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The vibrational progressions of the N → V
electronic transition of ethylene. A test case for the

computation of Franck-Condon factors of highly
flexible photoexcited molecules

Raffaele Borrelli and Andrea Peluso

October 11, 2006

Abstract

The vibrational progressions of the N → V electronic transition of ethylene
- a test case for the computation of Franck-Condon factors between electronic
states exhibiting very different equilibrium geometries - have been calculated
by using both the Cartesian and the curvilinear internal coordinate represen-
tations of the normal modes of vibration. The comparison of the theoretical
spectra with the experimental one shows that the Cartesian representation
yields vibrational progressions which are not observed in the experimental
spectrum, whereas the curvilinear one gives a very satisfying agreement, even
in harmonic approximation.
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Introduction

Duschinsky’s normal mode transformation is a fundamental tool for understanding

mechanistic details of both radiative and radiationless photochemical processes in

polyatomic molecules.1 It relates the two sets of normal modes of vibration of two

electronic states, a necessary step for the computation of the Franck-Condon factors,

and provides valueable information about modes which change their equilibrium

positions and modes which are mixed each other for the effect of the electronic

transition. Displaced and, to a lesser extent, mixed modes determine the shape of

the absorption bands and the dynamics of radiationless processes.

Duschinky’s transformation turned out to work very well for transitions between

electronic states characterized by small displacements of the nuclear equilibrium

configurations. Much less is known about its application to transitions between

electronic states whose equilibrium geometries are significantly different. Large dis-

placements of the equilibrium geometries characterize many interesting photochem-

ical processes, such as, among many others, the fast photoisomerization of retinal,2,3

the unusual fast intersystem crossing of norbornene,4,5 and, very probably, the fast

internal conversion observed in some of DNA bases.6

The photophysical properties of these processes are obviously dominated by mo-

tion along the large amplitude vibrational coordinate and therefore simplified the-

oretical models, employing only the large amplitude coordinate and, in some cases,

a few others, are often sufficient to explain the qualitative features of both the

absorption spectrum and the interconversion dynamics.7 However, when a better

quantitative agreement between theoretical and experimental results is needed, the

whole set of the molecular vibrational coordinates has to be taken into account, as

for pyrazine S2→S1 internal conversion,8 and Duschinsky’s normal mode transfor-

mation become a necessary step for the evaluation of the Franck-Condon factors,

and a powerful tool for understanding the dynamics of the electronic transition.9

Normal modes of vibration are the most natural set of vibrational coordinates

to be used, since they form a complete and orthogonal set of coordinates for the

internal motion of a molecule. Normal modes are usually expressed in terms of
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mass weighted Cartesian displacement coordinates, but it is well known that in

some cases it is more convenient to express them in terms of internal curvilinear

coordinates such as bond distances, valence angles, torsions, waggings, etc.10 For

small amplitudes of vibration about the equilibrium point the two representations

are practically identical, but for large amplitude motions they are not, because no

single rectilinear coordinate can describe a large change of a valence or torsional angle

without simultaneously introducing large change in one or more bond distances.

Because of that, Duschinsky’s normal mode transformation can give very different

results in the two coordinate representations.11,12

In this paper we will more deeply analyze this point by performing a detailed

comparison between experimental and theoretical spectra obtained by computations

of the Franck-Condon (FC) factors both in the Cartesian and the internal coordinate

representation. The vibrational progression patterns which characterize most of the

gas-phase electronic spectra of molecules undergoing large geometry rearrangement

at the excited state are the most suited experimental data for testing the accuracy of

theoretical models in describing the vibrational motion in the region of the nuclear

coordinates spanned by photoisomerization processes. Here we will consider the case

of ethylene. The rotation about the carbon-carbon bond occurring in the π → π∗

transition being a prototype of a large amplitude motion induced by a radiative

transition, for which a well resolved absorption spectrum in the gas phase has been

reported in the literature.13–15 Previous theoretical works have not considered the

whole set of normal modes,7,16–18 but for a few of them all using the Cartesian

representation.19,20

The UV spectrum of ethylene has a very complex structure, resulting from the

overlap of several electronic transitions whose assignments are still subject of contro-

versy. The electronic transitions are in fact relatively closely spaced and most of the

involved excited states have equilibrium geometries significantly different from that

of the ground state. In this paper we will only focus on the lowest energy π → π∗

absorption, taking place between 48000 and 56000 cm−1 (208-178 nm), which ex-

hibits a vibrational progression with an extremely weak onset, almost unanimously21
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attributed to the transition between the ground 1A1g electronic state (denoted as N)

and the excited singlet 1B1u state (V ).

Normal Mode Transformation in Curvilinear and

Cartesian coordinates

Let Q1 and Q2 be the normal mode vectors of a molecule in the electronic states |1〉

and |2〉, respectively. In the 30’s Duschinsky suggested that the two sets of normal

coordinates are related by the expression:1

Q1 = JQ2 + K, (1)

where J is a rotation matrix and K a displacement vector, the former accounting

for mixing of normal modes upon electronic transition, the latter for changes in the

nuclear equilibrium configurations.

If Q1 and Q2 are expressed in terms of Cartesian coordinates ξ,

Qα = T+
αm1/2(ξ − ξ0

α) α = 1, 2, (2)

then:

J(x) = T+
1 m−1T2, K(x) = T+

1 m−1/2(ξ0
2 − ξ0

1), (3)

where m is the diagonal matrix of the atomic masses, and Tα and ξ◦α are the

normal mode matrix and the equilibrium position vector of the electronic state |α〉.

If normal modes are expressed in terms of a set of 3N−6 non-redundant internal

coordinates s (N =number of atoms):

Qα = L−1
α (s− s0

α) α = 1, 2, (4)

then:

J(s) = L−1
1 L2, K(s) = L−1

1 (s0
2 − s0

1), (5)

where s0
α is the vector of the equilibrium internal coordinates in the electronic state

|α〉, and Lα is the normal mode matrix in internal coordinates. Of course, equation

5 holds only if the same set of non-redundant internal coordinates is used for both

electronic states.
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Most of the modern packages for electronic wave function computations give nor-

mal modes of vibration in the Cartesian representation. The normal mode matrix in

internal coordinate representation (Lα) can then be obained from Tα by expanding

internal coordinates in power series of Cartesian coordinates around the equilibrium

position and truncating the expansion at the first order:10

s = s0
α + Bα(ξ − ξ0

α), α = 1, 2 (6)

where Bα is the first derivative matrix, known as Wilson matrix.22

From the inverse transformation:

ξ = ξ0
α + G−1

α B+
αm1/2(s− s0

α), (7)

with

Gα = B+
αm−1/2Bα, (8)

and using eq.s 2, and 5, the following relations for the transformation from Q2 to

Q1, equivalent to those found by Reimers,,12 are found:

J(s) = T+
1 m−1/2B+

1 G−1
1 B2m

−1/2T2, (9)

K(s) = T+
1 m−1/2B1G

−1
1 (s0

1 − s0
2). (10)

The matrices J(x), K(x) or J(s), K(s), together with the vibrational frequencies of

the normal modes of the two electronic states provide all the necessary parameters

to calculate FC integrals in the harmonic approximation. The evaluation of these

integrals can be easily done by using recurrence relations.23,24 In our calculation we

have used the MolFC package, developed by our research group.25

In the case the two electronic states exhibit large equilibrium geometry differ-

ences, the normal mode transformation in the Cartesian representation can differ

from eq. 1 because of the necessary fulfilling of the Eckart conditions in both elec-

tronic states (the so called axis switching effect).26–28 By considering only static

Eckart conditions, the correction term consists in applying a rotation matrix T0 to

the normal mode matrix and to the equilibrium position vector of one electronic

state. In the cartesian representation the Duschinsky matrix and the displacement

vector take the form:
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J(x) = T+
1 m−1T0T2, K(x) = T+

1 m−1/2(T0ξ
0
2 − ξ0

1), (11)

where:

T0 = (C+C)1/2C−1, Cij =
N∑
k

(ξ0
1,k)i(ξ

0
2,k)j, i, j = x, y, z (12)

A similar equation also holds for J(s) and K(s)

In the case of ethylene, T0 is the identity matrix, since the principal axes of

rotation of the two equilibrium nuclear configurations coincide.28

The electronic spectrum of ethylene

In the ground electronic state (N), ethylene has a planar configuration with D2h sym-

metry. In the first excited electronic singlet state (V ), the two methylenic groups

are perpendicular each other and the molecule belongs to the D2d point group. Be-

cause of this large structural change, the absorption spectrum of ethylene exhibits

an unusually broad vibrational progression, with the onset at 208 nm. The absorp-

tion intensity, initially vanishingly small, increases by about five order of magnitude

before reaching the maximum at 1620 Å. In this region the N → V transition over-

laps with the first member of the strong Rydberg series found by Price and Tutte,29

denoted by Mulliken as N → R transition. A quantitative analysis of the spectrum

in this region goes beyond the scopes of this work; since we are interested in the

vibrational pattern associated with the twisting motion, we will limit the analysis

to the spectral region 208-178 nm, where only the N → V transition takes place.

The equilibrium geometry and the normal modes of vibrations of the ground elec-

tronic state have been obtained by ab initio calculation; the effects of the electronic

correlation have been taken into account by using the second order Moeller-Plesset

perturbation theory (MP2), D2h symmetry was imposed in geometry optimization.

For the first excited state, geometry optimization and normal mode calculation have

been carried out by using the singly excited configuration interaction (CIS) method,

imposing D2 symmetry. In both cases the standard 6-311++G(p,d) basis set has
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been emploied. Following Wiberg et al.,30 the calculated frequencies of the V ex-

cited state have been scaled by the empirical value 0.9. All the electronic calculations

were carried out by G94 package.31 The optimized geometries and the frequencies

of the normal modes of the N and V electronic states are reported in tables I and

II, respectively.

Insert Table I

Insert Table II

The Cartesian coordinate representation. The rotation matrix J(x) and

the displacement vector K(x) for the N → V normal mode transformation in the

Cartesian representation are reported in table III.

Insert Table III

Within the D2 symmetry subgroup, common to both N and V electronic states,

the normal modes of ethylene are grouped into four subsets, as indicated in table II.

Inspection of table III shows that all the modes belonging to the same irreducible

representation are strongly mixed, in particular the twisting of the CH2 groups

(ν4) and the symmetric combination of the four CH stretchings (ν1), belonging to

the a representation. The displacement vector K(x) has four non zero components

associated with the totally symmetric modes, whose numerical values agree perfectly

with those previously reported.32 The most displaced modes are the twisting and

the symmetric CH stretching (7.18 and 4.15 in adimensional units, respectively); the

symmetric scissoring (ν3) and the CC stretching (ν2) modes also exhibit large shifts

of their equilibrium positions. It is worth noticing that the large K(x) component

of the ν1 mode is not due to changes of the C-H equilibrium bond lengths, which,

according to ab-initio computations, are extremely small, cf. table 1, but rather

to the mixing of the symmetric stretching vibration with the CH2 twisting, which

makes the large displacement of the latter mode to be partially projected on the

former. This mixing occurs only in the Cartesian normal mode representation and

disappears when internal coordinates are used, see infra.
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The absorption spectrum, calculated exciting all the twelve normal modes of

the V state and letting the N state be in its vibronic ground state, is shown in

figure 1a. The convergence of the calculation with respect to the size of the adopted

vibrational basis set has been accurately checked. The four displaced modes are

of course the most important modes in the vibrational progression, but b3 and b2

modes contribute up to 30% to the overlap integral between the ground vibronic

state of N with the manifold of the V vibronic states.

Insert Figure 1

The computed spectrum is exceedingly broad, extending over more than 70000

cm−1, whereas the experimental absorption band, including both the N → V and

the N → R transitions, has a width no larger than 21000-22000 cm−1. According

to our calculation the 0-0 FC factor is vanishingly small, 10−14, and the maximum

intensity, 3.5 · 10−3 is associated with the transition from the ground vibronic state

to the 421
0 21

01
7
0 combination state, located at 37000 cm−1 above the 0-0 transition.

(In the notation adopted here a vibronic transition is denoted by Xj
i , where X labels

the normal mode, cf. table II, and i and j the vibrational quantum numbers of the

ground and excited state, respectively.)

The computed and the observed absorption intesities33 in the region 49000-56000

cm−1 are reported in figure 2a. In order to have the best intensity matching, the

peak at 49140 cm−1 (2035 Å) has to be assigned to the 45
0 transition. Although figure

2a shows a reasonable agreement between theoretical and experimental intensities, it

must be remarked that the above assignment is not only in significant disagreement

with previous work of Wilkinson and Mulliken, who assigned this peak to the 411
0

transition, but it also leads to large discrepancies between the calculated and the

observed spectrum at higher transition energies. In fact, the maximum absorption

is predicted at about 85000 cm−1 (ca. 1170 Å), cf. figure 1a, whereas the N→V

transition ends at 70420 cm−1 (ca. 1420 Å).

Insert Figure 2
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A quantitative comparison between the computed and the experimental spec-

trum in the region of the maximum absorption is not possible because of the over-

lapping N → R transition; however the large broadness which characterizes the

theoretical spectrum is clearly in disagreement with the experimental data. In har-

monic approximation that discrepancy arises from the large shift of the symmetric

C-H stretching mode. Indeed, if excitations of this mode are not considered in the

calculation of the FC factors, the vibrational progression of the theoretical absorp-

tion spectrum becomes sharper and less intense, as shown in figure 1b. In that case

the maximum of the absorption band is predicted to fall at about 60000 cm−1 (1666

Å), and the whole theoretical spectrum ends at 70000 cm−1 (1428 Å), in reasonable

agreement with the experimental one.

In conclusion, the main features of the experimental spectrum are better repro-

duced, in harmonic approximation, by neglecting excitations of the CH stretching

mode. The strong involvement of this mode predicted by Duschinsky transforma-

tion of the normal modes in Cartesian representation has not any experimental

counterpart, resonance Raman spectra do not show any activity associated with

this vibration.34

The internal coordinate representation. The whole set of CH and CC

stretchings, the four 6 CCH bendings, the two out of plane 6 CCH2 bendings, and

the torsion angle between the planes of the two CH2 groups constitute the set of

internal non-redundant coordinate adopted here. The last coordinate is defined,

following reference 35, as a linear combination of the four HCCH dihedrals. The

elements of the rotation matrix J(s) and of the displacement vector K(s) are reported

in table IV

Insert Table IV

In the internal coordinate representation, the CH2 twisting mode is no longer

coupled to any of the other totally symmetric normal coordinates; that makes the

CH symmetric stretching component of K(s) vanishingly small, cf. table IV, as it

would be expected from ab-initio computations. The CC stretching and the CH2

scissoring modes also exhibit much smaller equilibrium displacements.
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The theoretical spectrum calculated by exciting all the twelve normal modes is

reported in figure 1c.

The computed spectrum shows a well defined vibrational structure arising from

excitations of the CH2 twisting and the CH2 scissoring modes, no progression as-

sociated with the symmetric CH stretching mode is predicted. The most intense

vibrational progression is of course associated with the twisting vibration; the other

two progressions, clearly visible in figure 1c, are due to combination bands of the

type 4n
031

0 and 4n
032

0, in order of decreasing intensity. The highest FC factor is 0.055

for the 425
0 transition, more than one order of magnitude higher than that obtained

employing the Cartesian coordinate representation; the overall band width is about

20000 cm−1.

The best matching between the computed and the observed intensities is obtained

by assigning the peak at 49140 cm−1 to the 47
0 transition, see figure 2b. With this

assignment the 0-0 transition falls at 43140 cm−1, and the calculated maximum

absorption peak, corresponding to the 425
0 transition, is located at about 63000

cm−1 (1587 Å). Both the region of the maximum absorption as well as the whole

spectral width are in good qualitative agreement with the experimental data. The

agreement on peak intensities is good up to 52000 cm−1; slight discrepancies are

observed at higher wavenumbers, but, in this case, they could be due to the neglect of

anharmonic effects. Indeed, in this spectral region the energies of the vibronic states

populated by the radiative N→V transition are well above the barrier associated to

the rotation about the CC bond; the wavefunction for twisting no longer behaves

as a harmonic oscillator, or even as a perturbed harmonic oscillator, but it better

resembles that of a free rotator.36

The internal rotator model. Taking advantage of the separability of the a

modes in the curvilinear representation, cf. table IV, the torsional internal coordi-

nate can be treated indipendently from all the others as a hindered rotator in a

potential field of the form:37,38

V (N) =
3∑

k=1

V
(N)
k

2
[1 + cos (2kτ)] , (13)
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for the N state, and

V (V ) =
3∑

k=1

V
(V )
k

2

{
1 + cos

[
2k

(
τ +

π

2

)]}
, (14)

for the V state.

The coefficients of V (N) were obtained by Wallace from fitting of experimental

data,39 the numerical values are (cm−1): V
(N)
1 = 20454, V

(N)
2 = −2040, V

(N)
3 =

295. For the V state, the Siebrand recipe V
(V )
k = 0.73V

(N)
k has been adopted.7

This choice yields an energy barrier for rotation about the CC bond slightly larger

than that obtained by ab-initio multiconfigurational methods,40 19920 vs. 17200

cm−1. However Siebrand’s potential has been used succesfully for the analysis of

the ethylene spectrum and therefore we have preferred to adopt it, even for allowing

an easier comparison between the present results and those already reported in the

literature.

The Hamiltonian operator for the torsional motion is:41[
−B(α) ∂2

∂2τ
+ V (α)

]
|τn(α)〉 = En |τn(α)〉 α = N, V (15)

where B(α) = h̄2/I
(α)
CH2

, and I
(α)
CH2

is the moment of inertia of the methylenic group

about the axis passing through the two carbon atoms in the electronic state |α〉.

From the calculated equilibrium geometries, cf. table I, B
(N)
CH2

= 19.503 cm−1,

and B
(V )
CH2

= 20.455 cm−1 .

By expanding the eigenstates
∣∣∣τ (α)

n

〉
in a finite Fourier series,

∣∣∣τ (α)
n

〉
=

1√
2π

M∑
k=−M

cnke
ikτ α = N, V, (16)

the energies and the wavefunctions of the quantum states associated with the twist-

ing motion can be easily found by diagonalizing the Hamiltonian matrices of the N

and V electronic states.

A good convergence on the energies of the quantum states of interest for the

N→V transition has been found by using 250 exponential functions for both the N

and V states. Franck-Condon factors have been then computed as the product of
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two terms, one for the twisting coordinate, the other for all the remaining normal

modes:

FCN→V = |〈τn(N)|τm(V )〉〈QN |QV 〉|2. (17)

In that way Duschinky effect due to normal mode mixing is fully accounted for.

In figure 1d the absorption spectrum obtained from the internal rotator model

is shown. The agreement between computed and observed peak intensities and

wavenumbers is almost quantitative up to 54000 cm−1. As in the case of the har-

monic approximation, the most intense vibrational progression is associated with

excitations of the twisting mode alone, and the two lower intensity progressions

are due to combination bands of the type 4n
021

0 and 4n
022

0, respectively. The highest

Franck-Condon integral (ca. 0.17) is associated with the 420
0 transition. The absorp-

tion intensity decays quite quickly, in about 7000 cm−1 from the maximum intensity

peak. The overall bandwidth is ca. 10000 cm−1, much less than that obtained in

the harmonic approximation. This result rules out the possibility that the contin-

uum background observed at shorter wavelengths can be attributed to the N → V

transition.

The best matching between observed and calculated intensities is obtained by as-

signing the peak at 49140 to the 49
0 transition, see figure 2c, in quite good agreement

with Mulliken’s assignment. With this choice the 0-0 transition falls at 42325cm−1 ,

and the most intense vibronic transitions occur at 56683 and 57182 cm−1. No peaks

are observed at these wavenumbers, but, as first suggested by Mulliken,15 they are

probably hidden by the beginning of the N→R transition.

Conclusions

From the results discussed above several important points emerge.

First of all, in harmonic approximation the two coordinate representations give

very different results; the broad and structureless spectrum calculated by using the

Cartesian representation of normal modes becomes a sharper and more intense band

when the computation of the FC integrals is carried out in internal coordinates. The

broadness of the theoretical spectrum obtained by using the Cartesian representa-
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tion is mainly caused by the large equilibrium displacement of the symmetric CH

stretching normal mode upon electronic transition. This large displacement has

no experimental counterpart: no vibrational progression has been assigned in the

past to this mode and, furthermore, resonance Raman spectra have not shown any

significant activity of this mode in the N→V transition.34 Ab-initio computations

are in line with the above experimental findings, the equilibrium CH bond lengths

of the N and V states are predicted to differ by only 0.005 Å. Although the CH

activity has been invoked to explain the continuum background appearing in the

ethylene spectrum below 1600 Å,20,32 exactly in that region of shorter wavelengths

the computed spectrum strongly disagrees with the observed one.

The shapes of the theoretical spectra obtained in the internal coordinate rep-

resentation agree with the experimental data, as well as with that obtained by a

different approach, in which the absorption profile is obtained as the Fourier trans-

form of the autocorrelation function.42 In the case of the hindered rotator model

the agreement with the observed spectrum is almost quantitative in the wavelength

region where only the N→V transition takes place, but even the harmonic model

turns out to be sufficient for a qualitative assignment of the observed spectral peaks.

According to our results, the peak at 49140 has to be to assigned to the 49
0 tran-

sition in the internal rotator model and to the 47
0 one in harmonic approximation.

The latter value has to be taken as a lower limit; the assignment of this peak to

lower vibrational excited states, as occurs in the Cartesian representation, leads to

theoretical spectra which are significantly broader than the observed one. The fact

that the internal rotator model does not show any absorption continuum associated

with the N→V transition is not a serious drawback, because other mechanisms can

account for it; non-adiabatic couplings between closely lying electronic excited states

has been often invoked, even though the nature of the coupled states is still a matter

of debate.40,43

As concerns the application of Duschinsky’s normal mode transformation to cases

where the equilibrium geometries of the two electronic states are significantly differ-

ent, the results presented here clearly show that Duschinsky’s transformation works
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well when the normal modes are expressed in terms of a non-redundant set of in-

ternal curvilinear coordinates. In the Cartesian representation, a large equilibrium

displacement of one coordinate can be partially projected on some of the others,

giving rise to the appearance in the computed electronic spectrum of vibrational

progressions which are not experimentally observed. Mostly important, in the inter-

nal coordinate representation normal mode mixing occurs to a much lesser extent

than in the Cartesian coordinate representation. This offers several advantages both

in the treatment of anharmonic effects and in dynamic computations, where normal

mode separability plays a crucial role.44

The work presented here is only the first necessary step toward a quantitative

simulation of the ethylene absorption spectrum. Non adiabatic coupling as well as

the variation of the transition moment with the torsional angle38,42 play certainly a

role; work is in progress along these lines.
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Figure captions

Figure 1. Theoretical spectra of ethylene obtained by different methods: a) using

the Cartesian coordinate representation of normal coordinates and excitations on

all the twelve modes; b) as (a) but with no excitation of the CH stretching mode; c)

using the internal coordinate representation and excitations on all modes; d) treating

the torsional motion as an internal hindered rotation and all the other normal modes

in the internal curvilinear representation.

Figure 2. Computed (sticks) and observed (•) vibrational progressions of the N→V

transition. a) Cartesian coordinate representation, Cost=9.0.; b) internal coordinate

representation, Cost = 6.1; c) internal rotator model, Cost= 5.2. Observed intensi-

ties from ref. 33.
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Table I: Optimized molecular geometry parameters for the ground and the first
excited singlet state of ethylene.

Electronic state
N V

CC 1.339 1.373
CH 1.085 1.090
6 HCH 117.19 112.91
6 HCCH 0◦ 88.48◦

Table II: Computed vibrational frequencies (cm−1) of the N and V states of ethylene.

The frequencies of the V state have been scaled by 0.9.

Notationa Description D2h D2 N V
ν1 CH stretch. ag a 3192.8 2820.0
ν2 CC stretch ag a 1674.9 1220.4
ν3 CH2 sciss. ag a 1382.1 1376.4
ν4 torsion au a 1057.9 851.1
ν5 CH stretch. b1u b1 3175.2 2783.6
ν6 CH2 sciss. b1u b1 1481.6 1246.3
ν7 CH2 wag b2g b2 756.0 909.0
ν8 CH stretch b2u b2 3291.6 2836.4
ν9 CH2 rock b2u b2 829.5 659.6
ν10 CH stretch b3g b3 3264.9 2835.9
ν11 CH2 rock b3g b3 1237.5 903.2
ν12 CH2 wag b3u b3 956.7 670.2

a) Reference 45
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Table III: Duschinsky matrix J(x) and adimensional normal mode displacements

K(x) in the Cartesian coordinate representation.

J(x) K(x)

Mode ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10 ν11 ν12

ν1 −0.80 −0.14 0.01 −0.58 4.17
ν2 −0.08 −0.89 −0.31 0.33 −1.50
ν3 −0.11 −0.24 0.94 0.22 −1.98
ν4 0.58 −0.37 0.14 −0.71 7.13
ν5 0.79 0.14
ν6 0.11 0.92
ν7 −0.75 −0.58 0.33
ν8 −0.41 0.78 0.45
ν9 0.49 −0.17 0.82
ν10 −0.80 −0.27 0.53
ν11 0.14 −0.95 −0.26
ν12 0.58 −0.13 0.80

Table IV: Duschinsky matrix J(s) and adimensional normal mode displacemets K(s)

in the internal coordinate representation.

J(s) K(s)

ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10 ν11 ν12

ν1 −1.00 −0.05 −0.02 0.00 −0.04
ν2 0.04 −0.95 −0.29 0.02 0.14
ν3 0.00 −0.29 0.96 0.00 −0.89
ν4 0.00 −0.02 −0.01 −1.02 8.07
ν5 1.00 0.05
ν6 −0.05 0.99
ν7 0.67 −0.06 −0.57
ν8 0.00 1.00 0.02
ν9 0.55 0.09 1.01
ν10 −1.00 0.00 −0.02
ν11 0.09 −0.79 −0.43
ν12 −0.06 −0.66 0.77
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Figure 2
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