
15 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for
environmental applications in wastewater treatments

Published version:

DOI:10.1016/j.cej.2016.10.120

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1618063 since 2017-01-12T17:15:37Z



 

 

 

 

This is an author version of the contribution published on: 

Questa è la versione dell’autore dell’opera: 

 [Chem. Eng. J., 310, 2017, doi:10.1016/j.cej.2016.10.120] 

  

The definitive version is available at: 

La versione definitiva è disponibile alla URL: 

[http://www.sciencedirect.com/science/article/pii/S1385894716315297] 

 



Biowaste-derived substances as a tool for obtaining magnet-sensitive materials 

for environmental applications in wastewater treatments 

 

Flavia Franzoso
a
, Roberto Nisticò

a,
*, Federico Cesano

a,b
, Ingrid Corazzari

a,b,c
, Francesco Turci

a,b,c
, 

Domenica Scarano
a,b

, Alessandra Bianco Prevot
a
, Giuliana Magnacca

a,b
, Luciano Carlos

d
, Daniel O. 

Mártire
e
.
 

 

a University of Torino, Department of Chemistry, b NIS Interdepartmental Centre, and c ―G. Scansetti‖ Interdepartmental 

Centre for Studies on Asbestos and other Toxic Particulates, Via P. Giuria 7, 10125 Torino, Italy 

d Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN 

(CONICET-UNCo), Buenos Aires 1400, Neuquén, Argentina  

e Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, Casilla 

de Correo 16, Sucursal 4, (1900) La Plata, Argentina 

* Corresponding author. E-mail: roberto.nistico@unito.it, Ph.: +39-011-6707533, Fax: +39-011-6707855 

 

Abstract 

In this study, bio-based substances (BBS) obtained from composted urban biowaste are used as 

stabilizers for the synthesis of magnet-sensitive nanoparticles (NPs). The BBS-stabilized NPs are 

characterized by means of different techniques (FTIR, XRD, SEM, BET analysis, magnetization 

curves). Additionally, TGA coupled on-line with FTIR and GC/MS analysis of the exhausted gas 

are performed in order to simultaneously identify all the degradation products and evaluate the 

exact composition of such BBS-stabilized materials. Moreover, Fenton-like or photo-Fenton-like 

experiments carried out at circumneutral pH are performed in order to evaluate the BBS-

functionalized NPs photo-activity towards the degradation of caffeine (taken as model emerging 

pollutant). The obtained promising results encourage the use of BBS as a green alternative tool for 

the preparation of smart materials with enhanced magnet-sensitive properties, also suitable for 

applications in wastewater purification treatments. 

 



Keywords: Biomasses valorization; Emerging pollutants; Iron oxides; Magnetic materials; Fenton 

and Photo-Fenton reactions.  

 

1. Introduction 

Together with the human technological expansion, there is a significant increasing of the 

anthropogenic impact on water sources, thus creating a dramatic reduction of the available 

resources [1]. In fact, even though the primary renewable source of fresh water is the continental 

rainfall, which generates a global supply of 40000-45000 km
3
 per year, this is not enough to fulfill 

the increasing demand caused by human population growing [2]. Besides this, one of the major 

problems related to fresh water quality is represented by pollutants contamination, difficult to 

remove by the traditional treatments [3-4]. Among the more classic pollutants, a wide group of 

anthropic chemical substances named emerging pollutants (EPs), whose dangerousness is only 

recently recognized but not yet regulated by environmental laws, is receiving great attention from 

the scientific community (i.e. human pharmaceuticals and veterinary medicines, nanomaterials, 

personal-care products, paints and coatings) [5-7].  

In order to solve this issue, many studies focused on innovative wastewater treatments are being 

carried out currently, for instance the exploitation of no-cost bio-based sources (i.e. microalgae, 

biomasses and humic/fulvic acids, chitosan and its derivatives, etc.) as novel adsorbents/active 

species for the removal of EPs which is very promising allowing both economic and environmental 

benefits [8-12].  

At the same time, advanced oxidation processes (AOPs) have been widely studied as a green 

alternative treatment for the purification of contaminated water [13-18]: Fenton and photo-Fenton 

reactions (induced by Fe(II)/H2O2 species without or with UV irradiation respectively) are widely 

studied and utilized to promote the degradation of organic contaminants through the action of 

highly oxidizing species, mainly hydroxyl radicals (
•
OH), generated in situ from H2O2 

decomposition catalyzed by Fe(II)-sources and accelerated by UV-Vis irradiation (λ < 500 nm, in 



the photo-Fenton process) [19]. Photo-Fenton processes are applied in treating several industrial 

wastewaters, such as dye industry [20], pesticides [21], phenols and organic compounds [22-23], 

and real contaminated effluents [24]. Additionally, as reported by Bauer et al [25], photo-Fenton 

treatments are the cheapest one among the other available AOPs. Quite recently, several efforts 

were realized by worldwide experts to enhance the efficiency/feasibility of both Fenton and photo-

Fenton processes by testing different materials [26-27], as well as different AOPs methods [28-29]. 

In particular, most of the problems related to the industrial scale up of such processes are both the 

pH correction and the reactants consumption [30-32], thus the possibility of using low-cost easily-

removable materials working at circumneutral pH is extremely promising. As evidenced in the 

literature, the introduction of humic-like substances in both Fenton and photo-Fenton processes 

seems to significantly favor the pollutant degradation capacity in aqueous environment at 

circumneutral pH, even though the effective role played by humic-like substances in the oxidation 

mechanism is still not fully solved [6,8,33-34]. As reported in several studies, humic substances 

directly improve the degradation of organic pollutants under UV-Vis irradiation in two different 

ways: either involving the triplet-excited states of the O-containing functionalities present in the 

humic-like structures [35], or through the formation of many reactive O-containing species, such as 

hydroxyl radicals, singlet oxygen (
1
O2(a

1
Δg)), and superoxide species [6,36-37]. Additionally, 

humic and humic-like substances not only favor the direct oxidation of organic pollutants, but also 

speed up the iron redox reactions Fe(II)/Fe(III), thus accelerating both Fenton and photo-Fenton 

mechanisms [38-39].  

In this respect, it appears very convenient to use a combined approach to remove the organic 

contaminants in water applying bio-based substances together with an iron-source. Quite recently, 

magnetite (Fe(II)/Fe(III) mixed valence oxide), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) have 

been successfully verified as alternative sources of iron in heterogeneous AOPs [40-41]. If the iron 

source is magnetite or another magnet-sensitive material, it becomes also possible to recover the 

species active in the removal of contaminants from aqueous matrices after the treatment.  



Magnetic materials are usually synthesized by coprecipitation method in basic medium (between 8 

and 14) [40]. Respect to the stoichiometric ratio, a slight excess of Fe(II) in the synthesis is 

preferred to prevent the possible oxidation of Fe(II) atoms with formation of maghemite as impurity 

since the reaction mixture was exposed to the air. According to the literature [42], for Fe(III)/Fe(II) 

< 1.75 pure magnetite NPs are obtained, whereas for Fe(III)/Fe(II) ≥ 1.75 the final product consists 

of a mixture of magnetite and maghemite. Additionally, since magnetite is sensitive to oxidation, 

maghemite can be easily formed by topotactic oxidation of magnetite due to aging phenomena [43-

44]. In order to avoid the complete oxidation of magnetite/maghemite phases to hematite, the 

stabilization with an organic coating is usually carried out [43,45-46]. In general, the addition of 

chelating anions (i.e. carboxylate or hydroxyl-carboxylate species) or polymeric complexing agents 

(such as chitosan, dextran, starch, or polyvinyl alcohol) during the formation/precipitation of 

magnetite can both drive the nanoparticles size-control as well as enhance the iron oxide stability 

(in particular, preserving magnetite from oxidation). Also biomasses and residual biowaste-derived 

substances have been considered as source of organic coating [40] valorizing urban and/or 

agricultural biowastes into added-value chemicals (thus re-entering them into the economic cycle) 

[47].  

Therefore, the aim of this study is the use of Bio-Based Substances obtained from Green Compost 

(BBS-GC) as synthesis intermediates/stabilizers for the production of BBS-covered magnetite 

nanoparticles. Such BBS are lignin-derived supramolecular aggregates with a very complex 

structure similar to humic-like substances (namely, aromatic and aliphatic chains functionalized 

with acid and basic functional groups whose chemical structure is fully reported in Table S1). 

Three different synthesis formulations were investigated.  

The application of such BBS-coated magnet-sensitive nanoparticles was investigated in 

heterogeneous Fenton-like and photo-Fenton-like processes for wastewater treatments, taking 

caffeine (a stimulating agent) as model EPs.  

 



2. Experimental  

2.1 Materials 

Magnetite precursors were anhydrous ferric chloride FeCl3 (CAS 7705-08-0, purity ≥ 98%, Fluka 

Chemika) and ferrous sulphate heptahydrate FeSO4·7H2O (CAS 7782-63-0, purity ≥ 99.5%, Fluka 

Chemika). Bio-Based Substances (BBS-GC) were isolated from composted urban biowastes (urban 

public park trimming and home gardening residues) aged for more than 180 days, obtained from the 

ACEA Pinerolese Industriale S.p.A. waste treatment plant located in Pinerolo (Italy). Other reagents 

used were: ammonium hydroxide solution (CAS 1336-21-6, NH3 essay 28-30%, E. Merck), 

caffeine (C8H10N4O2, CAS 58-08-2, purity ≥ 99.0%, Sigma-Aldrich), hydrogen peroxide (H2O2, 

CAS 7722-84-1, essay 31%, Anedra Research AG), methanol HPLC grade (CH3OH, CAS 67-56-1, 

essay 99.8%, Sintorgan), phosphoric acid (H3PO4, CAS 7664-38-2, essay 84-86%, Cicarelli 

Laboratorios), 1,10-phenanthroline (o-phenanthroline, C12H8N2, CAS 66-71-7, purity ≥ 99.0%, 

Sigma-Aldrich), and ammonium phosphate (NH4H2PO4, CAS 7722-76-1, essay ≥ 99.0, Sigma-

Aldrich). All aqueous solutions for HPLC analysis were prepared using ultrapure water Millipore 

Milli-Q™. All chemicals were used without further purification.  

2.2 Preparation of magnetite/BBS nanoparticles 

BBS-stabilized magnetite nanoparticles were synthesized following a modified procedure already 

reported in the literature [40,43]. In detail, 3.7 g of FeCl3 and 4.17 g of FeSO4·7H2O (molar ratio 

Fe(III)/Fe(II) = 1.5) were dissolved in 100 mL of deionized water and heated up to 90°C. Once the 

target temperature was reached, two solutions were added simultaneously: a) 10 mL of 25 vol.% 

ammonium hydroxide, and b) 50 mL of a previously prepared BBS aqueous solution. In particular, 

three BBS-containing solutions with different content of BBS were employed: 1, 2, and 3 wt.%, 

respectively. The final mixture was mechanically stirred at isothermal conditions (90°C) for 30 min 

and then cooled down to room temperature (RT). In this way a dispersion of BBS-stabilized 

magnetic iron oxide nanoparticles has been directly obtained in a one-step process by co-

precipitation method. Such dark-brown solutions were: i) purified by washing twice with deionized 



water, ii) deposited onto glass Petri dishes, and iii) oven-dried at 80°C overnight. The resulting 

magnetic materials were manually crumbled. Depending on the different wt.% of BBS (namely 1 

wt.%, 2 wt.% and 3 wt.%), the obtained nanoparticles were coded with the acronym MB1, MB2 and 

MB3, respectively). Non-stabilized magnetite (M0), obtained from the already described procedure 

without BBS addition, was taken as neat magnetite reference.  

2.3 Physicochemical characterizations 

Scanning electron microscopy (SEM) analyses were carried out by using a ZEISS EVO 50 XVP 

microscope with LaB6 source, equipped with detectors for secondary electron collection. SEM 

micrographs were performed after sputtering the samples with a gold layer (ca. 10 nm thickness, 

Bal-tec SCD050 sputter coater). Additionally, the particles size distribution was evaluated on SEM 

micrographs at 150000× magnification by using the software Particule2 (version 2.0) and 

calculating the diameter size on 500 nanoparticles. The nanoparticles diameter values are corrected 

with respect to the gold coating thickness. 

Magnetization measurements were carried out with a LakeShore 7404 vibrating sample 

magnetometer. The hysteresis loop of the samples was registered at RT and the magnetic field was 

cycled between -20000 and 20000 Gauss.  

N2 adsorption-desorption experiments were carried out by using an ASAP 2020 instrument 

(Micromeritics) in order to determine the specific surface area (BET model) [48] and porosity (BJH 

model) of all samples [49]. Samples (ca. 0.5 g) were previously outgassed at 70°C for about 24 h in 

vacuum (residual pressure 10
-2

 mbar) to ensure the complete removal of atmospheric contaminants 

from their surface before the analysis. 

Fourier transform infrared (FTIR) spectra were recorded in transmission mode by means of a 

Bruker Vector 22 spectrophotometer equipped with Globar source, DTGS detector, and working 

with 128 scans at 4 cm
-1

 resolution in the 4000-400 cm
-1

 range. Samples were dispersed in KBr 

(1:20 weight ratio).  



X-ray diffraction (XRD) patterns were obtained by means of an X‘Pert PRO MPD diffractometer 

from PANalytical, equipped with Cu anode, working at 45 kV and 40 mA, in a Bragg-Brentano 

geometry performing experiments on flat sample-holder configurations. The acquisition was 

performed in a 0.02° interval steps, with 45 s step
-1

 to obtain a good signal to noise ratio. The 

magnetite particles size was also estimated by means of the Scherrer equation (Equation 1): 

 

where τ is the mean size of the crystalline domains (expressed in nm), K is a shape factor (typical 

value adopted is 0.9), λ is the X-ray wavelength (0.154 nm), β is the line broadening at half the 

maximum intensity (FWHM) of the selected Bragg angle after subtracting the instrumental line 

broadening (expressed in radians), and θ is the Bragg angle (expressed in radians). For the 

magnetite NPs size quantification, the Bragg angle selected is the magnetite reflection (311) at ca. 

2θ = 35.6°.  

Colorimetric quantification of free-Fe(II) was performed using a double-beam T90+ UV-Vis 

spectrometer (PG Instruments Ltd), in a quartz cuvette, slow speed mode at 1 nm resolution in the 

200-800 nm range. The conventional colorimetric tests were performed by mixing ca. 10 mg of 

each sample with o-phenanthroline and acetate buffer (pH = 4) forming the orange-red ferrous-tris-

o-phenanthroline complex [50]. The free-Fe(II) was quantified after 60 minutes of contact. 

Thermo-gravimetric analyses (TGA) were carried out by means of an ultra-microbalance 

(sensitivity 0.1 μg) connected with both a time-resolved FTIR and a GC/MS detectors. Samples in 

powdery form (ca. 30 mg) were placed into an open platinum pan and heated from 30 to 900°C at 

the heating rate of 10°C min
-1

 under dynamic nitrogen atmosphere (gas purity: 99.9995%; flow rate: 

35 mL min
-1

) by using a Perkin-Elmer Pyris 1 TGA instrument (Waltham, MA, USA). The 

exhausted gas (gas flow 65 mL min
-1

) was piped via a pressurized heated transfer line (Redshift 

S.r.l., Vicenza, Italy) and analyzed continuously by the FTIR detector (Spectrum 100, Perkin-

Elmer), equipped with a thermostated conventional gas cell. Temperature/time-resolved spectra 



were acquired in the 4000-600 cm
-1

 wavenumber range with a 0.4 cm
-1

 resolution and analyzed with 

the Spectrum software (Perkin-Elmer). Temperature-resolved infrared profiles of each single 

species desorbed from the analyzed samples were obtained measuring the intensity of a 

representative peak of the investigated species at a selected wavenumber. The Ɛ values were 

obtained employing ―PPM/Meter Gas Cell Concentration Data‖ from Specac (Orpington, UK) 

which was obtained by measuring the gases in a one meter path-length gas cell at 25°C at 1 

atmosphere pressure with a nitrogen gas mix. The absorbance value given for the concentration of 

gas was expected at the indicated wavenumber position (i.e. 2360 cm
-1

 due to the asymmetric 

stretching mode of CO2 and 960 cm
-1

 due to the symmetric bending mode of NH3). The absorbance 

reported was 0.40 a.u. for CO2 (100 ppm), and 0.12 a.u. for NH3 (100 ppm). On the basis of these 

data, we calculated the absorption coefficients (namely ƐCO2 = 4.0 10
-3

 ppm
-1

 m
-1

, and ƐNH3 = 1.2 

10
-3

 ppm
-1

 m
-1

) by applying the Lambert-Beer‘s law. In our experimental determinations, the 

maximum intensity point due to the asymmetric stretching mode of CO2 was recorded at 2359 cm
-1

, 

while the maximum intensity point due to the
 
symmetric bending mode of NH3 occurred at 965 cm

-1
 

[51].  

2.4 Fenton-like and photo-Fenton-like degradation of caffeine 

Degradation experiments were performed: i) for Fenton-like tests, in a closed Pyrex-flask 

(containing 200 mL solution at RT) covered with an aluminum paper (i.e. in the dark) under 

continuous magnetic stirring, or ii) for photo-Fenton-like tests, in a cylindrical Quartz vessel 

(diameter: 5 mm, containing 200 mL solution, at 32.5±2.5°C) under continuous magnetic stirring. 

Experiments were performed in two replicas and the average profiles were reported. The initial 

concentration of the caffeine was 5 mg L
-1

. Experiments were performed by addition of 100 mg of 

NPs (neat magnetite or BBS-stabilized samples) in presence of hydrogen peroxide (H2O2, 0.4 mM). 

The amount of hydrogen peroxide added was chosen considering half the stoichiometric 

concentration which is enough to reach an efficient caffeine degradation, as suggested in the 

literature [52]. To verify the natural photolysis of caffeine, experiments in presence of only H2O2 



were also performed. The effect of the hydroxyl radicals was evaluated performing experiments in 

presence of the BBS-stabilized NPs and in absence of H2O2, whereas in order to evaluate the 

importance of the magnetite-core in the NPs, control experiments in homogeneous phase (i.e., 100 

mg of BBS and 0.4 mM H2O2) were also realized. The possible effect of free-Fe(II) release was 

evaluated by performing experiments in absence of NPs and by addition of Fe(II) at the 

concentration quantified for MB2 by colorimetric tests. Finally, the effect of UV irradiation was 

checked performing Fenton experiments in the dark. Reactions were run at the pH=6, which did not 

change during experiments. A photochemical reactor (Rayonet RPR-100) equipped with 8 RPR-

3500 A lamps with emission centered at 350 nm was used as irradiation source (for photo-Fenton 

tests). The incident photon rate (3.50×10
-5

 Einstein L
-1

 s
-1

) was measured using a potassium 

ferrioxalate actinometer (see Figure S1). During each experiment, 3 mL sample aliquots were 

periodically collected at fixed time from the flask/vessel. Before analysis, aliquots were magnet-

cleaned (in order to avoid the presence of the magnetic nanoparticles) and filtered through nylon 

membranes with 0.45 μm cut-off. 

The caffeine concentration was determined by means of high pressure liquid chromatography 

(HPLC), using a Hewlett-Packard TI series 1050 HPLC system with auto-sampler and multi-

wavelength detection, equipped with a Inertsil ODS-3 column (4.6 mm × 250 mm, spherical 

particles size 5 μm in size, modified with end-capped octadecyl groups, pH ranging in the 2.0-7.5 

interval). The eluent was a 1% H3PO4 in 50/50 (vol.%) methanol/water mixture at 0.8 mL min
-1

 

constant flux. The injection volume was 50 μL with a re-equilibration time of 10 min. The caffeine 

detection wavelength was 275 nm. 

UV-Visible spectra of caffeine solution before and after degradation were recorded by means of a 

double-beam T90+ UV-Vis spectrometer (PG Instruments Ltd) with slow speed at 1 nm resolution 

in the 200-800 nm range.  

 

3. Results and Discussion 



3.1 Morphological, physicochemical and magnetic characterization 

Nitrogen sorption measurements were performed on both pure magnetite and BBS-stabilized 

samples, and results are summarized in Table 1. All the isotherms (not reported for the sake of 

brevity) show a profile IV, with a hysteresis loop of type H3 (according to the IUPAC 

classification) in the relative pressure range 0.4-1. The BET surface area of the reference magnetite 

(M0) is 77 m
2
g

-1
, whereas all BBS-stabilized samples present a very low specific surface area and 

mesopores volume, ranging values from 4 m
2
g

-1
 (MB1) up to 33 m

2
g

-1
 (MB3). This particular 

behavior clearly confirmed that the presence of BBS dramatically influences both the aggregation 

and the porosity in the final material (vide infra for the sample composition). 

Infrared spectra of both reference materials (neat magnetite M0 and neat BBS) and MB2 (MB1 and 

MB3 are not shown for the sake of brevity) are collected in Figure 1. In particular, the presence of 

BBS in MB2 is mainly confirmed by the carboxylate stretching mode at ca. 1600 cm
-1

. The band at 

1120 cm
-1

 is typical of C-O stretching mode of organic matter (i.e. polysaccharides and other BBS-

derived substances) adsorbed onto the iron oxide surface. Magnetite phase is clearly evidenced by 

signals at 575 and 620 cm
-1

 due to Fe-O stretching vibrations. Significant differences were observed 

by comparing the FTIR spectra in the region relative to carboxylic/carboxylate functionalities [40] 

evidencing the interaction between BBS-carboxylate anions and the iron oxide surface. As already 

evidenced by Ou and coworkers [53] for humic substances, in all BBS-stabilized NPs it was 

observed the formation of a very sharp band at 1400 cm
-1

 associated with the carboxylate-iron bond 

stretching. Other signals in the range 900-700 cm
-1 

not evidenced in the figure are due to 

ammonium-containing salts, which are byproducts of the co-precipitation reaction. 

X-ray diffraction (XRD) patterns were used to identify the iron oxide phases presented in all 

samples (Figure 2). Even in this case, only the MB2 sample was discussed, since similar results 

were obtained for the other BBS-stabilized samples. All the crystalline planes reflection registered 

for MB2 sample at 2θ = 30.1° (220), 35.4° (311), 43.0° (400), 53.9° (422) 57.2° (511), and 62.6° 

(440) are consistent with the presence of magnetite phase (reference code 00-019-0629, ICCD 



Database) [44]. The signals not related to magnetite phase (main relevant one at 2θ = 33°) are 

consistent with the presence of ammonium-containing salts, namely ammonium chloride (reference 

code 01-073-0363, ICCD Database), confirming the FTIR results.  

In order to estimate the average particle size, Scherrer formula applied to the (311) magnetite signal 

was used (see Table 1). The size of the crystalline domains related to magnetite phase are not 

homogeneous (all the signals are quite broad) and a slight decrease in the calculated average NPs 

size was observed in the BBS-stabilized samples from MB1 to MB3. In particular, it is possible to 

note that the size of the crystalline domains decreases increasing the BBS concentration. A possible 

explanation of this behavior can be found in the action developed by BBS in the synthesis. It is 

added to the reaction mixture just after the beginning of the coprecipitation reaction (i.e. right after 

the formation of the crystal seeds) and it covers the crystals avoiding their agglomeration. If the 

amount of biosurfactant is high, its presence not only avoids the agglomeration of the particles but 

also limits the growth of the crystals which remain small. 

The morphology of all BBS magnet-sensitive NPs, dispersed in water and deposited on sample 

holder, was evaluated by means of SEM (TEM image of MB1 is reported in [40]). Considering the 

similarity shown by the samples, only MB2 images are reported in Figure 3. In detail, MB2 

material appeared as aggregates of roughly spherical particles (see Figure 3A) whose size 

distribution is reported in Figure 3B. MB2 particles show diameters in the range 16-55 nm, with 

the 40% of the particles centered between 26 and 30 nm. These values are in very good agreement 

with those calculated from Scherrer equation for the same sample (i.e. 22 ± 6 nm), also considering 

that Scherrer calculation considers only the magnetite crystalline core without taking into account 

the organic coating around the particles.  

Considering the magnetic behaviors, all BBS-stabilized samples are easily recoverable from their 

aqueous dispersions through the action of a permanent magnet. Moreover, dried BBS-stabilized 

materials do not lose their magnetic properties for at least one year, due to the BBS protective 

coating. Magnetization curves collected at RT of all samples are resumed in Figure 4. Basing on 



the results obtained, all samples exhibit superparamagnetic behaviors, with almost zero remanence 

(Mr) and very low coercitivity (Hc below 10 G). The saturation magnetization (Ms) of all BBS-

stabilized magnet-sensitive NPs were 53 (MB1), 36 (MB2), and 30 (MB3) emu g
-1

, respectively. 

The decrease in Ms for all the samples compared to the reference magnetite M0 (64 emu g
-1

) is due 

to the presence of the organic coating as well as to a different average size of magnetic domains 

(Table 1). According to the literature, the presence of a coating agent decreases the materials 

uniformity due to quenching phenomena of surface moments, thus inducing a reduction of magnetic 

moments in the nanoparticles [40,54]. Moreover, the decrease of the Ms as decreasing the particle 

size is due to the increasing of the surface spin canting due to increasing disorder of the adsorbed 

species as the particles decrease in size [55]. 

3.2 Thermal stability and BBS degradation profiles 

Neat BBS and BBS-stabilized nanoparticles thermal behaviors were analyzed by TGA in the 

temperature range 30-900°C under flow of N2 in order to establish the thermal stability of the 

samples and to determine the BBS amount in the hybrid materials. NH3 and CO2 evolved during the 

heating ramp were continuously monitored by the FTIR detector coupled to the gravimetric 

apparatus. FTIR profiles of the evolved species, expressed as ppm/mg of sample, were determined 

relating the IR absorbance measured at a specific wavenumber (i.e. 965 cm
-1

 for NH3 and 2359 cm
-1

 

for CO2) to their concentration according to the Lambert-Beer law relationship employing the 

spectra of each species at a known concentration from the instrument database. In Figure 5 are 

reported both the weight loss % and its derivative curve (panel A), together with the FTIR profiles 

(panel B) of NH3 and CO2 evolved during the heating of MB2. These data were compared to those 

obtained with pure BBS at the same experimental conditions. TGA analysis of BBS presented two 

main weight losses: the first one was due to moisture content (water evaporation), as highlighted by 

the minimum at ca. 100°C on the derivative curve, whereas the second one, which occurred 

between 250 and 600°C, was principally due to the degradation of the BBS-organic matter, but also 

the presence of inorganic contributions need to be considered. A carbonaceous residue (containing 



some inorganic ashes), which represented ca. the 50% of the starting sample, was collected in the 

pan after the heating ramp.  

The thermal degradation of MB2 shows three main degradation steps evidenced by the three 

minima on the derivative curve at ca. 230, 310 and 430°C, due to degradation of both ammonium-

containing salts (as byproducts of the synthesis, according to FTIR and XRD analyses) and BBS 

coating. In addition, in the temperature range between 700 and 900°C an important weight loss was 

recorded and attributed to the chemical reduction of magnetite into wüstite (FeO) under the adopted 

reducing conditions (nitrogen flux) [43].  

During the heating ramp, the evolution of NH3 and CO2 species released from the sample was 

monitored by FTIR detector. It is evinced that the evolution of CO2 from neat BBS takes place via a 

two-step process since two maxima are evidenced in the CO2 release curve, whereas the same 

experiment carried out with MB2 evidenced that CO2, which reasonably comes from the 

decarboxylation of the BBS organic component, is released through a single broad step. The release 

of NH3 from BBS is attributed to the decomposition of both N-containing functionalities and 

ammonium-containing ashes (ash content: 31.2 wt.%, see the Table S1). Also, the rather high 

amount of NH3 released at lower temperature (150-400°C) by MB2 sample should be due to the 

decomposition of ammonium-containing synthesis byproducts (in accordance to FTIR and XRD 

analyses). Analogue results have been obtained with both MB1 and MB3 (data not shown for 

brevity). 

The percentage composition of materials (in terms of BBS, ashes, ammonium-containing salts and 

magnetite) was quantified by the following procedure:  

i. Integrating the FTIR profile in the temperature range 200-600°C (for CO2) and 150-800 (for 

NH3). The starting temperature chosen for CO2 integration corresponds to the first 

degradation step. 

ii. Calculating the (BBS+ashes) wt.% in each MB sample on the basis of the CO2 released, 

normalized to the CO2 released by neat BBS. 



iii. According to Table S1, the ashes content in BBS is 31.2 wt.% and thus the real BBS 

organic fraction forming the stabilizing coating was assumed to be complementary (i.e. the 

68.8 wt.% of the BBS+ashes fraction). 

iv. Estimating the byproduct content in this way: a) the difference of the total [NH3] released 

from each material and the theoretical [NH3] due to the (BBS+ashes) fraction in the sample 

was calculated, b) such [NH3] difference was expressed as ammonium-salts wt.% as a 

proportion respect to the total [NH3] released by the reference NH4
+
-containing salt (i.e. 

NH4H2PO4). 

v. Finally the residual wt. % was assigned to the iron oxide fraction in the sample. 

 

The results obtained are summarized in Table 2. Since the amount of volatile products released by 

the samples is proportional to the composition of the material, we can estimate the relative content 

of BBS and magnetite in the hybrids.  

The results evidenced that the increase of BBS concentration in the synthesis produces a decrease of 

the BBS loading in the obtained material. And this behavior is also sustained by the BET surface 

area variation and the average magnetite size calculated by Scherrer formula. This odd result can 

actually be explained considering that BBS in aqueous solution tends to organize in supramolecular 

arrays in a micellization process, due to its amphiphilic properties, and this probably affects the 

loading capacities [8,12,56].  

The content of byproducts (NH4
+
-containing salts, quantified by volatile NH3 species expressed as 

amount of NH4H2PO4) confirms the FTIR and XRD results, since the samples purity increases by 

decreasing the concentration of BBS in the starting solution (namely MB1>MB2>MB3). 

To further clarify the mechanism of the organic substrate thermal degradation, the gas evolved 

during the BBS pyrolysis via TGA at the temperature corresponding to the maximum speed of the 

degradative process (i.e. 350°C) was analyzed by GC/MS. This experimental approach was chosen 

to unveil the presence of volatile organic specie which might be produced as intermediate during 



the pyrolysis. The GC/MS analysis did not evidence the release of organic molecule (data not 

reported for brevity) indicating that the pyrolysis of the BBS organic structure induces the 

formation only of small molecules (including CO2 and NH3) mainly due to BBS functional groups 

loss, thus leaving a carbonaceous residue, very promising for the production of carbon-based 

materials.  

3.3 The magnetite/BBS photo-activity in Fenton and photo-Fenton conditions 

Preliminary experiments were performed in order to evaluate the potential application of BBS-

stabilized magnetite nanoparticles towards the degradation of caffeine (reference EP) at the natural 

pH (ca. 5-6) in Fenton-like and photo-Fenton-like processes. Upon UV irradiation in the presence of 

H2O2 (Figure 6A) or BBS/H2O2, no significant degradation of caffeine was observed (Figure 6B, 

top). Such results allow to hypothesize that in the adopted experimental conditions, there is neither 

efficient generation of OH by H2O2 photolysis nor relevant production of reactive species by BBS 

photoactivation. The presence of neat magnetite and H2O2 slightly favored the degradation of 

caffeine (87% of residual caffeine after 60 min, as reported in Figure 6A) in agreement with the 

literature data [41].  

On the contrary, the addition of BBS-stabilized magnetic NPs in the presence of H2O2 dramatically 

changes the degradation behavior, evidencing different efficiency depending on the initial BBS 

concentration used to prepare the different NPs. In particular (Figure 6A), the caffeine degradation 

profile observed in the presence of MB1 is comparable to the one observed when using neat M0. 

MB2 promotes the almost complete caffeine degradation after 60 minutes under UV irradiation (5% 

of residual caffeine after 60 min), as demonstrated by the UV-Vis spectra of caffeine solution 

reported in Figure 6C; the performance of MB3 is lower (60% of residual caffeine after 60 min). In 

order to give a rationale for the observed behavior, data reported in Table 2 could give a help: the 

less efficient NPs (MB1) contains the relative highest amount of BBS and the lowest magnetite 

amount; MB2 and MB3 contain a comparable magnetite amount, while MB2 has higher BBS 

content. Several previous studies dealing with the use of magnetite-based materials in 



Fenton/photo-Fenton-like processes (see [57] and references therein), reported that the efficiency of 

the photo-Fenton-like process with magnetite depends greatly on the dissolution of iron from the 

solid and the oxidation proceeds mostly via homogeneous Fenton. Moreover, the presence of 

chelating agents (e.g. EDTA, oxalate, tartrate, citrate) facilitates the dissolution of iron from the 

solid, thanks to the formation of iron complexes, thus favoring the homogeneous reaction. In the 

present case BBS contain carboxylic and phenolic group able to form iron complexes thus favoring 

the iron dissolution and the occurrence of photo-Fenton-like process. At the same time it can be 

hypothesized that, above a certain concentration, the scavenging of reactive species by BBS 

becomes relevant; such a behavior has been already discussed for BBS in homogeneous system [58-

59]. Based on this, MB2 composition could represent the best compromise among several different 

operating mechanisms; nevertheless being the system highly complicated and several equilibria 

involved, further research is needed.   

Based on the observed performance we focused our attention on MB2 sample for further 

experiments. 

The capacity of MB2 in caffeine degradation was also evaluated under UV irradiation in the 

absence of H2O2 (Figure 6B, bottom). In this case, the caffeine degradation was negligible, thus 

confirming the importance of H2O2 for the degradation process and further supporting the 

hypothesis of a photo-Fenton-like process, as main mechanism, excluding adsorption phenomena. 

Some experiments were therefore performed to assess the role of UV irradiation (i.e. in the dark, 

Figure 6D). The results obtained evidence that the MB2 activity toward caffeine degradation in the 

absence of UV irradiation is significantly lower (ca. 65% of residual caffeine after 60 min).  

In order to evaluate the relevance of homogeneous degradation process due to the possible presence 

of free-Fe(II) in solution, a colorimetric test with o-phenantroline has been performed and results 

are reported in Table S2 (calibration curve is reported in Figure S2). It is evident that a not 

negligible amount of Fe(II) is released in solution (0.001 g L
-1

), thus allowing a homogeneous 

Fenton or photo-Fenton reactions to occur, justifying the caffeine degradation. In any case, the 



amount of Fe(II) released (with respect to the amount of sample) is similar for each sample under 

study, therefore the free-Fe(II) presence should not be the only factor favoring the caffeine 

degradation. Some experiments were then performed in the presence of Fe(II) (taking FeSO4·7H2O 

as a source of Fe(II)) at the same concentration of iron leached from MB2 (i.e. 0.001 g L
-1

, 

corresponding to 0.28% w/w of the magnetite content in MB2 in suspension) under both Fenton and 

photo-Fenton conditions at weak acid pH (ca. 6). Results evidence that the degradation of caffeine 

in presence of Fe(II) without BBS is significantly lower if compared to the same experiments 

performed in presence of MB2 material. In particular, in the presence of Fe(II) no relevant 

degradation is observed in Fenton conditions and ca. 70% of abatement is registered after 60 min in 

photo-Fenton condition (MB2 sample caused 30% of abatement after 60 min in the dark and 95% in 

photochemical treatment), thus confirming the importance of BBS in the caffeine abatement. It 

could be hypothesized that the chelating groups present in BBS structure allow to stabilize iron 

species in solution, avoiding their conversion in the corresponding hydroxides. At the same time, 

the magnetite, stabilized by BBS, could be considered as an iron ―reservoir‖ for the Fenton and 

photo-Fenton processes. 

Actually, the effective role of BBS in the degradation process is still not fully understood, 

nevertheless BBS molecules seem to play as acceleration agent for the caffeine degradation, under 

both Fenton and photo-Fenton conditions. Moreover, BBS allow to carry out Fenton-based 

treatments (usually performed at very low pH) in mild conditions (i.e. pH=6), and this fact 

represents a relevant advance in wastewater treatments.  

Some indications concerning the stability of BBS in homogeneous systems can be obtained from 

the literature [60], suggesting the possibility of reusing these materials in several cycles of reaction. 

4. Conclusions 

In conclusion, BBS (humic-like biopolymers derived from composted urban biowaste) have been 

proven to be effective stabilizing agent for the low-cost synthesis of magnet-sensitive nanoparticles, 

produced via co-precipitation method. Magnet-responsive NPs compared with other systems used 



for Fenton and photo-Fenton processes show the advantage of being easily recoverable from the 

reaction media using an external magnetic field.  

Different amounts of BBS in the synthesis procedure has been investigated and a deep 

physicochemical characterization of such BBS-coated magnet-sensitive samples have been 

performed.  

All samples are made of roughly spherical nanoparticles, which give rise to the formation of some 

aggregates with very low specific surface area and mesopores volume.  

Magnetic properties showed that, even if the BBS coating decreases the saturation magnetization 

values (Ms) with respect to the neat magnetite, such BBS-coated materials are still highly magnet-

sensitive and can be easily separated from their aqueous dispersions. Additionally, the natural 

oxidation involving the interconversion of magnetite into hematite is overcome due to the BBS 

preserving role. Magnetite stability was maintained for more than one year.  

In wastewater treatment, even though it is still not fully-assessed the effective role of BBS, Fenton-

like and photo-Fenton-like experiments highlight the peculiar capacity of BBS in promoting the 

caffeine degradation. The BBS-stabilized samples can be effective even at circumneutral pH in the 

presence of H2O2, upon UV irradiation.  

These preliminary tests evidence how BBS can be used as a promising green actor in wastewater 

purification treatments. 
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Captions to Figures 

 

Table 1. BET surface areas, BJH pore volumes and magnetite NPs size estimated by Scherrer 

equation applied on the XRD (311) magnetite main reflection.  

Table 2. Evolved volatile species measured by TGA-FTIR analysis and data elaboration. 

 

Figure 1. Absorbance FTIR spectra in the 2000-400 cm
-1 

range relative to neat BBS (green), neat 

magnetite M0 (black), and BBS-stabilized MB2 (red). The main relevant peaks are labeled. All 

spectra are collected in transmission mode through KBr pellets. 

Figure 2. XRD patterns of the neat magnetite (M0) and BBS-stabilized sample (MB2). The main 

reflections due to magnetite are highlighted and labeled. Black symbol refers to the ammonium 

chloride phase (by-product). 

Figure 3. Panel A: SEM micrograph of MB2 sample collected at 50000× magnification. Panel B: 

MB2 nanoparticles size distribution expressed as number of nanoparticles percentage (N/N0%, 

where N0 is the total of nanoparticles considered, i.e. 500). 

Figure 4. Magnetization curves evaluation of neat magnetite and BBS-stabilized samples. Legend: 

M0 (black), MB1 (green), MB2 (red), and MB3 (blue). Inset shows the magnetic response of the 

BBS-stabilized materials vs. a commercially available neodymium magnet. 

Figure 5. Panel A, TGA (solid line) and the derivative (dotted line) curves of the neat BBS (black) 

and MB2 (red) heated from 30 to 900°C at 10°C min
-1

 under dynamic nitrogen atmosphere. Panel 

B, FTIR profiles of the volatile CO2 and NH3 products released from neat BBS (black) and MB2 

(red) during the heating ramp expressed as a function of temperature. Each curve represents the 

concentration (expressed as ppm/mg of sample) of the species evolved and it is obtained relating the 

IR absorbance at a specific wavenumber to the concentration by the Lambert-Beer's law 

relationship: CO2 (2359 cm
-1

), and NH3 (965 cm
-1

). 



Figure 6. Fenton- and photo-Fenton-induced degradation of caffeine. Initial conditions: 5 mg L
-1

 

caffeine, 0.4 mM H2O2, eventually 0.5 g L
-1

 magnetic-NPs or 0.001 g L
-1

 Fe(II), and UV irradiation 

(photo-Fenton). Panel A) Relative concentration of caffeine as a function of the irradiation time in 

photo-Fenton conditions. Legend: Photo-stability of caffeine under irradiation in presence of only 

H2O2 (white stars, grey dotted line), and degradation induced in presence of M0 (black squares, 

black solid line), MB1 (blue triangles, blue solid line), MB2 (red triangles, red solid line), and MB3 

(green triangles, green solid line). Panel B) Photo-stability of caffeine under UV irradiation in 

presence of both H2O2 and BBS in homogeneous phase (green diamonds, green solid line), and 

photo-stability of caffeine under UV irradiation in presence of MB2, but in absence of H2O2 (brown 

circles, brown solid line). Panel C) Absorbance UV-Vis spectra in the 200-400 nm range relative to 

the caffeine solution before (black solid line) and after (grey solid line) degradation in presence of 

MB2/H2O2/UV (i.e. photo-Fenton) collected after 60 min of irradiation. The peak at 275 nm 

indicates the caffeine reference signal. Panel D) Fenton vs. photo-Fenton: Relative concentration of 

caffeine as a function of the (irradiation) time in Fenton/photo-Fenton conditions. Legend: 

Degradation of caffeine in presence of Fe(II) in Fenton (white diamonds, blue solid line) and photo-

Fenton (blue diamonds, blue solid line), vs. MB2 in Fenton (white triangles, red solid line) and 

photo-Fenton (red triangles, red solid line) conditions.  



 

Table 1. BET surface areas, BJH pore volumes and magnetite NPs size estimated by Scherrer 

equation applied on the XRD (311) magnetite main reflection.  

Samples 

BET surface area  

(m
2
g

-1
) 

BJH pore volume  

(cm
3
g

-1
) 

NPs mean size  

(nm)
a)

 

M0 77 0.24 18 ± 3 

MB1 4 0.03 27 ± 4 

MB2 16 0.08 22 ± 6 

MB3 33 0.06 16 ± 1 

a) 
Calculated by substituting in Equation 1 the line broadening at half the maximum intensity of the 

(311) magnetite reflection peak. Two different measurements are performed and average values are 

calculated. Diameters are reported in nm ± standard deviation. 



 

Table 2. Evolved volatile species measured by TGA-FTIR analysis and data elaboration. 

Samples 

Evolved volatile species 

measured by TGA-FTIR 

analysis 

Composition (wt.%) 

Wt. (mg) [CO2]
a)

 [NH3]
b)

 BBS Ashes 

NH4
+
-

salts 

Fe3O4 

BBS/Fe3O4 

ratio 

BBS 22.757 753.511 398.289 68.8 31.2 --- --- --- 

NH4H2PO4 31.823 --- 4244.004 --- --- 100.0 --- --- 

MB1 21.329 352.934 187.249 34.4 15.6 0.0 50.0 0.7 

MB2 44.953 380.574 414.590 17.6 8.0 3.6 70.9 0.2 

MB3 46.674 120.823 903.055 5.4 2.4 13.5 78.7 0.1 

a)
Calculated by integrating the CO2 profile in the range of temperature 200-600°C (expressed as 

ppm/mg of sample); 
b)

Calculated by integrating the NH3 profile in the range of temperature 150-

800°C (expressed as ppm/mg of sample). 



 

 

Figure 1. Absorbance FTIR spectra in the 2000-400 cm
-1 

range relative to neat BBS (green), neat 

magnetite M0 (black), and BBS-stabilized MB2 (red). The main relevant peaks are labeled. All 

spectra are collected in transmission mode through KBr pellets. 



 

 

Figure 2. XRD patterns of the neat magnetite (M0) and BBS-stabilized sample (MB2). The main 

reflections due to magnetite are highlighted and labeled. Black symbol refers to the ammonium 

chloride phase (by-product). 



 

 

Figure 3. Panel A: SEM micrograph of MB2 sample collected at 50000× magnification. Panel B: 

MB2 nanoparticles size distribution expressed as number of nanoparticles percentage (N/N0%, 

where N0 is the total of nanoparticles considered, i.e. 500). 



 

 

Figure 4. Magnetization curves evaluation of neat magnetite and BBS-stabilized samples. Legend: 

M0 (black), MB1 (green), MB2 (red), and MB3 (blue). Inset shows the magnetic response of the 

BBS-stabilized materials vs. a commercially available neodymium magnet. 



 

 

Figure 5. Panel A, TGA (solid line) and the derivative (dotted line) curves of the neat BBS (black) 

and MB2 (red) heated from 30 to 900°C at 10°C min
-1

 under dynamic nitrogen atmosphere. Panel 

B, FTIR profiles of the volatile CO2 and NH3 products released from neat BBS (black) and MB2 

(red) during the heating ramp expressed as a function of temperature. Each curve represents the 

concentration (expressed as ppm/mg of sample) of the species evolved and it is obtained relating the 

IR absorbance at a specific wavenumber to the concentration by the Lambert-Beer's law 

relationship: CO2 (2359 cm
-1

), and NH3 (965 cm
-1

). 
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caffeine, 0.4 mM H2O2, eventually 0.5 g L
-1

 magnetic-NPs or 0.001 g L
-1

 Fe(II), and UV irradiation 

(photo-Fenton). Panel A) Relative concentration of caffeine as a function of the irradiation time in 

photo-Fenton conditions. Legend: Photo-stability of caffeine under irradiation in presence of only 

H2O2 (white stars, grey dotted line), and degradation induced in presence of M0 (black squares, 

black solid line), MB1 (blue triangles, blue solid line), MB2 (red triangles, red solid line), and MB3 

(green triangles, green solid line). Panel B) Photo-stability of caffeine under UV irradiation in 

presence of both H2O2 and BBS in homogeneous phase (green diamonds, green solid line), and 

photo-stability of caffeine under UV irradiation in presence of MB2, but in absence of H2O2 (brown 

circles, brown solid line). Panel C) Absorbance UV-Vis spectra in the 200-400 nm range relative to 

the caffeine solution before (black solid line) and after (grey solid line) degradation in presence of 

MB2/H2O2/UV (i.e. photo-Fenton) collected after 60 min of irradiation. The peak at 275 nm 



indicates the caffeine reference signal. Panel D) Fenton vs. photo-Fenton: Relative concentration of 

caffeine as a function of the (irradiation) time in Fenton/photo-Fenton conditions. Legend: 

Degradation of caffeine in presence of Fe(II) in Fenton (white diamonds, blue solid line) and photo-

Fenton (blue diamonds, blue solid line), vs. MB2 in Fenton (white triangles, red solid line) and 

photo-Fenton (red triangles, red solid line) conditions.  

  


