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ABSTRACT 

The α6β4 integrin is an adhesion molecule for laminin receptors involved in tumor progression. We 

searched for a link between 4 integrin expression and miR-221/222 in the most prevalent 

mammary tumors in humans, the luminal invasive carcinomas (LICs). Using human primary 

tumors, displaying different levels of β4 integrin expression and grade, we showed that miR-

221/222 expression inversely correlates with the tumor proliferating index, Ki67. Interestingly, the 

majority of high grade tumors express 4 integrin and low miR-221/222 levels. Thus, to investigate 

the possibility that miR-221/222 could regulate 4 expression, we ectopically transfected miR-

221/222 in human-derived mammary tumor cell-line, that recapitulates the luminal subtype. We 

demonstrated that over-expression of miR-221/222 resulted in a down-regulation of 4 expression 

and was associated with inhibition of breast cancer cell proliferation and invasion. The role of miR-

221/222 in driving 4 integrin expression was also confirmed by mutating the miR-221/222 seed 

sequence for the 4 integrin 3’UTR. Furthermore, we showed that these two miRNAs were also key 

regulators of both breast cancer cell proliferation and invasion through the post-transcriptional 

regulation of the signal transducer and activator of transcription 5A (STAT5A) and of a disintegrin 

and metalloprotease-17 (ADAM-17), respectively. By silencing ADAM-17 or using a dominant-

negative or an activated form of STAT5A we further confirmed these data. miR-221/222-driven 4 

integrin, STAT5A and ADAM-17 did not occur in the MCF-10A cells, denoted as "normal" breast 

epithelial cells, indicating that such a mechanism is specific of cancer cells.  

These results for the first time provide evidence of a post-transcriptional mechanism that regulates 

β4 integrin, STAT5A and ADAM-17 expression to control proliferation and invasion of breast 

cancer cells. This suggests that exploiting pre-miR-221/222 in aggressive luminal subtype might 

represent a novel and powerful therapeutic anti-cancer strategy. 



INTRODUCTION 

Integrins are a family of heterodimeric transmembrane receptors, which mediate cell–

extracellular matrix (ECM) and cell–cell interactions (1). The β4 integrin subunit was initially 

identified in cancer as a tumor-related antigen associated with tumor progression (2). Human 

studies demonstrated that β4 expression correlates with size and grade of breast cancer and with a 

poor patient prognosis in a variety of tumors of epithelial origin (3-4). The β4 integrin and its 

heterodimeric subunit α6 are the receptor for laminins (5-7). In physiological conditions β4 anchors 

the cytoskeleton to laminins in the basement membrane via hemidesmosomes located on the basal 

surface of epithelial cells (8). In several tumors of epithelial origin, which lack hemidesmosome 

anchorage, β4 integrin becomes diffusely distributed over the entire cell surface resulting in an 

increase of expression and signaling, and as consequence tumor invasion (9-10). Indeed, recently it 

has been demonstrated that β4 integrin depletion inhibits tumor cell expansion and invasion, mainly 

by impairing the activity of the phosphatidylinositol 3-kinase (PI3K) pathway (11).  

Alternatively, cancer dissemination occurs via degradation of the extacellular matrix (ECM). 

In recent years, the members of a disintegrin and metalloproteinase family (ADAM) have attracted 

interest because of their adhesive and proteolytic properties (12). In addition, ADAMs regulates 

signaling events relevant for cell proliferation (12). ADAM-17, a multi-domain protein (13-14), is 

the most extensively investigated member of this family (15). ADAM-17 is widely distributed and 

its expression changes not only during embryonic development but also in adult life (16). Moreover, 

ADAM-17 protein is up-regulated in several diseases and tumors (17). In particular, increased 

expression of ADAM-17 correlates with mammary cancer development and adverse outcomes in 

breast cancer patients (18).  

MicroRNAs (miRNAs), the endogenous small non-coding single-stranded RNAs, are key 

players in gene regulation (19). Their imperfect pairing with the 3’untranslated region (3’UTR) of 

target mRNAs generally results in mRNA degradation or translational inhibition (19). Deregulation 

of miRNA expression is considered a hallmark of cancer (20-21). Although altered expression of 

miRNAs has been reported in breast cancers (22-23), the functional consequences of specific 

miRNA aberrant expression in tumor progression and invasion remain to be elucidated. Recently, 

miR-221/222 over-expression has been shown in several advanced malignancies, including 

mammary tumors (24-25). Among miR-221/222 target genes the signal transducers and activator of 

transcription (STAT) 5A is included (26). In the context of breast cancer, active STAT5 can 

promote tumorigenesis in rodents (27), whereas in human breast cancer, STAT5 has been shown to 

positively correlate with the differentiation status of tumors (28) or with mammary epithelial cell 

differentiation and responsiveness to endocrine therapy (29-30). Collectively, these studies suggest 

a dual role of STAT5 in the mammary gland, as an initiator of tumor formation and a promoter of 

established tumor differentiation. However, the observations that inhibition of STAT5 in breast 

cancers impairs the proliferative rate suggest that the debate on the role of STAT5 in breast cancer 

is still open to debate (31-32).  

Self-governing molecular mechanisms in breast cancer development and progression have 

been widely explored. Likewise, the role of 4 integrin as signaling receptor in mammary tumors 

has been extensively documented (3-4). However, more recently, a new scenario in which β4 

integrin expression modulates miRNA pattern has been proposed for basal-like breast cancers (33). 

In this study we investigated, in vitro and in vivo, the functional relationship between miR-221/222 



and β4 integrin, ADAM-17, and STAT5 in the progression of the luminal subtype breast cancers, 

which would benefit from a further prognostic stratification. 



RESULTS 

β4 integrin and miR-221/222 expression in human luminal invasive carcinomas (Lum-ICs). It 

has been shown that 4 expression modulates miR-221/222 expression in basal-like carcinomas 

(33). We evaluated the expression of miR-221/222 and 4 integrin in oestrogen receptor (ER)-

positive (luminal) Lum-ICs using the gene expression profiling dataset generated by the TCGA 

consortium (The Cancer Genome Atlas Network) (34). We found that both miR-221/222 and 4 are 

expressed in a significant fraction of luminal breast cancers (Fig. 1A). Consistent with this 

observation, we demonstrated that 4 and miR-221/222 are expressed in the human-derived luminal 

breast cancer cell lines MCF-7, MDA-MB361 and T47D (Fig. 1B-C) (35). However, when 4 

protein expression was evaluated on 15 primary human breast carcinoma samples (luminal 

subtypes), 4 was only found in the 50% of the cases that were preferentially high grade and highly 

proliferating tumors (Fig. 1D). By contrast, all tumor samples expressed miR-221/222 (Fig. 1E) 

even though at different levels. Significantly, low levels of miR-221/222 were observed in samples 

expressing 4 integrin (Fig. 1D-E), while high level of miR-221/222 was observed in low-grade 

tumors. Consistently, miR221/222 expression inversely correlated (miR221 p=0.0013; miR222 

p=0.037) with the proliferating index, evaluated by Ki67 nuclear expression (Fig. 1F). All features 

of primary samples are reported in Table I.  

 

β4 integrin expression is post-transcriptionally regulated by miR-221/222 in breast cancer 

cells. Based on the above results we hypothesized that miR-221/222 could control 4 integrin 

expression in luminal breast cancer subtype. To validate this possibility gain-of-function 

experiments were performed in MCF-7 wild type (wt) cell line (Fig. S1A). Data reported in Fig 2A 

show that over-expression of miR-221/222 led to a down-regulation of 4 integrin, suggesting that 

miR-221/222 could post-transcriptionally regulate 4 integrin expression. Recently, non-canonical 

interactions of miRNAs to their putative target genes have been reported (36). Thus the full-length 

3’UTR nucleotide sequence of 4 integrin was analyzed for miR-221/222 blasting sequence and 

several base pairing were found (259-281bp 3’UTR 4 integrin) (Fig. 2B). The luciferase reporter 

vector containing the full-length 3’UTR of 4 integrin was then transfected in MCF-7 over-

expressing miR-221/222. As control MCF-7 cells transfected with the luciferase reporter empty 

vector was used. As expected, the luciferase activity was not detectable in MCF-7 cells over-

expressing miR-221/222 (Fig. 2C). These results were further confirmed by using a luciferase 

reporter vector containing a point mutation in the seed sequence for miR-221/222 of the 4 integrin 

3’UTR (Fig. 2D). The finding that miR-221/222 control 4 integrin expression and not vice-versa is 

sustained by the results reported in Fig. 2E-F. Indeed, a transient silencing of 4 integrin did not 

modify miR-221/222 expression in MCF-7 cells.  

Finally, to evaluate whether miR-221/222-driven 4 expression specifically regulates cancer cell 

fate, the expression of both 4 integrin and miR-221/222 was evaluated in MCF-10A cells. As 

shown in Fig. S2 these cells express low levels of 4 integrin and high levels of miR-221/222. 

Moreover, when loss-of function experiments was performed (Fig S1C) we were not able to detect 

changes in 4 expression (Fig S2A). This suggests that miR-221/222-driven 4 integrin expression 

is peculiar of tumor cells.  

 



miR-221/222-driven β4 integrin down-regulation is crucial for MCF-7 proliferation and 

invasion. To investigate the biological relevance of miR-221/222-induced post-transcriptional 

regulation of 4 integrin, functional studies were performed in MCF-7 wt cells over-expressing 

miR-221/222. Over-expression of miR-221/222, resulting in 4 integrin down-regulation, was 

associated with an impaired ability of cells to pass across the extracellular matrix (Fig. 3E) and with 

an impaired cell proliferation, as sustained by cell counting, by expression of DNA-polymerase-δ 

auxiliary protein (e.g. Proliferating-Cell Nuclear Antigen, PCNA), by cyclin D1 expression and by 

the content of phosphorylated Akt (Fig.-3A-C), and impaired ability of cells to pass across the 

extracellular matrix (Fig. 3E). FACS analysis demonstrates that over-expression of miR-221/222 

led to G0/G1 cell-cycle arrest (Fig. 3D). The biological relevance of miR-221/222 over-expression 

in MCF-7 cells was also confirmed by a clonogenic assay (Fig. 3F). As expected we were unable to 

detect a significant increase of MCF-10A cell proliferation when miR-221/222 antagomir were used 

(data not shown). 

These data were further confirmed by using a stable clone, lacking the 4 integrin subunit (MCF-

74i) generated from the MCF-7 cell line (11). As shown in Fig. 4A the level of 4 integrin 

subunit in the MCF-7 scr-shRNA clone (MCF-7c) was similar to that of the parental cells and these 

cells were used as internal control. As expected, functional studies performed in these two clones 

demonstrated a 50% reduction of proliferation rate and invasiveness of cells depleted of4 integrin 

(Fig. 4B-D). Unexpectedly MCF-74i cells displayed a 10-fold increase of miR-221/222 

expression (Fig. 4E) compared to the MCF-7c clone. This suggests that, as in-vivo, the level of 

miR-221/222 might control the proliferative and invasive capability of this tumor subtype. To 

evaluate this possibility loss-of function experiments were performed in MCF-74i cells (Fig. 

S1B). As shown in Fig. 5 antagomir expression promoted MCF-74i cell proliferation (Fig. 5A-B), 

cyclin D1 expression, Akt phosphorylation (Fig. 5C) and invasion (Fig. 5D).  

 

miR-221/222 target STAT5A to regulate breast cancer cell proliferation. The above results 

suggest that even in the case of 4 integrin silencing, miR-221/222 still control breast cancer cell 

behavior by regulating additional targets. To investigate this hypothesis other known target genes 

were explored. As shown in Fig. 6A p27
Kip1

and p57
Kip2

 level of expression was unchanged in MCF-

74i or in MCF-7c cells. Similar results were obtained in MCF-7 wt over-expressing miR-221/222 

(data not shown). By contrast, the expression of STAT5A inversely correlated with that of miR-

221/222 in the two different clones (Fig. 6A). Similar results were obtained when gain-and loss-of-

function experiments were performed (Fig. 6A and Fig. S1A-B). The post-transcriptional regulation 

of STAT5A by miR-221/222 in our experimental models was further confirmed by the luciferase 

reporter assay performed in both clones, using the full-length 3’UTR of STAT5A gene or the point 

mutated 3’UTR seed sequence of STAT5A (Fig. 6B-C). Functional studies were then performed in 

both MCF-7 clones by over-expressing a dominant-negative STAT5A (STAT5A) or a 

constitutively activated STAT5 construct (1*6 STAT5A) (37). As reported in Fig. 6D, inactivation 

of STAT5A in MCF-7c or induction of STAT5A in MCF-74i cells led to inhibition or induction 

of cell proliferation, respectively. On the contrary, we were unable to detect changes in cell 

invasiveness either by inactivating or activating STAT5A (Fig. 6E). These data along with the 

finding that high level of STAT5 expression was found in highly proliferative MDA-MB361 and 

T47D cell lines (Fig.S3), suggest that miR-221/222-driven STAT5A expression strictly controls 



breast cancer cell proliferation. Consistent with this hypothesis STAT5A expression was not 

modulated by antagomir expression in MCF-10A cells (Fig. S2A).  

 

miR-221/222 target ADAM-17 to drive cell invasion. Finally, the possibility that proteins 

involved in cell invasion could be also post-transcriptionally regulated by miR-221/222 was 

evaluated. To this end a number of prediction software (miRBase-MicroCosm version v5, miRanda, 

TargetScan and RNAhybrid) was interrogated. Particular attention has been paid to ADAM-17, that 

we found expressed in cells obtained from the MCF7c, MDA-MB361 and T47D cell lines, but not 

from the MCF-74i clone (Fig. 7B and S2). Indeed, we found that miR-222 matched with the 

3’UTR of the ADAM-17 gene (Fig. 7A). The inverse correlation between ADAM-17 and miR-

221/222 in the two clones (MCF-7c and MCF-74i) (Fig. 7B-C) was further confirmed by loss- 

and gain-of-function experiments (Fig. S1A-B). Thus, the luciferase reporter vector, containing the 

full-length 3’UTR of ADAM-17 was transfected in MCF-7c and MCF-74i cells and the luciferase 

activity was evaluated. As expected, the luciferase activity was detected only in the MCF-7c cells 

(Fig. 7D). These results were confirmed by over-expressing or down-regulating miR-221/222 in 

MCF7c and MCF7b4i cells, respectively (Fig. 7D). The specificity of miR-221/222-mediated post-

transcriptional regulation of ADAM-17 was further confirmed by using a luciferase reporter vector 

containing a point mutation in the seed sequence of the ADAM-17 3’UTR (Fig. 7E). 

To evaluate the biological relevance of ADAM-17 in our models, siRNA technology was applied 

(Fig. 8A). As shown in Fig. 8B-C, MCF-7c cells depleted of ADAM-17 were still able to 

proliferate, as sustained by the cell counting, cyclin D1 expression and the phosphorylated Akt 

content. On the contrary, ADAM-17 depletion impairs cell invasive capability (Fig. 8E) without 

affecting 4 integrin expression (Fig 8D). Once again antagomir expression in MCF-10A cells had 

no effect on ADAM-17 expression (Fig. S2A) 

Finally, the presence of a disintegrin domain in the ADAM-17 sequence led us to evaluate whether 

4 integrin and ADAM-17 could act in cooperation to mediate cell invasion. Indeed, we found that 

4 integrin is physically associated to ADAM-17 in our experimental condition (Fig. 8F).  



DISCUSSION 

 

In this study we demonstrate that miR-221/222 play a role in regulating tumor growth and 

invasion of breast carcinomas of the luminal subtype by regulating different genes. miRNAs are 

abnormally expressed in a variety of cancer types including breast cancers and they can act as 

oncomiRs or oncosuppressor-miRs depending on the cellular contest (38). This is particularly true 

for miR-221/222 that may act as oncomiRs in tumors of epithelial origin (39) or as oncosuppressor 

in hemopoietic malignancies (40). In the context of breast cancer a correlation between miR-

221/222 and the response of breast cancer cells to tamoxifen has been reported (41). Moreover, the 

miRNA microarray screening of luminal- and basal-like subtypes revealed that basal-like tumors 

express high level of miR-221/222 (42). More recently these miRs (33) were found inversely 

correlated with 4 integrin expression. By analyzing the gene expression profiling dataset generated 

by the TCGA consortium (36) we found that miR-221/222 and 4 integrin are expressed in luminal 

carcinomas as well. However, we failed to detect an inverse correlation between the expression of 

miR-221/222 and that of 4 integrin. Since the TCGA is a genomic database and did not consider 

tumor grade, a possible correlation between miR-221/222 and 4 integrin protein expression in 

human carcinoma samples of luminal subtype, displaying distinct grade of differentiation and 

proliferation activity was investigated. Consistent with the role of 4 integrin in tumor progression, 

we found that the expression of 4 was associated with poor differentiation of primary luminal LIC 

(G3 tumors) and with low expression of miR-221/222. On the other hand, we found an inverse 

correlation between the expression of both miRs and the tumor proliferating index, Ki67.  

Expression, localization, and cytoskeletal interactions of β4 integrin are crucial driver of 

proliferation and invasion of cancer cells (43). The increase of β4 expression in cancers of epithelial 

origin has suggested that β4 expression might be regulated, at least in part, at the transcriptional 

level (44). In the present study we first demonstrate that in the MCF-7 cell line, a known breast 

carcinoma cell line of luminal subtype (45), 4 integrin expression is under the control of miR-

221/222. The concept that miR-221/222 by regulating 4 expression dictates tumor aggressiveness 

was further validated by functional studies. The cells over-expressing miR-221/222 displayed a low 

proliferative rate and invasiveness as well as an almost undetectable PI3K/Akt activation (46). The 

finding that miR-221/222 down regulation in MCF-10A cells did not affect 4 integrin expression 

further sustains that such a mechanism controls specifically cancer cell fate. 

The role of the PI3K signaling cascade in mediating breast tumor progression (47) has 

spurred the development of different classes of PI3K, Akt, and mTOR inhibitors that at present are 

used in clinic (47-48). However, the appearance of resistance to such approaches highlighted the 

need for novel anti-cancer strategies. A combined targeting of the PI3K/mTOR and the 

JAK2/STAT5 pathways in breast cancers has provided new therapeutic opportunity (49). Indeed the 

STAT pathway is activated in response to different stimuli (50-52) and a cross talk between STAT5 

and integrins has been also reported (53-55). We herein first demonstrate that miR-221/222 strictly 

control STAT5A expression in breast cancer cells. Moreover, loss-of-function experiments in cells 

depleted of 4 integrin indicate that such post-transcriptional event is independent of 4 integrin 

expression while depends on miR-221/222 deregulation. Although the role of STAT5 in breast 

cancers is still debated (28), agents that down-regulate STAT5 reduce the growth of breast cancer 

cell lines derived from different breast cancer sub-types (31-32). Consistently, we demonstrated that 

low STAT5 expression was associated with a low proliferation rate. The biological relevance of 



STAT5 in mediating breast cancer cell proliferation is further sustained by ectopic expression of the 

constitutively active form or the dominant negative STAT5 construct. STAT5 is crucial for 

biological functions as cell proliferation and survival, but also for cell migration (53,56). In our 

models we failed to detect a relevant role of STAT5 in cell invasion. This suggests that in 

carcinomas of the luminal subtype, STAT5 primarily controls cell proliferation. 

Cell invasion in tumors lacking hemidesmosome anchorage is facilitated by 4 integrin 

switching into a more active signaling receptor (9-10). However, extracellular proteases, as 

ADAMs, also actively participate in invasion by acting as a control device of cell-ECM interactions 

(57). ADAMs have a complex multi-domain structure having proteolytic potential and adhesive and 

signaling properties (56). Data from pre-clinical cancer models indicate the ‘shedding’ activities of 

ADAMs, cleaving or solubilizing the ectodomain of cytokines, growth factors, receptors and 

adhesion molecules may regulate different activities that include cell migration and proliferation 

(57). Indeed, a correlation between the expression of ADAM-17 and high-grade invasive breast 

tumors has been reported in humans (18). In keeping with clinical data, we demonstrate that human 

derived cell lines, displaying high proliferative rate and invasive capability, express ADAM-17. 

Possibly due to the presence of a disintegrin domain, it is able to bind and to regulate the activity of 

integrins (12,16), ADAM-17 physically interacts with the 4 integrin and controls 4 integrin-

mediated cell invasion, but not cell proliferation. This is particularly true as knock down of ADAM-

17 was associated with an impaired  integrin-mediated invasion, while it had no effect on cell 

proliferation. Finally, in the present study we first demonstrate that ADAM-17 expression is strictly 

controlled by post-transcriptional mechanisms involving miR-221/222 only in tumor cells. 

In cancer cells β4 over-expression supports cellular events involved in tumor progression (9-

10). Although the precise mechanisms involved still remain unclear, we identify a post-

transcriptional mechanism driven by miR-221/222 that modulates β4 integrin, STAT5A and 

ADAM-17 expression in luminal carcinomas displaying a more aggressive behavior. This suggests 

that the levels of expression of miR221/222 in combination with that of β4 integrin, ADAM17, and 

STAT5 would confer additional benefits to the prognostic stratification of the luminal breast cancer 

subtypes. Moreover, the pleiotropic effects of miR-221/222, occurring in cancer cells only, 

indicates that efforts should now be made to develop successful in vivo delivery systems to 

investigate the therapeutic potential of pre-miR-221/222 in reverting cancer cell behavior.  
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MATERIALS AND METHODS 

 

Reagents and antibodies are presented in online supplements. 

 

Laminin 5 preparation. A laminin 5–enriched matrix was prepared from 804G cells as previously 

described (58). Briefly, confluent 804G cells in either 100-mm dishes or 96-well plates were 

washed in sterile PBS and detached from the underlying laminin 5–enriched matrix by treatment for 

10 min in 20 mmol/L NH4OH at 4°C and subsequent washing twice with sterile PBS. Poly-L-lysine 

(Calbiochem, Milan, Italy) was used as control matrix at a concentration of 10 mg/mL. 

 

Cell lines. The human breast carcinoma cell lines MCF-7, MDA-MB361 and T47D were obtained 

from the American Type Culture Collection (Manassas, VA), maintained in RPMI medium 

supplemented with 10% FCS (Invitrogen, Milan, Italy) and cultured on laminin. Generation of 

MCF-7 scrambled short hairpin RNA (scr-shRNA), defined MCF7c and the MCF-7 4 shRNA cell 

subclones, defined MCF7 4i, expressing or not 64 integrin, respectively, were obtained as 

previously described (22). To produce matrigel the rat bladder epithelial cell line 804G, to produce 

matrigel, was kindly provided by Dr. G. Meneguzzi (Faculty of Medicine, Institut National de la 

Sante´ et de la Recherche Me´dicale U634, Nice, France). The human mammary cell line MCF-

10A, used as control (59), was kindly provided by Prof. D. Taverna (Department of Molecular 

Biotechnology and Health Sciences, University of Torino, Torino, Italy). 

 

Cell proliferation. The proliferative activity was assayed by direct cell count,
 
by three individual 

operators in triplicate, as previously described (number ± SEM of cells per field, 10X 

magnification) (52). Proliferation was also evaluated as expression of DNA-polymerase-δ auxiliary 

protein (e.g. Proliferating-Cell Nuclear Antigen, PCNA) or by flow cytometer (FACScan, Becton 

Dickinson Immunocytometry Systems, San Jose, CA) analysis. Cell-cycle phases were also 

analyzed: breast cancer cells, treated as indicated, were fixed with 70% ethanol. After digestion 

with RNase, DNA was stained with propidium iodide and analyzed with FACScan (53). 

 

Cell invasion. Cell invasion was assessed using a 48-well modified Boyden’s chamber 

(NeuroProbe, Pleasanton, CA) and 8-m pore polyvinyl pyrrolidone–free polycarbonate 

Nucleopore filters (Costar, New York, NY). The filters were coated with 3 mg/mL Cultrex 

(Trevigen, Gaithersburg, MD). The lower compartment of the chamber was filled for 24h with 

conditioned serum free medium produced from NIH3T3 fibroblasts. MCF-7 wt, MCF-7c and MCF-

7 4i cells (5x10
4
cells/ml), treated as indicated, were harvested and placed in the upper 

compartment of the Boyden’s chamber. After 8h of incubation at 37°C, the cells migrated on the 

lower surface of the filters were fixed and stained with DiffQuick (Merz-Dade, Dudingen, 

Switzerland). The migrated cells in 12 high power fields were counted. Each assay was carried out 

in quadruplicate and repeated at least three times. The ability of the cells to adhere to the filters was 

verified by staining the upper side of the filter for each cell line. 

 

Clonogenic assay To investigate the ability of tumor cells to form colonies, 1×10
5
 cells, over-

expressing or not miR-221/222, were re-suspended in 0.3% agarose (low gelling temperature 

agarose) and seeded on 6 well plates pre-plating with 0.6% regular agarose. Colonies were counted 



after 3 weeks by three individual operators in triplicate (number ± SEM of cells per field, 10X 

magnification) 

 

Analysis of TCGA data. Gene and microRNA expression profiling data of primary breast tumors 

were obtained from the website (https://tcga-data.nci.nih.gov/docs/publications/brca_2012/) 

associated to Ref. (PMID 2300897), and selected based on the clinical and molecular parameters 

reported in the same website. 

 

Human carcinoma samples (luminal subtype, Lum-ICs). A series of 15 ER positive invasive 

carcinomas of no special type (60) were retrieved from the archives of the Pathology Unit at our 

Institution. The study was approved by the ethic institutional review board for "Biobanking and use 

of human tissue for experimental studies" of the Pathology Services of the Azienda Ospedaliera 

Città della Salute e della Scienza di Torino. Written informed consent was obtained from all 

patients to authorize their tissue to be used in research. 

The cohort comprised 6 low grade (G1) carcinomas and 9 high grade (G3) carcinomas (61-62). ER 

positivity was scored according to the ASCO/CAP guidelines (62) and proliferation index was 

evaluated as a continuous variable (percentage of stained cells) (63).  

 

Immunohistochemistry (IHC). IHC was performed on 3 μm thick sections of formalin fixed 

paraffin embedded tissues (FFPE) using the Ventana BenchMark® XT automated immunostainer 

(Ventana Medical Systems, Tucson,AZ, USA). Slides were incubated with anti-4-integrin 

antibody (diluition 1:200) for 32 minutes at room temperature, after protease 1 (Ventana Medical 

Systems, Tucson, AZ, USA) pretreatment (4 minutes). Positive and negative controls (omission of 

the primary antibody and IgG-matched serum) were included for each immunohistochemical run. 

 

RNA isolation and quantitative real-time PCR (qRT-PCR) for miRNAs. Total RNA was 

isolated using mirVana extraction kit (Ambion) from MCF-7 wt and cell clones, from MDA-

MB361, T47D and MCF-10A cells. RNA was also extracted from fresh frozen blocks. The number 

of sections needed to obtain a nucleic acid yield adequate for molecular analysis depended on the 

type of tissue samples (fibrosis, cellularity) and sample dimension. Sections were collected in a 1.5 

ml sterile Eppendorf tube. RNA extraction from fresh frozen sections was performed with 1 ml of 

Trizol reagent (Invitrogen) according to the manufacturer’s instructions. Isolated RNA was then 

reverse-transcribed using a TaqMan microRNA RT kit specific for miR-221 and miR-222. 

Reverse miRNAs were subjected to quantitative real-time PCR using TaqMan microRNA assay kit 

and the ABI PRISM 7700 sequence detection system (Applied Biosystems). Expression of miRNAs 

was normalised to small nuclear RNA, RNU6B. Gain- and loss-of-function experiments were 

performed in MCF-7 wt, MCF-7c, MCF-7 4i or MCF-10A cells as previously described (26) 

 

ADAM-17 silencing by small interfering RNAs (siRNA). To obtain ADAM-17 inactivation, 

MCF-7c cells were transiently transfected with MISSION siRNA for ADAM-17 or with duplex 

siRNAs purchased by Sigma-Aldrich. Transfection was performed according to the vendor's 

instructions. 48h later whole cell extracts were processed. Cell viability was evaluated at the end of 

each experiment.  

 



Dominant negative STAT5A (STAT5A) and STAT1*6 vector transfection. MCF-7c and 

MCF-7 4i cells were transiently transfected with the STAT5A construct or with STAT1*6 

plasmid vector, as previously described (37). The empty vector pCNeo was used as control. 

 

Luciferase miRNA target reporter assay. The luciferase reporter assay was performed using a 

construct generated by sub-cloning into restriction site XbaI of the luciferase reporter vector pGL3 

Basic Vector (Promega, Madison, WI, USA) the PCR products amplified from full-length 3’UTR 

of ADAM-17, STAT5A and 4 integrin DNA. The PCR products were obtained using the 

following primers:  

ADAM-17: sense, 5’TCTAGATTTAGTTCTCAGCTCTTCTGAC3’ 

                   antisense, 5’TCTAGAGTCTCACTCTGTCACCCA3’: 

 

STAT5A: sense, 5’AAGAGCTCATGTTTGAATCCCACGCT3’ 

               antisense,5’TTGAGCTCACACAAATGTGTGGTCTT3’: 

 

4 integrin: sense, 5’TCTAGATGACCGCACCCTGCCCCACC3’ 

                    antisense, 5’TCTAGAAGCAGTAGCAAAACCATTAT3’ 

A site-directed mutagenesis of the 3’UTR ADAM-17 and of the 3’UTR 4 integrin amplified PCR 

product was performed to obtain the mutated miR-222 or miR-221 binding site, respectively. The 

sequence was generated using the Quik-Change SiteDirect Mutagenesis kit (Stratagene, La Jolla, 

CA, USA). The oligonucleotides used were: sense, 

5’CTAGTTATTACCTATATTTTTTATGTAGC3’ for ADAM-17 and sense, 

5’TGTAACCAAAGATATGTAAGCAGCACAAG3’ for 4 integrin, containing the desired 

mutation, was designed according to the manufacturer’s instructions (the mutated nucleotides are 

underlined and italicized). The mutated 3’UTR STAT5A luciferase vector was obtained as 

previously described (26). 

The insert identities were verified by sequencing. The pGL3, pGL3-3’UTR ADAM-17, pGL3-

3’UTR STAT5A and pGL3-3’UTR 4 full length or mutated reporter vectors were transiently co-

transfected in MCF-7c or MCF-7 4i cells, treated as indicated, at 30:1 molar ratio with the pRL 

vector, coding for the Renilla luciferase, used as internal control of luciferase assay as previously 

described (64). Luciferase activities were analyzed 48 h after transfection by Dual-Luciferase 

Report Assay System (Promega) as previously described (26,64). 

  

Statistical analysis. Comparison and significance of differences between two groups was 

performed with t test. Comparison between three or more groups was performed with one-way 

ANOVA and significance of differences were evaluated with Newman-Keuls multicomparison post 

test. p values *<0.05, **<0.01 and ***<0.001 were considered significant and were indicated with 

different symbols, as detailed in each figure legend. All statistical analyses were carried out with 

Graph Pad Prism version 5.04 software (Graph Pad Software, Inc, USA). Densitometric analysis 

was used to calculate the differences in the fold induction of protein levels and normalized to  

actin or to Akt content and reported as “Relative amount” in figures. 
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Table I. Histopathological and immunophenotypical features of primary human tumor 

samples of luminal subtype (Lum-ICs). All cases showed high expression (range: 75%-100%) of 

estrogen receptor (ER) with variable expression of progesterone receptor (PR) and a proliferation 

index (Ki-67) ranging between 5% and 60%. ER, PR and Ki-67 are expressed as percentage of 

positive cells. Histological type is categorized according to the latest WHO classification (IC-NST: 

invasive carcinoma of no special type; ILC: invasive lobular carcinoma; MPC: micropapillary 

carcinoma: TUB: tubular carcinomas) 

 

 

 

 

 

 

 

 

 

 

 

 

 

      
Sample 

Histological 

Type 
Grade % ER %Ki-67  % PR 

            

1 IC-NST+ILC 1 98 12 90 

2 IC-NST 1 100 5 95 

3 IC-NST 1 100 20 70 

4 IC-NST+ TUB 1 95 16 90 

5 IC-NST 1 95 6 95 

6 IC-NST 1 85 15 80 

7 IC-NST 3 98 47 25 

8 IC-NST + MPC 3 95 35 20 

9 IC-NST 3 98 23 95 

10 IC-NST 3 95 60 75 

11 IC-NST + MPC 3 75 39 30 

12 IC-NST 3 98 46 0 

13 IC-NST 3 100 31 30 

14 IC-NST 3 100 39 70 

15 IC-NST 3 90 30 <1 



FIGURE LEGENDS 

Figure 1. 4 integrin and miR-221/222 expression in Lum-IC samples. (A) 4 integrin and miR-

221/222 distribution in basal- and luminal-like carcinomas from dataset of TCGA consortium. (B) 

Cell extracts from luminal-derived MCF-7, MDA-MB361 and T47D cell lines were analysed by 

western blot for 4 integrin content by densitometry (Relative amount). Protein levels were 

normalised to  actin content. The results are representative of four different experiments performed 

in triplicate (n=4). (C) MCF-7, MDA-MB361 and T47D cell lines were analysed by qRT-PCR to 

evaluate miR-221 and miR-222 expression. The reported data were normalised to RNU6B and are 

representative of five different experiments performed in triplicate (n=5). (D) Representative 

immunohistochemical staining for 4 integrin expression on human Lum-IC sections, including 

grade 1 and grade 3 samples. Scale bar: 80 μm (×40 magnification). (E) To evaluate miR-221 and 

miR-222 expression qRT-PCR was performed in human Lum-IC samples (n=6, grade 1; n=9, grade 

3). The reported data are normalized to RNU6B and are representative of all samples, performed in 

triplicate. MCF-7 cell line was used as control for miRNA expression. (*** p<0.001 grade 3 vs 

grade 1 for miR-221; * p<0.05 grade 3 vs grade 1 for miR-222). (F) Correlation between the 

proliferating index Ki67 and miR-221 or miR-222 expression in the luminal carcinoma samples. r 

correlation coefficient and p values are reported. 

Figure 2. miR-221/222 post-transcriptionally regulate 4 integrin expression. (A) MCF-7 wild 

type (wt) cells were transfected with pre-miR negative control (neg c) or with pre-miR-221 or pre-

miR-222. 48h later cell extracts were subjected to western blot analysis to evaluate 4 integrin and 

 actin content (*** p<0.001 MCF-7 transfected with pre-miR-221 and pre-miR-222 vs pre-miR 

neg c). The results are representative of three different experiments performed in triplicate (n=3). 

(B) Blast analysis of human miR-221 sequence and 3’UTR full length of 4 integrin shows several 

base pairing from bp 259 to 281 of the 4 integrin 3’UTR. (C) pGL3 empty vector or pGL3-3’UTR 

4 integrin luciferase constructs were transfected into MCF-7 wild type cells, previously transfected 

with pre-miR neg c or with pre-miR-221 or pre-miR-222. The relative luciferase activity is reported 

(*** p<0.001 pre-miR neg c in presence of pGL3-3’UTR 4 vs pGL3; *** p<0.001 pre-miR-221 

or pre-miR-222 vs pre-miR neg c in pGL3-3’UTR 4-transfected cells) (n=4). (D) Luciferase 

activity was evaluated in MCF-7 cells co-transfected with pre-miR neg c or pre-miR-221 or pre-

miR-222 precursors and pGL3 or pGL3-3’UTR 4 integrin mutated into the seed sequence (mut). 

Relative luciferase activity is reported (*** p<0.001 pre-miR neg c in presence of pGL3-3’UTRmut 

4 vs pGL3) (n=3). (E) MCF-7 wild type cells were transfected for 48h with scramble or short 

hairpin (sh)-4 integrinand evaluated for 4 integrin and  actin content. (*** p<0.001 sh-4 

integrin vs scramble for 4 integrin content). The results are representative of four different 

experiments performed in triplicate (n=4). (F) qRT-PCR was performed to evaluate miR-221 and 

miR-222 expression in MCF-7 wild type cells transfected with scramble or sh-4 integrin. The 

reported data were normalised to RNU6B and are representative of five different experiments 

performed in triplicate (n=5). 

Figure 3. miR-221/222 over-expression impairs MCF-7 cell proliferation and invasion. (A) 

Cell proliferation assay was performed for the indicated time intervals on MCF-7 wild type cells 

transfected with pre-miR neg c, pre-miR-221 or pre-miR-222 (*** p<0.001 pre-miR neg c vs pre-

miR-221 and pre-miR-222 transfected MCF-7 cells) (n=4). (B) Representative FACS analysis to 



evaluate PCNA expression in MCF-7 cells, transfected as above. The PCNA staining (48h after 

transfection) is reported. Percentage ± SEM of reduced proliferation: pre-miR-221, 60±5.6; pre-

miR-222, 40±4.4, ***p<0.001. (C) Cyclin D1 and phospho (p)Akt content in pre-miR neg c-, pre-

miR-221- and pre-miR-222-transfected MCF-7 cells was evaluated by western blot analysis. Protein 

levels were normalised to actin or Akt content, respectively. The results are representative of four 

different experiments performed in triplicate (n=4) (*** p<0.001 pre-miR-221 and pre-miR-222 vs 

pre-miR neg c transfected MCF-7 cells). (D) Cell proliferation assay was performed by FACS 

analysis to evaluate the percentage of cells in each cell-cycle phase. The results are representative of 

three different experiments performed in triplicate (data are expressed as mean, n=3). (E) Invasion 

assay was performed on MCF-7 transfected as above. Percentage of invading cells is reported (*** 

p<0.001 pre-miR-221 and pre-miR-222 vs pre-miR neg c transfected MCF-7 cells) (n=4). (F) 

Clonogenic assay was performed on MCF-7 cells treated as above. The number of formed clones 

per field (20X magnification) is reported in the histogram (*** p<0.001 pre-miR-221 and pre-miR-

222 vs pre-miR neg c transfected MCF-7 cells) (n=3). 

Figure 4. 4 integrin depletion led to cell proliferation and cell invasion inhibition in breast 

cancer cells. (A) Cell extracts from MCF-7 wt cells, MCF-7 scr-shRNA clone (MCF7c) or MCF-7 

4-shRNA clone (MCF-7 4i) were subjected to SDS-PAGE to evaluate 4 integrin and  actin 

content (*** p<0.001 MCF-7 4i vs MCF-7 wt and MCF-7c cells). The results are representative of 

three different experiments performed in triplicate (n=3). (B) Cell proliferation assay was 

performed for indicated time intervals on MCF-7c and MCF-74i clones (*** p<0.001 MCF-7 4i 

vs MCF-7c) (n=3). (C) PCNA staining in MCF-7 cell clones analysed by FACS. Percentage ± SEM 

of reduced proliferation: MCF-7 4i 50±5.7, ***p<0.001. (D) Invasion assay was performed on 

MCF-7c and MCF-7 4i cells. Percentage of invading cells is reported (*** p<0.001 MCF-7 4i vs 

MCF-7c) (n=4). (E) miR-221 and miR-222 expression was analysed by qRT-PCR on MCF-7c and 

MCF-7 4i cells. The reported data were normalised to RNU6B and are representative of four 

different experiments performed in triplicate (n=4) (*** p<0.001 miR-221 and miR-222 expression 

in MCF-7 4i vs MCF-7c).  

Figure 5. miR-221/222 loss-of-function in the MCF-7 4i clone rescues proliferation and 

invasiveness. (A) Cell proliferation assay was performed for indicated time intervals on MCF-7 4i 

cells transfected with anti-miR neg c, anti-miR-221 or anti-miR-222 (*** p<0.001, anti-miR-221 or 

anti-miR-222 vs anti-miR neg c transfected MCF-7 4i cells) (n=3). (B) PCNA staining in MCF-7 

4i cells transfected as above. Percentage ± SEM of increased proliferation: anti-miR-221, 60±3.7; 

anti-miR-222, 50±4.2 ***p<0.001. (C) MCF-74i cells treated as above were analysed for cyclin 

D1, pAkt and 4 integrin content. Protein levels were normalised to actin or Akt content. The 

results are representative of three different experiments performed in triplicate (n=3) (*** p<0.001 

anti-miR-221 and anti-miR-222 vs anti-miR neg c for cyclin D1 and pAkt content). (D) Invasion 

assay was performed on MCF-7 4i cells treated as indicated. Percentage of invading cells is 

reported (*** p<0.001 anti-miR-221 and anti-miR-222 vs anti-miR neg c) (n=4). 

Figure 6. miR-221/222 drive mammary tumor cell proliferation by regulating STAT5A 

expression. (A) p27
Kip1

, p57
Kip2

, STAT5A and  actin content were analysed by western blot in 

MCF7-7c cells transfected with pre-miR neg c, pre-miR-221 or pre-miR-222 precursors or in the 

MCF-7 4i cells transfected with anti-miR neg c, anti-miR-221 or anti-miR-222 oligonucleotides. 



The results are representative of three different experiments performed in triplicate (n=3) (*** 

p<0.001 gain- and loss-of-function values vs control values for STAT5A content). (B) Luciferase 

activity was evaluated in MCF-7 clones treated as indicated. Relative luciferase activity is reported 

(*** p<0.001 pre-miR neg c-transfected MCF-7c in presence of pGL3-3’UTR STAT5A vs pGL3; 

*** p<0.001 pre-miR-221 or pre-miR-222 vs pre-miR neg c transfected MCF-7c; *** p<0.001 

anti-miR-221 or anti-miR-222 vs anti-miR neg c transfected MCF-7 4i) (n=4). (C) pGL3 empty 

vector or the pGL3-3’UTR STAT5A mutated seed sequence (mut) were co-transfected with pre-

miR neg c or pre-miR-221 or pre-miR-222 precursors in MCF-7c. Relative luciferase activity is 

reported (*** p<0.001 pre-miR neg c transfected MCF-7c in presence of pGL3-3’UTRmut 

STAT5A vs pGL3) (n=3). (D) Cell proliferation assay was performed for indicated times in MCF-

7c cells, transfected with pCNeo empty vector or pCNeo-N STAT5A construct, and in MCF-7 4i 

cells, transfected with pCNeo empty vector or pCNeo-1-6*STAT5A construct (*** p<0.001 

pCNeo-N STAT5A and pCNeo-1-6 *STAT5A constructs vs pCNeo empty vector) (n=3). (E) 

Invasion assay was performed on MCF-7 clones treated as above. Percentage of invading cells is 

reported (n=4). 

Figure 7. miR-221/222 post-transcriptionally regulate ADAM-17 expression. (A) Alignment of 

miR-222 with its potential binding site in the 3’UTR of ADAM-17 mRNA (miRANDA web site). 

(B) ADAM-17 and  actin content in MCF-7c and MCF-7 4i clones (*** p<0.001 MCF-7 4i vs 

MCF-7c). The results are representative of three different experiments performed in triplicate (n=3). 

(C) Cell extracts from MCF-7c and MCF-7 4i cells subjected to gain- and loss-of-function 

experiments respectively were analysed by western blot for ADAM-17 content. Protein levels were 

normalised to actin content (*** p<0.001 gain- and loss-of-function values vs control values for 

ADAM-17 content). The results are representative of four different experiments performed in 

triplicate (n=4). (D) Luciferase activity was evaluated in MCF-7 clones treated as indicated. 

Relative luciferase activity is reported (*** p<0.001 pre-miR neg c-transfected MCF-7c in presence 

of pGL3-3’UTR ADAM-17 vs pGL3; *** p<0.001 pre-miR-221 or pre-miR-222 vs pre-miR neg c 

transfected MCF-7c; *** p<0.001 anti-miR-221 or anti-miR-222 vs anti-miR neg c transfected 

MCF-7 4i) (n=4). (E) pGL3 empty vector or pGL3-3’UTR ADAM-17 mutated seed sequence 

(mut) were co-transfected with pre-miR neg c or pre-miR-221 or pre-miR-222 precursors in MCF-

7c. Relative luciferase activity is reported (*** p<0.001 pre-miR neg c transfected MCF-7c in 

presence of pGL3-3’UTRmut ADAM-17 vs pGL3) (n=3). 

Figure 8. miR-221/222-regulated ADAM-17 expression drives mammary tumor cell invasion. 

(A) ADAM-17, cyclin D1 and  actin content were analysed by western blot in MCF-7c cells 

transfected for 48h with scramble or ADAM-17 siRNA (*** p<0.001 siRNA ADAM-17 vs 

scramble for ADAM-17 content).. The results are representative of four different experiments 

performed in triplicate (n=4). (B) Western blot analysis for pAkt and Akt content in MCF-7c 

silenced or not for ADAM-17. The results are representative of three different experiments 

performed in triplicate (n=3). (C) Cell proliferation assay for indicated time intervals on MCF-7c 

cells treated as above (n=4). (D) Cell extracts from MCF-7c cells silenced or not for ADAM-17 

were analysed by western blot to evaluate 4 integrin and  actin content. The results are 

representative of three different experiments performed in triplicate (n=3). (E) Invasion assay was 

performed on MCF-7c cells treated as above. Percentage of invading cells is reported (*** p<0.001 

siRNA ADAM-17 vs scramble) (n=4). (F) Co-immunoprecipitation experiments were performed in 



MCF-7 wt cells using ADAM-17 and 4 integrin antibodies. 4 integrin and ADAM-17 content 

was evaluated. The results are representative of three different experiments performed in triplicate 

(n=3). 

Figure S1. Gain and loss-of-function experiments. (A-C). Following transfection of MCF-7 wt 

and MCF-7c cells with pre-miR neg c or pre-miR-221 or pre-miR-222 (A), or transfection of MCF-

7 4i and MCF-10A cells with anti-miR neg c or anti-miR-221 or anti-miR-222 (B-C), qRT-PCR 

was performed to evaluate miR-221 and miR-222 expression. The reported data are normalized to 

RNU6B and are representative of five experiments (n=5) (*** p<0.001 miR-221 and miR-222 

expression in MCF-7 wt and MCF-7c cells transfected with pre-miR-221/222 vs cells transfected 

with pre-miR neg c, A; ** p<0.01 miR-221 and miR-222 expression in MCF-7 4i and MCF-10A 

cells transfected with anti-miR-221/222 vs cells transfected with anti-miR neg c, B-C). 

Figure S2. miR-221/222 expression in MCF-10A cells do not affect 4 integrin, STAT5A or 

ADAM-17 expression. (A) MCF-10A cells transfected with anti-miR neg c or anti-miR-221 or 

anti-miR-222 were analysed for 4 integrin, STAT5A and ADAM-17 content. Protein levels were 

normalised to actin content. The results are representative of three different experiments 

performed in triplicate (n=3). (B) qRT-PCR was performed to evaluate miR-221 and miR-222 

expression in MCF-7 wt and MCF-10A cells. The reported data are normalized to RNU6B and are 

representative of five experiments (n=5) (*** p<0.001 miR-221 and miR-222 expression in MCF-

10A vs MCF-7 wt cells). 

Figure S3. STAT5A, ADAM-17 and pAkt content in MCF-7, MDA-MB361 and T47D cell 

lines. (A) Cell extracts from MCF-7, MDA-MB361 and T47D cell lines were analysed by western 

blot for STAT5A, ADAM-17 and pAkt content by densitometry (Relative amount). Protein levels 

were normalised to  actin (STAT5A and ADAM-17) or to Akt (pAkt) content. The results are 

representative of four different experiments performed in triplicate (n=4). (B) Cell proliferation 

assay was performed for the indicated time intervals on luminal cell lines (n=4). (C) Invasion assay 

was performed on MCF-7, MDA-MB361 and T47D cells. Percentage of invading cells is reported 

(n=4). 



 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 

 

 

 



 

 

 



 

 

 

 

 

 

 



 

 

 

 

 


