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Preface 
 
Welcome to the inaugural 2005 IEEE Symposium on Computational Intelligence and 
Games. This symposium marks a milestone in the development of machine learning, 
particularly using methods such as neural, fuzzy, and evolutionary computing. Let me 
start by thanking Dr. Simon Lucas and Dr. Graham Kendall for inviting me to write 
this preface. It's an honor to have this opportunity.  
 
Games are a very general way of describing the interaction between agents acting in 
an environment. Although we usually think of games in terms of competition, games 
do not have to be competitive: Players can be cooperative, neutral, or even unaware 
that they are playing the same game. The broad framework of games encompasses 
many familiar favorites, such as chess, checkers (draughts), tic-tac-toe (naughts and 
crosses), go, reversi, backgammon, awari, poker, blackjack, arcade and video games, 
and so forth. It also encompasses economic, social, and evolutionary games, such as 
hawk-dove, the prisoner's dilemma, and the minority game. Any time one or more 
players must allocate resources to achieve a goal in light of an environment, those 
players are playing a game.  
 
Artificial intelligence (AI) researchers have used games as test beds for their 
approaches for decades. Many of the seminal contributions to artificial intelligence 
stem from the early work of Alan Turing, Claude Shannon, Arthur Samuel, and 
others, who tackled the challenge of programming computers to play familiar games 
such as chess and checkers. The fundamental concepts of minimax, reinforcement 
learning, tree search, evaluation functions, each have roots in these early works.  
 
In the 1940s and 1950s, when computer science and engineering was in its infancy, 
the prospects of successfully programming a computer to defeat a human master at 
any significant game of skill were dim, even if hopes were high. More recently, 
seeing a computer defeat even a human grand master at chess or checkers, or many 
other familiar games, is not quite commonplace, but not as awe-inspiring as it was 
only a decade ago. Computers are now so fast and programming environments are so 
easy to work with that brute force methods of traditional AI are sufficient to compete 
with or even defeat the best human players in the world at all but a few of our 
common board games.  
 
Although it might be controversial, I believe that the success of Deep Blue (the chess 
program that defeated Garry Kasparov at chess), Chinook (the checkers program that 
earned the title of world champion in the mid-1990s), and other similar programs 
mark the end of a long journey - but not the journey started by Turing, Shannon, and 
Samuel - but rather a different journey.  
 
The laudatory success of these traditional AI programs has once again pointed to the 
limitations of these programs. Everything they "know" is preprogrammed. They do 
not adapt to new players, they assume their opponent examines a position in a similar 
way as they do, they assume the other player will always seek to maximize damage, 
and most importantly, they do not teach themselves how to improve beyond some 
rudimentary learning that might be exhibited in completing a bigger lookup table of 
best moves or winning conditions. This is not what Samuel and others had in mind 
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when asking how we might make a computer do something without telling it how to 
do it, that is, to learn to do it for itself. Deep Blue, Chinook, and other superlative 
programs have closed the door on one era of AI. As one door closes, another opens.  
 
Computational intelligence methods offer the possibility to open this new door. We 
have already seen examples of how neural, fuzzy, and evolutionary computing 
methods can allow a computer to learn how to play a game at a very high level of 
competency while relying initially on little more than primitive knowledge about the 
game. Some of those examples include my own efforts with Blondie24 and Blondie25 
in checkers and chess, respectively, and perhaps that is in part why I was asked to 
contribute this preface, but there are many other examples to reflect on, and now 
many more examples that the reader can find in these proceedings. No doubt there 
will be many more in future proceedings.  
 
Computational intelligence methods offer diverse advantages. One is the ability for a 
computer to teach itself how to play complex games using self-play. Another is the 
relatively easy manner in which these methods may be hybridized with human 
knowledge or other traditional AI methods, to leapfrog over what any one approach 
can do alone. Yet another is the ability to examine the emergent properties of 
evolutionary systems under diverse rules of engagement. It is possible to examine the 
conditions that are necessary to foster cooperation in different otherwise competitive 
situations, to foster maximum utilization of resources when they are limited, and 
when players might simply opt out of playing a game altogether. Computational 
intelligence offers a versatile suite of tools that will take us further on the journey to 
making machines intelligent.  
 
If you can imagine the excitement that filled the minds of the people exploring AI and 
games in the 1940s and 1950s, I truly believe what we are doing now is even more 
exciting. We all play games, every day. We decide how to allocate our time or other 
assets to achieve our objectives. Life itself is a game, and the contributors to this 
symposium are players, just as are you, the reader. Not all games are fun to play, but 
this one is, and if you aren't already playing, I wholeheartedly encourage you to get in 
the game. I hope you'll find it as rewarding as I have, and I hope to see you at the next 
CIG symposium. There is a long journey ahead and it is ours to create.  
 
David B. Fogel  
Chief Executive Officer  
Natural Selection, Inc.  
La Jolla, CA, USA 
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Abstract— In this paper we present a new framework to
analyze the behavior of evolutionary2×2 symmetric games. The
proposed approach enanbles us to predict the dynamics of the
system using the parameters of the game matrix above, without
dealing with the concepts of Nash equilibria and evolutionary
stable strategies. The predictions are in complete accordance with
those that can be made with these latter concepts. Simulations
have been performed on populations with spatial structures,
and show a good agreement with the model’s predictions. We
also analyze the dynamics of a particular system, showing how
effectively the framework applies to it.

I. I NTRODUCTION

Harrald [1] used genetic algorithms as evolutionary dy-
namics and gives a representation of players with limited
memory in repeated games. His approach is based on binary
representation of mixed strategy players and is extended in
order to use deterministic finite automata for these games.
Starting from this approach we introduce a different and, in
some sense, more natural representation for players and are
able to give an elegant analysis of the game evolution. Finally,
we implement this framework using both Matlab and C++
and compare the results. The structure of the paper is the
following: in Section II we recall some fundamental notions of
evolutionary game theory and present Harrald’s contribution;
in Section III we discuss some of Harrald’s assumptions and
present our approach. In Section IV we introduce a spatially
structured evolutionary algorithm and give a formal description
of the evolutionary system. Section V is devoted to the
simulation analysis and conclusions are given in Section VI.
The Appendix concerns some consequences of floating point
arithmetic error we encountered in our implementations.

II. PROBABILISTIC PLAYERS

Let’s consider the general form of a2× 2 symmetric game
where the two players always choose from the same action
set, say{X, Y }, with the payoff matrix as depicted in Table
I.

In [1], Paul Harrald proposed an approach based on proba-
bilistic strategies. A player’s strategy is no longer determinis-
tic, and becomes a probability of playing actionX, regardless
of the past actions played by both players. With the exception
of the cases where the strategy probability is either0 (i.e.,
always play actionY ) or 1 (i.e., always play actionX), the

X Y
X e g
Y h f

TABLE I

THE GENERAL PAYOFF MATRIX FOR A SYMMETRIC2× 2 GAME.

resulting strategies are mixed. A strategy is represented as a
binary chromosome of fixed lengthL: the binary string is
decoded into an integer value that is then divided by2L − 1,
so to obtain the actual value of the strategy. In a panmictic
(i.e., not spatially distributed) population, each agent in the
population plays against each other agent in a repeated game
for a fixed number of iterations, obtaining a total payoff
representing his fitness. During a game, each player determines
his moves randomly choosing between the two actionsX
and Y with the probability encoded in his chromosome. By
tournament selection, couples of parents are selected according
to their fitness values. Two offspring are obtained from each
couple of parents using one-point crossover, and each bit of
their chromosome is mutated by standard binary mutation. The
obtained offspring population is then considered as the new
population of the next generation.

We consider symmetric bimatrix gamesG (I, S, π), where
I = {1, 2} is the player set, consisting of two players,S is the
pure strategies space andπ is the combined payoff function
fully represented by the associated payoff matrix pair(R,C),
whereC = RT ( see [2] for details). As usual, the set of mixed
strategies for playeri is denoted∆i and, since we restrict our
attention to symmetric games, it holds∆ := ∆1 = ∆2

In this class of games we define thesymmetric Nash equi-
librium as any strategy pair(x, y) ∈ ∆2 such thatx ∈ β (y)
and y ∈ β (x) whereβ (·) is the best reply correspondence,
which maps each mixed strategy to the face of∆ which is
spanned by the pure best reply to ’·’. Finally an evolutionary
stable strategy(ESS) is a strategyx ∈ ∆ such that for every
strategyy 6= x there exists somēεy ∈ (0, 1) such that for all
ε ∈ (0, ε̄y) it holds:

x ·R(εy + (1− ε)x) > y ·R(εy + (1− ε) x)
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III. PROBABILISTIC PAYOFFS

Two main criticisms can be raised to Harrald’s evolutionary
machinery:

• Since a player has no memory of the previous moves
in a game, there is no need to make each couple of
opponents play all the iterations of a game. In fact, given
a big enough number of play iterations, if we denote the
probabilities of the two playersA and B with pA and
pB respectively, then we can approximate the expected
gain of playerA according to the game described by the
matrix in Table I by the expression:

epApB +gpA(1−pB)+h(1−pA)pB +f(1−pA)(1−pB).
(1)

• The binary representation of the probability could not
be the most suitable one (for a complete discussion on
the representation choice see, for example, [3]). Other
possible representation could be better suited, such as the
real number one, as suggested by the author himself in
the article.

Concerning the first criticism, let’s consider a population
P (t) of N probabilistic players at generationt and denotepi,
the agenti’s probability of playing actionX. The expected
gain of playeri, when playing with agentj, follows from
expression (1):

G(i, j, t) = epi(t)pj(t) + gpi(t)(1− pj(t)) +
+ h(1− pi(t))pj(t) + f(1− pi(t))(1− pj(t)),

therefore, the fitness (i.e., the sum of his payoffs against all
other agents in the population)f(i, t) of agenti at generation
t is

f(i, t) =
∑
j 6=i

G(i, j, t). (2)

If we denote the sum of the probabilities of all players in the
population at generationt with U(t), equation (2) becomes

f(i, t) = epi(t)(U(t)− pi(t)) +
+ gpi(t)(N − 1− U(t) + pj(t)) +
+ h(1− pi(t))(U(t)− pi(t)) +
+ f(1− pi(t))(N − 1− U(t) + pj(t)). (3)

Equation (3) gives an effective way of calculating the fitness
of an agent of a given population without having to perform
the actual games between the agent and all the other agents
in the population.

It is well known (see for example [2]) that every2 × 2
symmetric game can be normalized, and is equivalent to a
doubly symmetric game, where the payoff matrix is sym-
metric. While this equivalence is proven in game theoretical
context, it remains to be analyzed when considering dynamical
evolutions. The new game, that is called reduced, has the
payoff matrix displayed in Table II, wherea = e − h and
b = f − g.

We decided to focus our attention on doubly symmetric
games, given their relevance in evolutionary game theory. In

X Y
X a 0
Y 0 b

TABLE II

THE GENERAL PAYOFF MATRIX FOR A REDUCED SYMMETRIC2× 2 GAME.

the case of a reduced symmetric game, the expected gain of
player i playing against agentj at generationt is

G(i, j, t) = api(t)pj(t) + b(1− pi(t))(1− pj(t)),

thus, following the same reasoning done for equation (3), the
fitnessf(i, t) of agenti at generationt is given by

f(i, t) = api(t)(U(t)− pi(t) +
+ b(1− pi(t))(N − 1− U(t) + pi(t)). (4)

At generationt, let’s define the mean agentp̄(t) of popula-
tion P (t) as the mean of the probabilities of theN agents of
the population, i.e.,̄p(t) = U(t)/N . If we replace in equation
(4) the value ofpi(t) with the value of the mean agentp̄(t),
and we divide by the constant factorN − 1, we obtain the
expression

F (p̄, t) = (a + b)p̄2(t)− 2bp̄(t) + b, (5)

proportional to the fitness of the mean agent at generationt.
This equation determines a parabola with vertexV at abscissa
b/(a+ b). Note that this value coincides with the value of the
game.

The selection pressure of an evolutionary algorithm evolving
this kind of agents’ strategy will drive the mean agent of the
population towards higher values on the parabola described by
equation (5).

According to the possible values of the matrix parameters
a and b in a reduced symmetric game we have the following
four cases:

1) both a and b are positive: the parabola is concave and
the evolution will depend from the mean agentp̄(0) of
the initial populationP (0); if p̄(0) < b/(a + b) (the
vertex of the parabola, i.e., the value of the game), then
the evolution will be driven toward actionY ; otherwise
the evolution will be driven toward actionX (see Figure
1(a));

2) a is negative andb is positive: the parabola is decreasing
in the interval [0, 1]. Therefore, whatever the initial
population is, the evolution will be driven toward action
Y (see Figure 1(b));

3) botha andb are negative: the parabola is convex, since
its vertex is inside the interval[0, 1]. Thus, whatever the
initial population is, the evolution will be driven toward
the vertex, i.e. the value of the game (see Figure 1(c));

4) a is positive andb is negative: the parabola is increasing
in the interval[0, 1]. Therefore whatever the initial po-
pulation is, the evolution will be driven toward action
X (see Figure 1(d)).
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(a) (b)

(c) (d)

Fig. 1. The parabola defined by equation (5) whena > 0 and b > 0 (a),
a < 0 andb > 0 (b), a < 0 andb < 0 (c), anda > 0 andb < 0 (d).

The results of this analysis completely agree with classical
results of the evolutionary theory of2 × 2 symmetric games
(see [2] and [4]) obtained using the concepts of Nash equilibria
and evolutionary stable strategies. Moreover, the model implies
that the spatial structure of the population does not influence
the mean behaviors of the evolved populations, as we will see
in the next section.

IV. SPATIAL ARTIFICIAL EVOLUTION

The framework described in the previous section is inde-
pendent of the spatial structure of the evolved population. To
test whether its predictions are good when spatial constraints
are introduced, we have decided to evolve populations on
two-dimensional regular lattices: each agent is placed on a
vertex of a rectangular grid with periodic boundary condi-
tions (i.e., a toroidal structure), and is connected with the
eight closest agents, thus defining a Moore neighborhood.
While other neighborhoods are possible, the results remain
qualitatively the same. Furthermore, one of the authors is
running an experiment on human subjets; among the results,
it is evident that individuals choose a partner in their physical
Moore neighborhood. In further research we will consider the
dynamical evolution on different networks such as small-world
networks, fragmented networks and random networks.

The evolution is performed synchronously: at each genera-
tion, each agent selects the fittest agent in his neighborhood
and produces an offspring whose associated probability is
obtained by intermediate crossover (also known as arithmetical
or guaranteed average crossover [3]) between the two proba-
bilities associated with the agent itself and the selected agent.
No mutation is used in this process, and the produced offspring
replaces the considered agent in his location in the structure.

The dynamical system is completely deterministic: different
attractors can be found for each system, but, as we will show in
the simulations in Section V, the mean agent will always tend
to 0, 1 or the value of the game (the vertex of the parabola)
depending on the cases described in the previous section.

Even if the algorithm is quite simple, we have noticed
that using two different implementations in Matlab and C++
we obtained results qualitatively comparable but numerically
different. This is probably due to the different internal rep-
resentations of real numbers: for more details see the imple-
mentation note in the Appendix. While different approaches
have been suggested for handling errors in floating point
representations (e.g., interval arithmetic, see [5]), given the
finite state structure of our model, we decided to use integer
representation for states. This approach is similar, in a certain
sense, to that used by Harrald [1].

To each agentai is thus associated an integer statesi ∈
{0, 1, . . . ,M}: the agent will then play actionX with proba-
bility pi = si/M . To calculate the gain (the fitness) of agent
ai, this probability is used in equation (4): if we denote with
W (t) the sum of the states of the agents of the population
at time t (W (t) =

∑N
i=1 si), we haveU(t) = W (t)/N .

Multiplying by M2 and simplifying, we obtain the following
form of equation (4):

F (i, t) = −(a + b)s2
i (t) +

+ ((a + b)W (t) + Mb(2−N))si(t) +
+ Mb(M(N − 1)−W (t)). (6)

This evolutionary system can be described in a more formal
way: let’s consider a discrete timet and a populationP (t) of
N agents. To each agent are associated a state and a location:
P (t) = {a1(t), a2(t), . . . , aN (t)}, with ai = 〈si(t), li〉, where
si(t) ∈ S = {s1, s2, . . . , sm}, the set of the possible states
of the agents, andli ∈ L = {l1, l2, . . . , lN}, the set of the
locations of the agents in the structure of the population. If
we denote withT the product space between the space of the
possible states and the space of the possible locations of the
agents (T = S × L), a population ofN agents is an element
of TN .

A fitness functionF : TN → RN (where R is the
set of real numbers) is given, such that each population
P (t) = {a1(t), a2(t), . . . , aN (t)} is associated to a vector
f(t) = F (P (t)) = 〈f1(t), f2(t), . . . , fN (t)〉 with fi(t) being
the fitness value of agentai(t).

The selection mechanism is described by a functionSel :
TN × RN → SN such that 〈s′1(t), s′2(t), . . . , s′N (t)〉 =
Sel(P (t), F (P (t))). For each agent in the population it selects
the state of the agent in his neighborhood with the highest
fitness value. Note that only the state of an agent is selected,
since the location of the selected agent doesn’t influence
the successive crossover. On the contrary the location of the
selecting agent influences the functionSel, since it determines
the selection pool for each location in the structure. The
topology of the structure thus affects the selection function,
but not the successive reproduction operators.
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The state of the agent in the considered location is then
combined with the selected state by a functionOp : S×S →
S, producing the state of the agent in the next generation for
the considered location. If only a crossover operator is used,
as it is the case in our evolutionary algorithm, the function
Op can be represented in the form of anN × N matrix of
elements ofS.

Given the topology of the structure, the setL of the possible
locations of the agents, the setS of the possible states of
the agents, the fitness functionF , the selection functionSel,
the recombination functionOp, and the populationP (t), the
populationP (t + 1) = {a1(t + 1), a2(t + 1), . . . , aN (t + 1)}
at the next generation is formed by agentsai(t+1) = 〈si(t+
1), li〉 such thatsi(t + 1) = Op(si(t), s′i(t)).

V. SIMULATIONS ANALYSIS

Two groups of simulation have been performed to test the
exactness of the models’ predictions: the first time, we let the
system evolve starting from random populations. Then we cre-
ated a particular initial population and the system dynamical
behavior is observed, so as to show how the prediction of the
model actually works.

At first, we let evolve a population of2500 agents at21
possible states disposed on a50 × 50 toroidal grid with a
Moore neighborhood (each agent’s neighborhood is composed
by the agent itself and the 8 agents directly surrounding him).
The agents face a game whose matrix is the one depicted in
Table III).

X Y
X −2 0
Y 0 −3

TABLE III

THE PAYOFF MATRIX FOR THE SIMULATIONS.

Such a matrix falls under case 3) of Section II since both
a and b are negative. The model in this case predicts that,
whatever the initial population is, the mean agent will tend to
the value of the game, which in this case is0.6. This prediction
is confirmed by the simulation results: in Figure 2 the evolution
of the mean player over a generation is shown, when starting
with a random population composed by20% of agents playing
actionX with probability 1, and80% playing actionY with
probability 1.

The evolution over the generations of the fitness of the mean
agent is shown in figure 3(a): it can be noticed how, even
though the mean agent value oscillates between two different
states, its fitness value (its payoff against all other members
of the population) stabilizes. The fitness of the mean agent
is clearly linked to the mean fitness of the population: the
artificial evolution tends to populations of different agents who
have very similar fitness values. In fact the difference between
the maximal and the minimal fitnesses of the population
through generations tends to0, as it is shown in figure 3(b).

As we have previously pointed out, the model can predict
the behavior of the mean agent, without taking into account
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Fig. 2. Evolution of the value of the mean player over time of a population
of 2500 agents at21 possible states disposed on a50×50 toroidal grid with
a Moore neighborhood.
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Fig. 3. Evolution over the generations of the fitness of the mean agent (a) and
of the difference between the maximal and the minimal fitness of a population
of 2500 agents at21 possible states disposed on a50×50 toroidal grid with
a Moore neighborhood.

the structure of the population and the initial disposition of
the agents. In fact, starting with different populations, we
will observe different attractors for the evolutionary process.
For this simulation a period2 attractor can be observed (see
figure 4, where the two populations are shown): darker agents
correspond to probabilities closer to0 of playing actionX,
with black agent corresponding to probability0, and white
agents to probability1.
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Fig. 4. Final populations of2500 agents at21 possible states disposed on a
50× 50 toroidal grid with a Moore neighborhood. The two populations form
a period2 cyclic attractor of the evolutionary system.

If the payoff matrix is changed to the one depicted in Table
IV, the game falls under case 1) of Section II since botha
andb are positive.

The model predicts that the evolution will depend on the
mean agent̄p(0) of the initial populationP (0); if p̄(0) < 0.6
(the value of the game), then the evolution will be driven to-
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X Y
X 2 0
Y 0 3

TABLE IV

THE PAYOFF MATRIX FOR THE SIMULATIONS.

wards actionY ; otherwise the evolution will be driven towards
actionX. The prediction is fully confirmed by the simulations
shown in Figures 5 and 6, where the time evolution of the
mean agent and of the difference between the maximal and the
minimal population fitnesses are shown, in the case of initial
random populations with̄p(0) = 0.5939 and p̄(0) = 0.6047
respectively. Note how the difference between the maximal
and the minimal fitnesses in the population rapidly grows at the
beginning of the evolution (the agents split towards opposite
strategies), and then tends to0.

(a) (b)

Fig. 5. Evolution over the generations of the mean agent (a) and of the
difference between the maximal and the minimal fitnesses of a population of
2500 agents at21 possible states disposed on a50× 50 toroidal grid with a
Moore neighborhood. The initial population has a mean agent with associated
probability p̄(0) = 0.5939 < 0.6, the value of the game.

Fig. 6. Evolution over the generations of the mean agent (a) and of the
difference between the maximal and the minimal fitnesses of a population of
2500 agents at21 possible states disposed on a50× 50 toroidal grid with a
Moore neighborhood. The initial population has a mean agent with associated
probability p̄(0) = 0.6047 > 0.6, the value of the game.

In the second part of the simulations we consider a small
population of121 agents disposed on a11× 11 toroidal grid.
Each agent’s neighborhood is composed by the agent itself and
the 8 agents directly surrounding him (thus forming a Moore
neighborhood). The payoff matrix of the game is the same as
for the first group of simulations (see Table III).

The set of an agent’s possible states is composed of7
elements (S = {0, 1, . . . , 6}). The probabilities of playing
actionX associated to the7 states are respectively:0, 0.1667,

0.3333, 0.5, 0.6667, 0.8333, and1. To draw the populations
during the evolution, we have associated to each state a color
on a grey scale (see Figure 7).

Fig. 7. Color scale for7 state agents: from state0 (black) we pass through
states corresponding to probabilities0.1667, 0.3333, 0.5, 0.6667, 0.8333,
to finally reach state6 (white) that corresponds to probability1 of playing
actionX.

The intermediate crossover between the integer states is
performed according to the crossover matrix of Table V:
recombining a statei agent with a statej agent, the state
of the offspring agent will be the one at the intersection of
row i and columnj of the matrix.

0 1 2 3 4 5 6
0 0 0 1 1 2 2 3
1 0 1 1 2 2 3 3
2 1 1 2 2 3 3 4
3 1 2 2 3 3 4 4
4 2 2 3 3 4 4 5
5 2 3 3 4 4 5 5
6 3 3 4 4 5 5 6

TABLE V

THE CROSSOVER MATRIX FOR AGENTS WITH7 POSSIBLE STATES.

Figure 8 shows the evolution of the system starting from
an initial population solely of all agents playing actionX
with probability1 (agents’ states6), with the exception of the
central individual who plays actionY with probability1 (agent
state0). For each generation (t = 0, 1, . . . , 7) the population
is plotted on the left, and the parabola associated to the
population is drawn on the right: the probabilities associated
with the 7 possible states of the agents are on the x axis, and
the corresponding fitness values, function of the sumU(t) of
the probabilities associated to the agents in the population, are
on the y axis.

At time t = 0 the single agent at state0 has the highest
fitness value (the parabola is decreasing in the interval[0, 1]),
and therefore it will be selected by its surrounding neighbors
for recombination. Applying the crossover matrix (see Table
V), at the next generation (t = 1) the population will be
formed by one agent at state0 surrounded by8 agents at
state3, and all other agents at state6. The behavior of the
population from time1 to time 4 is analogous to that of time
0: since smaller associated probabilities have higher fitness
values, the agents will recombine with the agent in their
neighborhood with smaller states. Note that the agents at state
6 disappear, because they have always the smallest fitness
value. Since the crossover matrix allows the production of
state6 agents only when both the parents have state6, that
state will never appear once lost in the population.

At time t = 5 the parabola becomes increasing in the
interval [0, 1]. The agents at state0 have the lowest fitness
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t = 6 t = 7

Fig. 8. Evolution of a population of11 × 11 agents that can assume7 possible states: the initial population is composed by all agents playing actionX
with probability 1 (agents’ states6), except the central individual that plays actionY with probability 1 (agent state0). For each time step, the population
(left) and the corresponding parabola (right) are shown. At timet = 8 the population will be the same as at timet = 6, resulting in an attractor of period2
for the dynamic of the system.

value: those at the border of the region will select state-
2 agents for recombination (since they have higher fitness),
producing state-1 offspring agents. Agents at state2 will
select, for the same reason, agents at state4, producing state-3
offspring agents. All other agents don’t change state, since the

crossover operator will produce offsprings with the same state
(see Table V).

At time t = 6 (see the enlargement in Figure 9 left) the
parabola is still increasing in the interval[0, 1]: only agents at
state1 will change state, since the only crossover producing
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offsprings with a different state is the one between agents at
state1 and agents at state3. At time t = 7 (see the enlargement
in figure 9 right), parabola is such that state-0 agents have a
higher fitness than state-1, -2, and -3 agents, and therefore
only agents at state2 selecting agents at state0 will produce
an offspring at a different state (1). A population equal to
that of generation6 is produced, and the system enters in a
period-2 attractor oscillating between the two configurations.
The system oscillates between states in which the mean agent
has strategies0.573003 and0.595041. This result completely
agrees with the model’s prediction: since botha and b are
negative, the mean agent shall tend to the value of the game,
which in this case is0.6.

t = 6 t = 7

Fig. 9. Enlargement, enlarging y-axis, of the parabola of figure 8 at
generations6 and 7: from increasing in the probability interval[0, 1] at
generation6, it becomes decreasing at generation7.

VI. CONCLUSIONS ANDFUTURE WORK

We have introduced a new framework to analyze and predict
the behavior of evolutionary2 × 2 symmetric games. This
approach only uses the parameters of the payoff matrix of the
game, and leads to behavior predictions that are in perfect
agreement with classical evolutionary theory, without dealing
with Nash equilibria or evolutionary stables strategies. The
proposed model is not influenced by the spatial structure of
the evolving population of agents.

The evolutionary algorithm used to experimentally validate
the model is then described, introducing a new formalism for
the evolution of spatially structured populations. The experi-
ments fully confirm the predicted behaviors, and a complete
analysis of a simple dynamical system is presented, in order
to exemplify the model.

In the future we intend to investigate the different dynamics
induced by different crossover matrices, and the possibility of
the co-evolution of strategies and crossover operators. We also
want to study and model the introduction of random mutation
in the evolutionary algorithm.
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APPENDIX

The consequences of floating points arithmetic error are
well known in the simulation literature (see for instance
[6]). In order to avoid this common pitfall we decided to
implement our framework using both Matlab and C++. With
continuous states the results obtained by two implementations
were qualitatively the same even if numerically different.

Since exact replication of the experiments is obviously
desirable we decided to have quantized states in order to
obtain crossover results that were consistent between the two
implementations.

While usually such effects are thought to be arising from
accumulated floating point errors, in our case we found such
discrepancies almost immediately.

In fact even with the seven-state simulation described in
Section V our Matlab implementation incurred in some prob-
lems, when performing the arithmetical crossover.

For example, consider crossover between two agents with
probabilities1/2 (state3) and0 (state0). With the arithmetic
crossover the offspring is1/4 and, in deciding the state of the
offspring, two quantities must be compared:1/4 − 1/6 and
2/6− 1/4. Note that obviously in this case the two quantities
are identical and a rule should be implemented for deciding
the state of the offspring. The problem we encountered is that
Matlab considers1/4− 1/6 greater than2/6− 1/4. With the
C++ implementation we used long double i.e., floating-point
data type with 80 bits of precision for our variables and the
problem did not occur. Yet, since the accumulated floating
point errors could not be ruled out completely, we decided to
consider integer representation for the states.

Nevertheless a further step was in order. Since, due to the
internal representation, the same fitness could be considered
different depending on the implementation, we resolved to
consider integer values for the fitness as well. This, to the
best of our knowledge, solved our problems with the only
drawback of imposing an upper bound on the number of states
to be considered.
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