risk caused by their participation in the network.
This score takes into account the sensitivity and the visibility of the disclosed
information and leverages the item response theory as theoretical basis for the
mathematical formulation of the score. Another privacy measure has been pro-
posed in [23] where the authors introduce a privacy index to measure the user
privacy exposure in a social network. This index, however, strongly relies on pre-
defined sensitivity values for users’ items. Furthermore, in both proposals, the
privacy measures are computed by leveraging separation-based privacy policies.
Differently from the above mentioned papers, our proposal considers circle-based
policy settings that better suits the real user visibility preferences.

3 A circle-based definition of privacy score

In this section we introduce our circle-based privacy score aiming at supporting
the users participating in a social network in assessing their own privacy leakage
risk. Most social networking platforms (such as Facebook or Google+), provide
an adequate flexibility in configuring privacy of profile items and user’s actions.
Moreover, they offer some advanced facilities, such as the possibility of grouping
friends into special lists or social circles. But privacy is not just a matter of users’
preferences; it also relies on the context in which an individual is immersed: the
position within the network (very central users are more exposed than marginal
users), her or his own attitude on disclosing very private facts, and so on. Hence,
we propose a privacy score that takes all these aspects into account and fits the
real user expectations about the visibility of profile items.

Before entering the technical details of our approach, we briefly introduce
some basic mathematical notation required to formalize the problem.

3.1 Preliminaries and notation

Here we introduce the mathematical notation we will adopt in the rest of our
paper. We consider a set of n users U = {u1, . . . , un} corresponding to the
individuals participating in a social network. Each user is characterized by a
set of m properties or profile items P = {p1, . . . , pm}, corresponding, for in-
stance, to personal information such as gender, age, political views, religion,



workplace, birthplace and so on. Hence, each user ui is described by a vector
pi =< pi1, . . . , pim >.

Users are part of a social network. Without loss of generality, we assume
that the link between two users is always reciprocal (if there is a link from uj

to uj then there is also a link from uj to ui). Hence, the social network here
is represented as an undirected graph G(V,E), where V is a set of n vertices
{v1, . . . , vn} such that each vertex vi ∈ V is the counterpart of user ui ∈ U and
E is a set of edges E = {(vi, vk)}. Given a pair of users (ui, uk) ∈ U , (vi, vk) ∈ E
iif users ui and uk are connected (e.g., by a friendship link).

For any given vertex vi ∈ V we define the neighborhood N (vi) as the set of
vertices vk directly connected to the vertex vi, i.e., N (vi) = {vk ∈ V | (vi, vk) ∈
E}. Conversationally speaking, N (vi) is the set of friends (also known as friend-
list) of user ui, hence we useN (vi) orN (ui) interchangeably. Given a user ui and
her friend-list N (ui), we also define the ego network centered on user ui as the
graph Gi(Vi, Ei), where Vi = N (vi) ∪ {vi} and Ei = {(vk, vl) ∈ E | vk, vl ∈ Vi}.

Finally, for any user ui we introduce a privacy policy matrixM i ∈ {0, 1}ni×m

(with ni = |N (ui)|) defined as follows: for any element mi
kj of M i, m

i
kj = 1 iif

profile item pj ∈ P is visible to user uk ∈ N (ui) (0 otherwise, i.e., iif user uk is
not allowed to access profile item pj).

It is worth noting that our framework can be easily extended to the case of
directed social networks (such as Twitter): in this case, the privacy policies are
defined only on inbound links.

3.2 Privacy score

Our measure is inspired by the privacy score defined by Liu and Terzi [16].
It measures the user’s potential risk caused by his or her participation in the
network. A n×m response matrix R is associated to the set of n users U and the
set of m profile properties P . In [16], each element rij of R contains a privacy
level that determines the willingness of user ui to disclose information associated
with property pj . In the binomial case rij ∈ {0, 1}: rij = 1 (resp. rij = 0) means
that user ui has made the information associated with profile item pj publicly
available (resp. private). In the multinomial case, entries in R take any non-
negative integer values in {0, 1, . . . , ℓ}, where rij = h (with h ∈ {0, 1, . . . , ℓ})
means that user ui discloses information related to item pj to users that are
at most h links away in the social network G (e.g., if rij = 0 user ui wants to
keep pj private, if rij = 1 user ui is willing to make pj available to all friends, if
rij = 2 user ui is willing to make pj available to the friends of her or his friends,
and so on). For this reason, we call this policy separation-based. However, in this
work, we adopt a different meaning for the entries rij of R: in our framework rij
is directly proportional to the number of friends to whom ui is willing to disclose
the information of profile property pj . Hence, we can compute R according to
the circle-based privacy policies defined by matrices M i’s using this formula:

rij =







ℓ ·
1

|N (ui)|

|N (ui)|
∑

k=1

mi
kj







 (1)



where N (ui) is the set of friends of user ui, m
i
kj denotes the visibility of user

ui’s profile item pj for friend uk, and ⌊ · ⌋ is the floor function. As a consequence,
rij = ℓ iif ∀uk ∈ N (ui), m

i
kj = 1. Our definition is conceptually different from

the original one, since the latter does not take into account the possibility of
disclosing personal items to just a part of friends.

In the following, we use RS when we refer to the response matrix computed
with the original separation-based policy approach defined in [16]. We use R

C

when we refer to our circle-based definition of response matrix.

Using the response matrix it is possible to compute the two main components
of the privacy function: the sensitivity βjh of a profile item pj for a given privacy
level h, and the visibility Vijh of a profile item pj due to ui for a given level h.
The sensitivity of a profile item pj depends on the item itself (attribute “sexual
preferences” is usually considered more sensitive than “age”). The visibility,
instead, captures to what extent information about profile item pj of user ui

spreads in the network. For the computation details of βjh and Vijh we invite
the reader to refer to [16], where a mathematical model based on item response
theory (a well known theory in psychometrics) is used to compute sensitivity
and visibility. Intuitively, sensitivity βj is such that the more users adopt at
least privacy level h for privacy item pj , the less sensitive pj is w.r.t. level h.
Instead, visibility Vijh is higher when the sensitivity of profile items is low and
when users have the tendency to disclose lots of their profile items. Moreover, it
depends on the position of user ui within the network and can be computed by
exploiting any information propagation models [13].

The privacy score φp(ui, pj) for any user ui and profile property pj is com-
puted as follows:

φp(ui, pj) =

ℓ
∑

h=0

βjh · Vijh. (2)

and the overall privacy score φp(ui) for any user ui is given by

φp(ui) =

m
∑

j=1

φp(ui, pj). (3)

From Equation 2 and 3 it is clear that users that have the tendency to disclose
sensitive profile properties to a wide public are more prone to privacy leakage.
Intuitively, φp(ui) = 0 means that, in each element of the summation, either
βjh = 0 (the profile item pj is not sensitive at all), or Vijh = 0 (the profile item
pj is kept private). On the contrary, the privacy score is maximum when a user
discloses to all her or his friends (Vijh = 1) all sensitive information (βjh = 1).

In this paper, we use φS
p when we refer to the score computed using the

original separation-based response matrix RS ; we use φC
p when we refer to the

privacy score leveraging our circle-based definition of response matrix RC .



Table 1. Example of Input Dataset for the Classification Task

Friend ID Age Gender Hometown Community No. of friends Cwork Cphotos Cpolitics

102030 ”21-30” Male Rome C10 ”501-700” allow allow deny
203040 ”31-40” Female Madrid C5 ”201-300” allow deny deny
304050 ”15-19” Female Paris C7 ”101-200” allow deny deny
405060 ”41-50” Female Berlin C5 ”701-1000” allow deny deny
506070 ”51-60” Male Rome C10 ”501-700” allow allow deny
607080 ”21-30” Female Rome C10 ”301-500” ? ? ?
708090 ”41-50” Male Madrid C5 ”301-500” ? ? ?

4 Semi-supervised privacy policy definition

Our definition of privacy score requires the availability of visibility preferences
for all user friends. However, setting them correctly is often an annoying and frus-
trating task and many users may prefer to adopt simple but extreme strategies
such as “visible-to-all” (exposing themselves to the highest risk), or “hidden-
to-all” (wasting the positive social and economic potential of social networking
websites). In this section we present a semi-supervised approach to minimize
the user’s intervention while computing the circle-based privacy policy matrices
M i. The classification model should be as accurate as possible in predicting
those privacy preferences not explicitly set by the users. Moreover, the model
should be easily updatable when the user sets more privacy preferences or adds
new users. Our choice is to use a Naive Bayes classifier [19], which is simple and
converge quickly even with few training data. Moreover, it can be easily embed-
ded in an active learning framework using, for instance, uncertainty sampling [9]
thus minimizing the intervention of the user in the model training phase.

For any given user ui ∈ U and any given profile item pj ∈ P we de-
fine a classification problem in which we have a set of |N (ui)| instances D =
{d1, . . . , d|N (ui)|} corresponding to all friends of ui. Each instance dk is charac-
terized by a set of p attributes {A1, . . . , Ap} with discrete values and m class
variables {C1, . . . , Cm} that take values in the domain {allow, deny}: Cj = allow
(resp. Cj = deny) means that friend uk is allowed (resp. is not allowed) to
access the information of profile item pj of user ui. The values of attributes
{A1, . . . , Ap} are partly derived from the profile vector pk =< pk1, . . . , pkm > of
users uk, partly from the ego network Gi(Vi, Ei) of user ui (see Section 3.1). For
instance, they may contain information such as the workplace and home-town
of uk, or the communities in Gi uk belong to. Table 1 is an example of possible
small dataset for a generic user consisting of five training instances and two test
instances with three profile-based attributes, two network-based attributes and
three class variables.

The Naive Bayes classification task can be regarded as estimating the class
posterior probabilities given a test example dk, i.e., Pr(Cj = allow|dk) and
Pr(Cj = deny|dk). The class with the highest probability is assigned to the
example dk. Given a test example dk, the observed attribute values are given by
the vector dk = {ak1 , . . . , . . . , a

k
p}, where a

k
s is a possible value of As, s = 1, . . . , p.

The prediction is the class c (c ∈ {allow, deny}) such that Pr(Cj = c|A1 =
ak1 , . . . , Ap = akp) is maximal. By Bayes’ theorem, the above quantity can be



expressed as

Pr(Cj = c|A1 = ak1 , . . . , Ap = akp) =

=
Pr(A1 = ak1 , . . . , Ap = akp|Cj = c)Pr(Cj = c)

Pr(A1 = ak1 , . . . , Ap = akp)
=

=
Pr(A1 = ak1 , . . . , Ap = akp|Cj = c)Pr(Cj = c)

∑

cx

Pr(A1 = ak1 , . . . , Ap = akp|Cj = cx)Pr(Cj = cx)
(4)

where, Pr(Cj = c) is the class prior probability of c, which can be estimated
from the training data. If we assume that conditional independence holds, i.e.,
all attributes are conditionally independent given the class Cj = c, then

Pr(A1 = ak1 , . . . , Ap = akp|Cj = c) =

p
∏

s=1

Pr(As = aks |Cj = c) (5)

and, finally

Pr(Cj = c|A1 = ak1 , . . . , Ap = akp) =

=
Pr(Cj = c)

∏p

s=1 Pr(As = aks |Cj = c)
∑

cx

Pr(Cj = cx)
∏p

s=1 Pr(As = aks |Cj = cx)
(6)

Thus, given a test instance dk, its most probable class is given by:

c = arg max
cx

{

Pr(Cj = cx)

p
∏

s=1

Pr(As = aks |Cj = cx)

}

(7)

where the prior probabilities Pr(Cj = cx) and the conditional probabilities
Pr(As = aks |Cj = cx) are estimated from the training data.

To predict all Cj ’s accurately without requesting too much labeling work
to ui, we adopt an active learning approach named uncertainty sampling [15]
based on the maximum entropy principle [9]. In an active learning settings the
learning algorithm is able to interactively ask the user for the desired/correct
labels of unlabeled data instances. A way to reduce the amount of labeling
queries to the users is to sample only those data instances whose predicted class
is most uncertain. Different measures of uncertainty have been proposed in the
literature, e.g., least confidence [8], smallest margin [21] and maximum entropy
[9], but for binary classification tasks they are equivalent. Hence, we decide to
adopt the maximum entropy principle. According to this principle, the most
uncertain data instance du is given by:

du = arg max
dk

{

−
∑

cx

Pr(Cj = cx|dk) logPr(Cj = cx|dk)

}

(8)

Since probabilities Pr(Cj = cx|dk) are exactly those computed by the Naive
Bayes classifier to take its decision, this principle can be easily adapted to our
classification task.



Once all friends’ labels are predicted, each entry of the policy matrix M i can
be updated as follows:

∀uk ∈ N (ui), mi
kj =

{

1, if Cj = allow for uk

0, if Cj = deny for uk.
(9)

The entries ofM i are then used to compute the response matrixRC as described
in Section 3. Note that the original separation-based definition of privacy score
can not take advantage of this active learning strategy.

5 Experimental results

In this section we report and discuss the results of an online experiment that
we conducted on real Facebook users. The main objectives of our experiment
are: i) to study the relationship between the separation-based privacy policies
and our circle-based policy definition; ii) to analyze the relationship between
the separation-based privacy score φS

p defined in [16] and our circle-based score

φC
p ; iii) to assess the performances of our active learning approach in terms of

classification accuracy and privacy score robustness.
The section is organized as follows: first, we describe the data and how we

gathered them; then we provide the details of our experimental settings; finally
we report the results and discuss them.

5.1 Dataset

Our online experiments were conducted in two phases. In the first phase we
promoted the web page of the experiment6 where people could voluntarily grant
us access to some data related to their own Facebook profile and friends’ network.
We were not able to access any other information rather than what we asked the
permission for, i.e.: email (needed to contact the users for the second phase of our
experiment), public profile, friend list, gender, age, work, education, hometown,
current location and pagelikes. The participants were perfectly aware about the
data we asked for and the purpose of our experiment. In this first phase, data
were gathered through a Facebook application developed in Java JDK 8, using
Version 1.0 of Facebook Graph API. From March to April 2015, we collected the
data of 185 volunteers, principally from Europe, Asia and Americas. The social
network consisting of all participants plus their friends is an undirected graph
with 75,193 nodes and 1,377,672 edges.

During the second phase, all the remaining participants were contacted for
the interactive part of our experiment. First, the participants had to indicate to
which level (0=no one, 1=close friends, 2=friends except acquaintances, 3=all
friends, 4=friends of friends, 5=everyone on Facebook) they were willing to allow
the access to five personal profile topics. The topics were proposed in form of

6 http://kdd.di.unito.it/privacyawareness/



Q1 Which people would you like to tell that
you have just changed job?

Q2 If your relationship status changed,
which friends would you like to tell?

Q3 After a nice holiday, which friends would
you share your photos with?

Q4 With whom would you like to share a
comment on current affairs/politics?

Q5 With whom would you like to share your
mood or something personal that hap-
pened to you?

(a) (b)

Fig. 1. The five questions (a) and the graphical interface (b) of our online survey

direct questions (see Figure 1(a)) with different levels of sensitivity. We used the
answers to fill the response matrix R

S . Then, to each participant, we proposed a
list of 60 randomly chosen friends and 6 randomly chosen friends of friends (when
available). The participants had to indicate to which people they were willing
to allow the access to the same five topics. For this phase, we developed a Java
JDK 8 mobile-friendly web application leveraging Version 2.0 of Facebook Graph
API. Figure 1(b) provides a screenshot of our online survey. We used the answers
on friends to fill the response matrix R

C . From May 2015 to February 2016, 74
out of 185 participants answered all questions of two surveys. Hence, in our
experiments, we consider the network data provided by all 185 participants and
the survey data related to the 74 participants who completed the questionnaire.
All the data have been anonymized to preserve volunteers’ privacy. The entries
in the two resulting 74× 5 matrices RS and R

C take values in {0, . . . , 5}.

5.2 Separation-based vs. circle-based policies

As a preliminary analysis, we measure how the perception of topic sensitivity
changes when the two policies (separation-based and circle-based) are presented
to the participants. To this purpose we compare the two response matrix R

S

and RC in several ways. First, we measure the Pearson’s correlation coefficient
between the two matrices. Given two series of n values X = x1 . . . , xn and
Y = yi, . . . , yn, the Pearson’s coefficient is computed as:

ρ(X,Y ) =

∑n

i=1 (xi − x) (yi − y)
√

∑n

i=1 (xi − x)2
√

∑n

i=1 (yi − y)2
(10)

where x =
∑n

i=1 xi/n and y =
∑n

i=1 yi/n. It basically captures the correlation
between the two series of values and ranges between −1 (for inversely correlated
sets of values) and +1 (for the maximum positive correlation). In our experiment,
n = 74 · 5. We obtain a moderate positive correlation (ρ(RS ,RC) = 0.4632),
that indicates a substantial difference between the two policies. Then, for each
question Qj, we measure the average difference between each entry of the two
matrices as

∑

i (r
d
ij − rbij)/n. All the average differences are positive, i.e., the



Table 2. Policy differences in visibility

Measure Q1 Q2 Q3 Q4 Q5

A 2 2 4 9 1

B 0 0 4 9 1

C 20 5 19 21 4

D 0 0 4 9 1

given separation-based policies are less restrictive than circle-based ones. In par-
ticular, we measure an average difference of 0.54 for Q1, 0.43 for Q2, 0.32 for
Q3, 0.35 for Q4 and 0.15 for Q5. Moreover, we measure the overall sensitivity
of each topic as βj =

∑ℓ

h βjh (see Section 3.2) in the two cases. As can be
seen in Figure 2(a), all sensitivity values increase when the circle-based policy is
adopted. The improved sensitivity perception is confirmed when we look at the
users’ policies more deeply. In particular, for each question Qj , we count:

– the number A of participants that, in the separation-based test, have made
Qj at least visible to friends of their friends (rSij ≥ 4), but have denied the
access to Qj to some of the friends of their friends in the circle-based test;

– the number B of users that have granted the access to some of the friends
of their friends in the circle-based test while rSij < 4 in the separation-based
test;

– the number C of participants that, in the separation-based test, have made
Qj visible at least to all friends (rSij ≥ 4), but have denied the access to Qj

to some of their friends in the circle-based test rCij < 5;
– the number D of participants that, in the circle-based test, have made Qj

visible to all friends (rCij = 5), but have denied the access to Qj to some of

their friends in the separation-based test rSij < 3.

The results in Table 2 indicate that the major differences are on questionsQ3 and
Q4, that are the less sensitive according to Figure 2(a). However, then passing
from a separation-based policy to a circle-based one, many users have reviewed
their choices in a more restrictive way for question Q1 and Q2 as well.

Finally, we also compute the privacy scores φS
p (ui, pj) and φC

p (ui, pj) for each
question Qj and each participant ui. The average score values are given in Fig-
ure 2(b). Interestingly, although the circle-based policy increases the perception
of topic sensitivity, the related privacy scores are sensibly smaller than those
computed within the separation-based hypothesis, i.e., the participants have a
safer behavior w.r.t. the visibility of the topics. For the sake of completeness,
we perform a correlation analysis between the values of φS

p (ui) and φC
p (ui) in

Figure 2(c). The value of the Pearson’s ρ coefficient (0.4582) shows moderate
positive correlation between the two series of scores.

5.3 Assessment of the active learning approach

To measure the performances of the active learning approach, we generate 74×5
datasets (one for each pair of users and questions) that we use to train and
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Fig. 2. Comparative results (separation-based approach vs. circle-based approach)

test the Naive Bayes classifier. These datasets contain, for each friend uk of
a user ui, the following attributes: gender and age of uk, countryman (true, if
uk and ui were born in the same place, fellow citizen (true, if uk and ui live
in the same place), coworker (true, if uk and ui work or have worked in the
same place), schoolmate (true, if uk and ui are or have studied in the same
school/college/university), and the Jaccard similarity of page likes of ui and uk.
All attribute values are derived from the information extracted by the Facebook
profiles, when available. Additionally, we also consider the list of communities

uk is part of. To this purpose, we execute a community detection algorithm on
the so called “ego-minus-ego” networks (the subgraph induced by the vertex
set N (ui) \ {ui}) of all 74 users. We use DEMON [7], a local-first approach
based on a label propagation algorithm that is able to discover overlapping
communities. The algorithm requires two parameters as input: the minimum
accepted size for a community (minCommunitySize) and a parameter ǫ that
determines the minimum overlap two communities should have in order to be
merged. In our experiments, we set minCommunitySize = 3 (to discard very
small communities) and ǫ = 0.5 (to admit an average overlap degree). Finally,
each friend has a class variable that takes values in the set {allow, deny}.

We conduct the experiment as follows. To simulate the active learning frame-
work, for each user and question, i) we start with just five (randomly chosen)
labeled friends with which we train the Naive Bayes classifier described in Sec-
tion 4; ii) we test the classifier on the remaining 55 friends and iii) choose the
friend whose prediction is the most uncertain, following the maximum entropy
criterion (see Equation 8 in Section 4); iv) we assign to this friend the same label
declared by the participant and v) we re-train the classifier on 5 + 1 instances
(friends); vi) finally, we test the new classifier on the remaining 54 instances. We
repeat iteratively the last four steps until there are no test instances left.

At the end of each prediction step, we measure the following performance
parameters: i) the Accuracy of the predictions; ii) the F-Measure of the predic-
tions, computed as F -Measure = 2 · (precision · recall)/(precision + recall)
where precision and recall are computed by considering the deny class as the
positive one; iii) the privacy score (Equation 3) computed by considering both
given and predicted {allow, deny} labels for all 74 users and applying Equation 9
to calculate matrices M i and Equation 1 to compute the response matrix RC).
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Fig. 3. Prediction Accuracy vs. Privacy function: average results

The values of the three parameters are averaged on all 74 users and 30 runs.
In each run, the first five labeled friends are chosen randomly. The initial value of
the privacy function (when no labels are given) is computed by assigning random
labels to all 60 friends.

The results are provided in Figure 3. The values of the three parameters are
reported for each question separately. As a general observation, the accuracy
of the prediction increases significantly with the number of labeled friends (see
Figure 3(a)). The growth of the F-Measure is less sharp, instead (Figure 3(b)).
We recall that both measures are computed on the test instances only. The small
drop of Accuracy and F-Measure in the last steps can be explained by the fact
that misclassification errors of few test instances (less than 5 samples) are more
likely to happen. Interestingly, predictions are more accurate for the two most
sensitive questions (Q2 and Q5). As for the privacy scores (Figure 3(c)), they
start to decrease when few friends (5 to 15) are labeled, then they start to grow
almost monotonically and the differences among them are more emphasized.
This behavior can be partially explained by noting that, as the amount of labeled
friends increases, the sensitivity perceived by the users gets closer to the realistic
sensitivity of the five topics.

5.4 Reliability of the predictions

We also study the robustness of the approach by extending the prediction to
all participants’ friends. Since we do not have the correct labels for friends who
do not belong to the list proposed to the participants, we can only measure the
privacy scores computed on the basis of the predicted set of labels. We compare
these measures with those computed by just considering the labeled friends.

To do that, we first compare the sensitivity values in the two cases (see
Figure 4(a)). All questions are subject to an increase of their sensitivity, but
when looking at the average privacy scores (Figure 4(b)) we note that all scores
are higher than those computed when considering only labeled friends. This
means that the visibility of the topics is high. Hence, we perform a correlation
analysis in order to check whether the behavior of scores is coherent in the
two cases and measure the Pearson’s ρ coefficient on the two series of privacy
score values. We obtain a Pearson’s coefficient of ρ = 0.8093 with a p-value
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Fig. 4. Privacy scores computed with labeled friends only Vs. privacy scores computed
on all friends

p < 0.000001 (see Figure 4(c)) denoting high positive correlation. This result
confirm that: i) the experiments on the limited set of 60 friends per user are
significant enough and that, ii) the approach is reliable even for users with a
realistic number of friends and few given labels. Note that the overall number of
friends of the participants spans between 120 and 1558 (with an average of 435).

6 Conclusions

With the final goal of fostering users’ privacy awareness in the Web, we have
proposed a privacy score based on an active learning approach to provide the
users of online social networks with a measure of their privacy leakage. We have
validated experimentally our metrics on an original dataset obtained through
an online survey on real Facebook users. The experiments have shown the ef-
fectiveness and the reliability of our approach. In particular, we have shown
that state-of-the-art metrics are based on a distorted perception of sensitivity
of published items. Based on these results, we believe that our framework can
be easily plugged into any domain-specific or general-purpose social networking
platforms. Furthermore, it may inspire the design of privacy-preserving social
networking components for Privacy by Design compliant software [5].
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