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Abstract 

Background. There are currently no neuroanatomical biomarkers of anorexia nervosa (AN) available 

to make clinical inferences at an individual subject level. We present results of a multivariate machine 

learning (ML) approach utilizing structural neuroanatomical scan data to differentiate AN patients 

from matched healthy controls at an individual subject level. 

Method. Structural neuroimaging scans were acquired from 15 female patients with AN (age = 20, 

s.d. = 4 years) and 15 demographically matched female controls (age = 22, s.d. = 3 years). 

Neuroanatomical volumes were extracted using the FreeSurfer software and input into the Least 

Absolute Shrinkage and Selection Operator (LASSO) multivariate ML algorithm. LASSO was 

'trained' to identify 'novel' individual subjects as either AN patients or healthy controls. Furthermore, 

the model estimated the probability that an individual subject belonged to the AN group based on an 

individual scan. 

Results. The model correctly predicted 25 out of 30 subjects, translating into 83.3% accuracy 

(sensitivity 86.7%, specificity 80.0%) (p < 0.001; χ2 test). Six neuroanatomical regions (cerebellum 

white matter, choroid plexus, putamen, accumbens, the diencephalon and the third ventricle) were 

found to be relevant in distinguishing individual AN patients from healthy controls. The predicted 

probabilities showed a linear relationship with drive for thinness clinical scores (r = 0.52, p < 0.005) 

and with body mass index (BMI) (r = -0.45, p = 0.01). 

Conclusions. The model achieved a good predictive accuracy and drive for thinness showed a strong 

neuroanatomical signature. These results indicate that neuroimaging scans coupled with ML 

techniques have the potential to provide information at an individual subject level that might be 

relevant to clinical outcomes. 

 

Key words: anorexia, drive for thinness, machine learning, magnetic resonance imaging. 
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Original Articles 

Introduction 

Anorexia nervosa (AN) is a potentially life-threatening eating disorder characterized by intense body 

dissatisfaction and a relentless pursuit of thinness, to the point of starvation. Treatments for anorexia 

are often ineffective (Steinhausen, 2002; Fassino & Abbate Daga, 2013; Walsh, 2013), and this makes 

research into the brain mechanisms that trigger and maintain the disorder critical in order to develop 

targeted approaches and new treatment options (Schmidt &Campbell, 2013). Several authors have 

investigated the presence of structural brain alterations that could be linked to the symptoms of 

anorexia. For example, volumetric decreases have been found in the gray matter in the cerebellum 

(Boghi et al. 2011; Brooks et al. 2011; Amianto et al. 2013a; Fonville et al. 2014), frontal cortex (Joos 

et al. 2010), anterior cingulate (Muhlau et al. 2007; Friederich et al. 2012), temporal and parietal areas 

(Castro-Fornieles et al. 2009; Joos et al. 2010; Gaudio et al. 2011), occipital areas (Suchan et al. 2010; 

Amianto et al. 2013a ; Fonville et al. 2014) and localized white matter regions (Kazlouski et al. 2011; 

Frank et al. 2013). In addition, total white matter (Boghi et al. 2011; Bomba et al. 2013; Fonville et 

al. 2014) and total gray matter (Katzman et al. 1996; Bomba et al. 2013) reductions have beenreported 

in some studies. In contrast, volumetric increases in specific gray matter regions (Brooks et al. 2011; 

Amianto et al. 2013a; Frank et al. 2013) and in cerebrospinal fluid and ventricles (Castro-Fornieles 

et al. 2009; Bomba et al. 2013; Fonville et al. 2014) have also been reported. However, results from 

these studies have not been translated into clinical practice. A major limitation has been the fact that 

previous studies have largely utilized univariate data analytic techniques - which compute statistical 

inferences at a voxel-by-voxel basis and cannot utilize multiple measurements to make predictions at 

an individual subject level. Consequently, in this study, we adopted a multivariate machine learning 

approach, which has two noticeable benefits: first, the ability to utilize multiple neuroanatomical 

measurements to classify or predict individual subjects; second, this method allows the researcher to 

select neuroanatomical measurements most relevant in predicting individual subjects through a 

feature reduction process (Mwangi et al. 2012). These techniques have recently been developed and 

applied successfully in neuroimaging research (Mwangi et al. 2012, 2014b). Notably, these 

techniques are usually implemented in two stages: first, neuroanatomical measurements from 

multiple subjects and corresponding diagnostic labels (e.g. 1 = healthy controls, 2 = anorexia) are 

used to 'train' a classifier. Second, the classifier accuracy (sensitivity and specificity) is evaluated 

using 'novel' data not utilized during the classifier 'training' stage. This process is referred to as 'cross-

validation', which in this study was implemented using the 'leave-one-out' method. This entails 

'training' the classifier using all subjects but one, a process which is repeated until all subjects are left 

out at least once and prediction results are aggregated as well as reported. These techniques have been 

successfully applied in multiple disorders such as major depression (Mwangi et al. 2012), bipolar 

disorder (Mwangi et al. 2014a), attention-deficit/hyperactivity disorder (Johnston et al. 2014) and 

autism (Ingalhalikar et al. 2011). Most notably, some machine learning techniques provide 

probabilistic outcomes at the individual subject level, which quantify the probability of a subject 
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having a disorder (Mwangi et al. 2014a). These probabilities may be useful clinically to guide 

individualized treatments (Fu & Costafreda, 2013). 

In this study T1-weighted magnetic resonance imaging (MRI) scans of 15 AN patients and 15 

matched healthy controls were acquired from the Center for Eating Disorders in Turin, Italy. These 

data have previously been reported elsewhere (Amianto et al. 2013a). Our primary aim in this study 

was to develop and apply a highly accurate predictive classifier able to discriminate neuroanatomical 

scans from AN patients and healthy controls. Specifically, the Least Absolute Shrinkage and 

Selection Operator (LASSO) algorithm (Tibshirani, 1996) was used. The second aim was to compute 

the probability of a subject of belonging in the AN group based on the subject's MRI scan and 

establish whether there is a relationship between individual subjects' probabilities and key symptoms 

of anorexia. This aim was investigated by testing the correlation of the probability with two 

dimensions of the Eating Disorder Inventory 2 (EDI-II) (Garner, 1991): 'drive for thinness' and 'body 

dissatisfaction', which express the core psychopathology of AN (Russell, 1970; Bruch, 1973; 

Vansteelandt et al. 2010), and with the BMI.  

 

Method 

Participants 

Patients were recruited after being diagnosed with AN at their first visit at the out-patient service of 

the Center for Eating Disorders of the University of Turin. Matched healthy controls were recruited 

through local advertisements. Diagnosis was established for all subjects by a psychiatrist expert in 

the assessment of eating disorders using the Structured Clinical Interview for DSM-IV-TR (SCID). 

A further assessment for Axis II disorders was also performed with the SCID-II for DSM-IV-TR. A 

total of 15 AN patients (12 restricting-type, three binge-purging type) and 15 healthy controls were 

enrolled. Inclusion criteria were: female sex, age 16-30 years, right-handedness, no past or present 

neurological diseases, no psychiatric Axis I or Axis II co-morbidity for patients, no drug or alcohol 

abuse or dependence, no psychiatric diagnosis for controls, no past or present medication or 

psychotherapeutic treatment, duration or illness shorter than 2 years, BMI > 15 kg/m 2 for patients. 

The EDI-II (Garner, 1991) was administered to all participants. All subjects provided their written 

informed consent to the study. The study was approved by the Ethical Committee of the San Giovanni 

Battista Hospital, Turin. Statistical analyses were conducted using SPSS 20.0 (USA). Demographic 

and clinical group differences between patients and healthy controls were assessed with t tests. 

MRI scan acquisition 

Data were acquired at the Neuroscience Department, San Giovanni Battista Hospital, Turin, on a 

Philips Achieva1.5 T scanner (The Netherlands). T1-weighted three-dimensional turbo gradient-echo 

sequences (image matrix = 256 × 256; voxel size = 1 × 1 × 1 mm 3; number of slices = 190; repetition 

time (TR) = 7 ms; echo time (TE) = 3 ms; turbo spin echo, TFE shots = 89) were acquired with full 
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brain coverage and isotropic voxels. This sequence was equivalent to a magnetic prepared rapid 

acquisition gradient echo (MPRAGE). The acquisition time was approximately 5 min. 

MRI scan pre-processing 

All T1-weighted scans were inspected to ensure no presence of gross artefacts and subsequently 

preprocessed using the FreeSurfer software library (http://surfer.nmr.mgh.harvard.edu/) version 5.3.0 

(Fischl, 2012). This process was achieved using an automated method which is described in detail 

elsewhere (Desikan et al. 2006; Rosas et al. 2010). Lastly, neuroanatomical volumes were extracted 

using a brain atlas of 109 anatomical regions (41 subcortical and 68 cortical) as described elsewhere 

(Fischl et al. 2004; Desikan et al. 2006) and tabulated in the online Supplementary material. All 

anatomical volumes were scaled with the total intracranial volume (ICV) and used as predictor 

variables or features in the ensuing machine learning analyses. 

Multivariate machine learning 

Predictor variables were normalized by subtracting the mean and dividing by the standard deviation. 

The LASSO algorithm was set up to perform a prediction task of classifying or distinguishing healthy 

controls from AN patients. Anatomical volumes (ICV normalized) also referred to as predictor 

variables or features were represented as xij. Target group membership labels (1 = healthy controls, 2 

= anorexia) were represented as yi, where i = 1, 2, 3,... N represents study subjects (healthy controls, 

AN) and j = 1,2,3,... M stands for the number of predictor variables (anatomical volumes - ICV 

normalized). Consequently, the LASSO algorithm (Tibshirani, 1996, 2011) computed a set of 

coefficients (�̂� ) by minimizing the following objective function:  

 

where λ is a parameter used to encourage model sparsity - meaning few model coefficients (�̂� ) with 

non-zero weighting values and high model prediction accuracy (Tibshirani, 1996; Bunea et al. 2011; 

Mwangi et al. 2014b). In the present study, the λ parameter was selected through a 5-fold cross-

validation using training data only and the parameter which maximized prediction accuracy was 

selected. The LASSO objective function was solved using the coordinate descent optimization 

algorithm as explored in detail elsewhere (Friedman et al. 2010). This optimization was solved using 

a Matlab (The Mathworks, Inc.) routine freely provided by Friedman et al. (2010). Most notably, in 

the current study the LASSO algorithm was preferred as compared to equivalent algorithms (e.g. 

ridge regression or non-regularized ridge) as it promotes 'sparsity' - meaning few model coefficients 

with non-zero weighting values (Bunea et al. 2011; Mwangi et al. 2014b). Sparse models are 

reportedly more accurate as they remove non-redundant predictor variables and are more interpretable 

as there are few anatomical regions to consider when interpreting the model (Mwangi et al. 2014b). 
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The model was 'trained' to estimate the probability of a subject belonging to the AN or the healthy 

control group. Importantly, the leave-one-out cross-validation (LOOCV) method as introduced below 

was used to train and test the models shown in Fig. 1 b. This process entailed training the model using 

all subjects but one and this was repeated until all subjects had been left out at least once (Johnston 

et al. 2013). Lastly, the validity of the model was assessed using multiple metrics such as accuracy, 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and area 

under receiver operating characteristic curve (AUROC). These predictive classifier quantification 

metrics are explored in detail elsewhere (Mwangi et al. 2012). The model probability, which 

quantifies whether the subject belongs to the patient or healthy control group, was tested for 

correlations with the drive for thinness and body dissatisfaction scores of the EDI-II and the BMI. 

This calculation was performed to establish the relationship between the machine learning model 

probability outcome and dimensions that define the key diagnostic criteria for AN. Furthermore, 

partial correlations using weight as a covariate were performed, in order to assess whether the 

relationship between the model probability and psychopathology at an individual subject level was 

accounted for by BMI. 

 

 

 

Fig. 1. Flow diagrams showing both the magnetic resonance imaging (MRI) scan during the pre-processing stage and 

during the model training/testing process. (a) Volumetric measurements were extracted using FreeSurfer software version 

5.3. (b) A leave-one-out cross-validation process was used to separate training and testing data and the model was trained 

using training data only. The model was used to predict the left-out subject (circled in blue). LASSO, Least Absolute 

Shrinkage and Selection Operator. 
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Results 

Table 1 summarizes the sociodemographic and clinical details of the participants. There were no 

significant differences between groups with regards to age. As expected, AN patients had a 

significantly lower weight and a higher drive for thinness. There was a trend for higher body 

dissatisfaction in AN patients (p = 0.061). 

 

Table 1. Clinical and demographic characteristics and differences between means (t test) 

  Controls (n = 15) AN (n = 15) t p 

Age, years 22 (3) 20 (4) 1.6 0.1 

Duration of illness, months - 13 (8) - - 

BMI, kg/m2 21.4 (2.4) 15.9 (1.0) 7.9 <0.001 

Drive to thinness 2.3 (2.8) 12.8 (7.1) -5.2 <0.001 

Body dissatisfaction 7.9 (6.9) 12.8 (6.9) -1.9 0.061 

Data are given as mean (standard deviation). 

AN, Anorexia nervosa; BMI, body mass index. 

 

The LASSO multivariate machine learning model assigned 25 out of 30 subjects the correct label (12 

AN patients and 13 controls were correctly classified). This result translated to a sensitivity of 86.7%, 

80.0% specificity and overall accuracy of 83.3%. In addition, the model reported a PPV = 85.7%, 

NPV = 81.2%, and an AUROC of 0.796. These predictions were statistically significant (p < 0.001) 

through a χ2 test between actual categorical labels and the model's predicted labels. Anatomical 

regions that were most relevant to the model predictions are shown in Fig. 2b. Anatomical regions 

that presented volumetric reductions in AN patients include white matter of the left cerebellum, and 

the left accumbens area. Conversely, the left choroid plexus, the right putamen, the third ventricle 

and the right ventral diencephalon presented volumetric increases in AN patients as compared with 

healthy controls as shown in Fig. 1b. The individual score of probability of being assigned to the 

group of anorectic patients showed a linear relationship with the drive for thinness scale (r = 0.52, p 

< 0.005) (see Fig. 3) and with BMI (r = -0.45, p = 0.01). No relationship was found with body 
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dissatisfaction. A partial correlation between the probability score and drive for thinness controlling 

for the BMI indicated a persisting trend towards a positive correlation (r = 0.35, p = 0.060). 

 

 

Fig. 2. (a) Anatomical regions that were most relevant to model predictions. The dimensions of the bars represent the β 

weights of the regions (= relative contribution to the model). (b) The same regions are shown in the brain. L, Left; R, 

right; DC, diencephalon.  

 

 

Fig. 3. Scatterplot showing the relationship between model probability and Eating Disorder Inventory 2 drive for thinness 

scores for patients with anorexia and controls. 

  



8 
 

Discussion 

AN is a serious psychiatric disorder that affects mainly adolescent and young adult women. It is 

associated with medical complications (Fairburn & Harrison, 2003) and it has one of the highest 

mortality rates among all psychiatric disorders (Sullivan, 1995).  

To the best of our knowledge, this is the first neuroimaging study utilizing a machine learning 

technique to predict AN diagnosis at an individual subject level. Markedly, probabilities assigned to 

individual subjects by the machine learning model showed a linear relationship with the drive for 

thinness scores and with the BMI.  

Brain regions identified by the model as most relevant in classifying AN patients from healthy 

controls are consistent with published group-level studies and with findings of the previous study 

performed on this dataset: one example of this is the presence of alterations in the cerebellum.  

The cerebellum is involved in feeding, behavior and emotion regulation (Schmahmann & Sherman, 

1998; Zhu & Wang, 2008), and several recent studies point to alterations in the cerebellum in eating 

disorder patients (Boghi et al. 2011; Brooks et al. 2011; Fonville et al. 2014; Amianto et al. 2013a, 

b). The reduction in the white matter of the left cerebellum in particular dovetails with a recent 

diffusion tensor imaging study by Nagahara et al. (2014) which found lower fractional anisotropy in 

the white matter of the left cerebellum in anorectic patients compared with controls. However, there 

were also differences from previous results. Group differences that the previous voxel-based 

morphometry (VBM) analysis showed in this database (e.g. in the paracentral lobule and the 

supplementary motor area) (Amianto et al. 2013a) were not found to be relevant in distinguishing 

individual AN patients and healthy controls using a multivariate machine learning approach. This 

may be due to the process of feature selection or 'regularization' (Bunea et al. 2011; Mwangi et al. 

2014b): LASSO 'prunes' (assigns zero β weight to) variables that may be 'redundant', meaning that 

they may not provide significant improvement to the model (Bunea et al. 2011).  

The increased volume in the choroid plexus was an unanticipated result. This could be attributed to 

the fact that multivariate machine learning techniques may be more sensitive to volumetric patterns, 

as compared with conventional mass-univariate approaches (Fu & Costafreda, 2013). The choroid 

plexus has been implicated in recent studies as a relevant and understudied area of investigation in 

psychiatry (Sathyanesan et al. 2012; Turner et al. 2014). Sathyanesan et al. (2012) showed that 

chronic stress alters the expression of several genes and down-regulates 5HT2C receptors in the 

choroid plexus; the authors suggest that these mechanisms play a role in stress-induced decrease in 

glucose intake in rats. Alterations of serotonergic circuits and the effects of stress are thought to be 

involved in the neurobiology of AN (Kaye et al. 2013). Another study in rats showed that the 

stimulation of melanocortin receptors in circumventricular organs, among which the choroid plexus, 

has potent inhibitory effects on food intake (Trivedi et al. 2003). Further investigation of this 

anatomical region in anorexia is warranted. Lastly, the putamen and accumbens are regions involved 

in reward processing and alterations in the reward system have been repeatedly reported in this patient 
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population (Frank, 2013; Frank et al. 2013; Titova et al. 2013). In addition, ventricular enlargement 

confirms previous studies (Swayze et al. 2003; Fonville et al. 2014).  

Some structural alterations reported in AN are thought to be related to stage of illness (e.g. early 

versus chronic), lowest illness-related attained BMI and current BMI status (as can be expected since 

low BMI is a criterion for AN diagnosis) (Roberto et al. 2011; Fonville et al. 2014; Fuglset et al. 

2015; King et al. 2015). Consequently, it is unclear whether the pattern identified by the model 

expresses trait or state features of the illness. However, the patient population of this study is 

characterized by a short duration of illness; therefore our findings are not likely to be due to effects 

of prolonged/chronic illness. A longitudinal study is currently underway with the aim of investigating 

structural changes related to BMI increase after treatment as well as testing whether individual 

differences in the model probability among AN patients at the time of diagnosis will predict course 

of illness and response to treatment.  

The relationship between the model probability and drive for thinness and BMI shows that the model 

is able to capture relevant dimensions of AN at an individual subject level. The partial correlation 

between the probability score and drive for thinness was close to significance after controlling for 

BMI (r = 0.35, p = 0.06). Therefore, it is plausible that the relationship between the model probability 

and the psychological dimension of drive for thinness is independent of weight. Noticeably, the two 

subjects in the healthy comparison group that were misclassified by the model as anorectics had the 

highest drive for thinness scores among healthy controls (10 and 6, respectively), and their BMIs 

were within normal limits. These findings support current efforts to integrate dimensional models to 

the categorical diagnostic systems in use with the aim of elucidating underlying neurobiological 

mechanisms (Cuthbert, 2014).  

The model's selection of the choroid plexus was unexpected and the accuracy, sensitivity and 

specificity dropped to 57, 53 and 60%, respectively, after removing this region from the model. This 

finding suggests that drive for thinness might be encoded within a distributed network of brain 

regions, which makes a multivariate data analysis approach most appropriate as compared with a 

univariate approach.  

Neuroimaging research in eating disorders has substantially increased in the last few years (Eddy & 

Rauch, 2011), but it has so far failed to have an impact on clinical practice. The identification of 

neuroimaging-based biomarkers for anorexia could present significant potential for clinical 

translation: individually targeted treatments, a more accurate individual prognosis and the prediction 

of clinical response to treatment are paramount to find new approaches in treatment of eating 

disorders and improve outcomes (Schmidt & Campbell, 2013). An example of a possible application 

could be to use neuroanatomical indicators of a more severe illness to initiate more intensive or 

combined therapies at an earlier stage (Fu & Costafreda, 2013). Techniques like LASSO that provide 

significant information at an individual level are ideally suited to provide an added value to clinical 

management and decision making.  
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Some limitations of this study must be noted. Our sample of AN patients were mostly restricting AN 

subjects (AN-R), with three binge-purging AN subjects (AN-BP). Although this might have 

introduced some degree of inhomogeneity in the sample, the presence of substantial differences 

between AN-R and AN-BP is still debated. These two subtypes might reflect variations on a 

continuum instead of distinct categories (Murphy et al. 2010; Olatunji et al. 2012). The small sample 

size is also a limitation. Some of our results (i.e. the choroid plexus contributing to the model) have 

not previously been reported in the literature and require replication. However, the sample of AN 

patients recruited for this study has several desirable features, among which the absence of relevant 

psychiatric co-morbidities, no psychopharmacological or psychotherapeutic previous treatment, and 

a short illness duration, that allowed us to exclude the effects of chronic illness in interpreting the 

results. Also, strong points of the study are the use of FreeSurfer to implement an automated well-

validated procedure (Fischl et al. 2004, 2009; Fischl, 2012; Cardinale et al. 2014) and the use of a 

multivariate machine learning approach. Future studies will consider machine learning algorithms 

able to account for non-linear relationships (e.g. nonlinear support vector machines) as compared 

with a LASSO which is linear.  

In summary, we report highly accurate prediction of individual subjects with AN using T1 MRI scan 

data. The model presented here assigned a probability score to each individual which correlated with 

drive for thinness and BMI. Individual measures derived from brain structure with a machine learning 

approach appear promising for clinical translation: future studies should investigate the relevance of 

these measures for predicting illness course and response to treatment at an individual subject level, 

in order to make neuroimaging approaches relevant in the clinical management of anorexia.  
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