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PANZICA G.C. and R.C. MELCANGI. Structural and molecular brain sexual differences: a tool to 

understand sex differences in health and disease. NEUROSCI BIOBEHAV REV, XXX-XXX, 2016 

Sex differences are present both in the genotype and in the phenotype of all vertebrates, and 

they have been evidenced also within the central and peripheral nervous system. Earlier 

studies on brain sex differences suggested a relatively simple view based on (1) the presence 

of sexually dimorphic circuits in the hypothalamus (or in regions related to reproductive 

behaviors), (2) the action of gonadal hormones to masculinize the brain, and (3) the gonadal 

steroids' action to modulate gene transcription through nuclear receptors. These assumptions 

are today contradicted by the findings accumulated in the last 20 years. We know now that 

mechanisms determining sexual dimorphisms may vary according to location and species, and

may involve several factors, as genes, epigenetic factors, gonadal hormones and neurosteroids.

Sex differences were also revealed by epidemiological studies in several neural pathologies. 

This suggests that the approach to understand the genesis of these pathologies, should involve

specific attention to interactions among genes, gonadal and brain-born steroid hormones, 

epigenetic and environmental factors.
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1. Introduction

Sex differences in the phenotype of living animals are very diffuse both in invertebrates and 

vertebrates. The reproductive organs are a typical example of such differences, they are 

differentiated for their morphology, for the production of gametes (different in male and 

female), and for their endocrine functions. Other, so-called, secondary sex characteristics are: 

the body size, ornamentation, fat tissue distribution, some parts of the skeleton (i.e. pelvis, 

skull), hair, and many other structures. Also several behaviors are sexually dimorphic and this 

implies the presence of sex differences in brain neuroanatomy and/or neurophysiology. 

In birds and mammals, sex differences have been demonstrated at chromosomal level, with a 

couple of chromosomes (sex chromosomes or heterochromosomes) that are different among 

males and females. Particular genes on these chromosomes [the gene DMRT1 on Z 

chromosome of birds (Smith et al., 2009) and the gene SRY on Y chromosome of mammals

(Sinclair et al., 1990)] are responsible of the male sex determination. The primary goal of 

these genes is to induce the development of male gonads. The central and simpler hypothesis 

(that is now under criticism in view of recent discoveries, see Lenz et al., 2012) is that animals 

with SRY or DMRT1 gene will develop testes whose hormones will induce the differentiation of

male phenotypes, whereas in the absence of SRY (or with a diminution of DMRT1), the genetic 

program will induce an ovary whose hormones will determine the female phenotypes. 

Therefore, according to this dogma the phenotypic differences between male and females are 

based on more or less precocious exposure to the "right" hormone and this induce the 

expression of that characteristics for the rest of the life (organizational effects of steroid 

hormones). 

Berthold (a German physiologist) was probably the first to observe, in 1849, a sexual 

difference in animal behavior and to link it to the differences in the gonads. For this reason he 

is considered the father of behavioral endocrinology (Beach, 1981; Jorgensin, 1971). In his 

experiment, Berthold noted that, in addition to phenotypical characteristics as the presence of

a combe and of wattles, the roosters (male chickens) were more aggressive than females 

(hens) and they copulate with hens, whereas these last do not copulate with other hens. 

Castrated rooster did not develop comb and wattles, in addition, they were not aggressive and 

did not copulate. But, when castrated roosters received a transplanted testis, this became 

functional (producing sperm) and the morphological and behavioral phenotypes of intact 

roosters were restored. This experiment was performed a long time before some concepts as 



hormones, neural basis of behavior, sex determination, and sex differences were clarified. 

However it clearly demonstrate that the products of the testes can stimulate the 

differentiation of male external morphology, of male typical behaviors and of specific neural 

circuits controlling these behaviors.

Only after more than 100 years, Phoenix and coworkers (1959) published a seminal paper 

demonstrating that the alteration of prenatal gonadal hormones environment may lead to 

adult alteration of sexual behavior, thus establishing the difference among "organizational" 

and "activational" effects of gonadal hormones. After this first study, several experiments have 

been performed to study every known sex difference in behavior. At the same time, many 

studies were dedicated to investigate the presence of sexually dimorphic circuits, nuclei or 

other structures potentially related to sexually dimorphic behaviors (Abel and Rissman, 2012; 

Arnold and Gorski, 1984; Arnold et al., 2003; Panzica et al., 1995).

The first significant evidence of an anatomical difference at the hypothalamic level (number of

synapses on dendritic spines in the dorsal medial preoptic area, MPOA) was published by

Raisman and Field (1971), that lately demonstrated that this difference is organizational

(Raisman and Field, 1973). Due to the technical limitations of the studies at ultrastructural 

level these differences are difficult to find and it is not possible to apply this approach for the 

description of large brain structures. After these studies, Gorski and coworkers found a more 

easily detectable neural difference: the presence of a sexually dimorphic nucleus (SDN) within 

the MPOA whose volume and cell number is higher in male than in female rat (Gorski et al., 

1978; Gorski et al., 1980). Sexually dimorphic structures, organized during embryonic or 

postnatal development were subsequently described in different vertebrate species (for 

reviews see Breedlove, 1992; Panzica et al., 1995; Panzica et al., 1996; Simerly, 2002), 

including humans (Swaab and Fliers, 1985).

In oscine birds, Nottebohm and Arnold (1976) found sexually dimorphic nuclei (larger in 

males than in females) in the telencephalic regions controlling the emission of song. This 

difference is triggered by testosterone (T) in the adult canaries (Nottebohm, 1980). These 

studies demonstrated for the first time a deep connection among seasonal changes in 

reproductive behavior and changes in the morphology of related circuits in intact birds

(Nottebohm, 1981). 

The picture resulting from these early studies was relatively simple (at least for rodents and 

canaries): (1) sexually dimorphic circuits are located in the hypothalamus or in other regions 



controlling behaviors related to reproduction; (2) brain masculinization depends by the 

presence of gonadal hormones during specific (critical) periods, whereas their absence drives 

the brain to the female sex; (3) the steroids, solely produced by gonads, act through their 

nuclear receptor and directly modulate gene transcription.

All these three assumptions are today at least partly contradicted by the new findings 

accumulated in the last 20 years (Arnold, 2009b). 

2. Sexually dimorphic circuits or nuclei in the central nervous system.

From the first ultrastructural and histological studies many other techniques were employed 

to detect sex differences in the central nervous system. The chemical neuroanatomical 

techniques (including immunohistochemistry, autoradiography and in situ hybridization) have

detailed the presence of neurotransmitters, neuropeptides, enzymes involved in their 

synthesis, or receptors. In this way the number of end points to be considered to study the sex 

dimorphism increases a lot. In some cases, the neurochemical markers detailed structures 

already evidenced in histological studies. This is the case of the quail medial preoptic nucleus 

(POM) that was at first described with Nissl's staining (Viglietti-Panzica et al., 1986), and later 

its location, volume, and steroid-induced plasticity were confirmed by using 

immunohistochemistry for the enzyme aromatase (ARO) (Aste et al., 1994). A different 

example is the SDN-MPOA of the rat. It was the first sexually dimorphic nucleus that was 

observed in the mammalian hypothalamus with histological methods (Gorski et al., 1978), 

however, for a long time, researchers failed to find a murine counterpart of the SDN in Nissl-

stained sections. At the beginning of this century a subdivision of the SDN was found to be 

positive for calbindin-D28k (whose function in this context remains unclear but probably it is 

related to cell survival and apoptosis) and this subdivision was sexually dimorphic and 

responsive to gonadal hormones treatments as the SDN (Sickel and McCarthy, 2000). Later, 

other researchers found that a similar cluster of calbindin-positive cells exists also in the 

preoptic region of the mouse. This marker delineates a sexually dimorphic region that cannot 

be evidenced with Nissl's staining (Edelmann et al., 2007) and, as the rat SDN, is dependent by

gonadal hormones to sexually differentiate (Budefeld et al., 2008).

Immunohistochemical and in situ hybridization studies have been largely used to investigate 

sex differences of neuropeptidergic circuits. Among several systems that have been described, 



two were particularly detailed in different vertebrate species. The first one is the rat 

parvocellular sexually dimorphic arginine-vasopressin (AVP) system, located outside the 

hypothalamus in the bed nucleus of the stria terminalis (BST) and in the medial amygdala. Its 

projections reach several extra-hypothalamic locations, in particular the lateral septum, the 

ventral pallidum, the hippocampus and various brain stem nuclei (De Vries et al., 1985; Gu et 

al., 2003). Cell bodies and projections are strongly sexually dimorphic, having males more cells

and higher density of positive fibers than females (De Vries et al., 1985). Similar sexually 

dimorphic cell groups were observed in different mammalian as well as non-mammalian 

species (in this case the peptide is the arginine-vasotocin, AVT). The mechanisms determining 

the sex differences may vary (see below), but the endpoint (the dimorphism) is similar in the 

different models (for a review see De Vries and Panzica, 2006). The parvocellular AVP/AVT 

system shows gonadal hormones receptors and is activated by them, however its sexual 

dimorphism seems not to be related to the presence of estradiol (E2) during the critical period

(Pierman et al., 2008; Plumari et al., 2002), but probably to a direct genomic effect (De Vries et

al., 2002) or to the presence of a functional androgen receptor (Allieri et al., 2013). 

Another strongly sexually dimorphic peptidergic system that has been more recently 

investigated in several mammalian and non-mammalian species is the kisspeptin system. This 

system is characterized by two groups of neurons: the first one is located in the anterior 

preoptic area (AVPV) and the second one is in the arcuate nucleus (ARC). These neurons 

project mainly to the gonadotropin releasing hormone (GnRH) neurons that control the 

secretion of gonadotropins from the hypophysis (Dungan et al., 2006). The system is therefore

extremely important for the control of reproduction. It is sexually dimorphic with a higher 

number of cells and fibers in the female than in male and is strongly gonadal hormones 

dependent in the adult (Kauffman et al., 2007). The kisspeptin system has been characterized 

in various vertebrate species discovering at least three types of molecules (Kiss1-2-3) and 

four types of receptors (KissR1-4) (for a review see Pasquier et al., 2014). In mammals Kiss1 

has been linked to the development of puberty, and several investigations have elucidated the 

implicated mechanisms (Clarkson et al., 2010).

Sexually dimorphic pathways (characterized by their content in neuropeptides, 

neurotransmitters or enzymes) have been described in several regions of the CNS outside the 

hypothalamus and the limbic system. For example the enzymes tyrosine-hydroxylase (TH) and

dopamine-b-hydroxylase (DBH) show a sex dimorphism in their expression or regulation 

within the rat locus coeruleus (the main nor-adrenergic nucleus in the brain, Luque et al., 



1992; Thanky et al., 2002). The expression of the enzyme for the GABA synthesis (GAD65) is 

sexually dimorphic in discrete regions of the hypothalamus, but also in extrahypothalamic 

regions as the amygdala or the hippocampus (Perrot-Sinal et al., 2001). Dorsal root ganglia 

and the dorsal horn of the spinal cord, show a sexually dimorphic expression of estrogen 

receptors (ERs) and this is probably one of the reason why female rat is more sensitive to deep

pain than male (Papka and Mowa, 2003).

An interesting example of diffuse sex dimorphism is the expression of calbindin in several 

populations of neurons (outside the small group located in the preoptic region): i.e. the frontal

cortex, thalamus, hippocampus, amygdala and cerebellum.  In the frontal cortex and 

cerebellum of juvenile mice, calbindin expression is sexually dimorphic with females having 

about twice positive cells than males (that is the opposite of what observed in the 

hypothalamus). In addition, the mechanisms determining these sexual differences are also 

different for the two regions: in the frontal cortex the dimorphism depends by both ER  and α

sex chromosomes, but in the cerebellum sex chromosomes are the main (sole?) factor (Abel et 

al., 2011). 

The dopaminergic system is largely diffused in the brain. The majority of dopaminergic cells 

have been observed in the substantia nigra (projecting to the forebrain: striatum, cortex and 

limbic system) or in the ventral tegmental area (projecting to the frontal cortex, the amygdala 

and the nucleus accumbens). The dopaminergic neurons are usually identified by the presence

of the tyrosine hydroxylase (TH), the rate-limiting enzyme involved in dopamine synthesis. 

Sexually dimorphic expression of this enzyme has been observed both in the substantia nigra

(Ma et al., 2007) and in the ventral tegmental area (Brown et al., 2015). Fibers containing TH 

have been described in many brain regions, where they have frequently a sexually dimorphic 

distribution (Kritzer and Creutz, 2008). 

In the hypothalamus there are two populations of TH-positive elements that show a sexually 

dimorphic distribution. The first is located in the AVPV and the second in the ARC nucleus

(Arbogast and Voog, 1990; Balan et al., 2000). Recent studies have shown that at least part of 

these two populations of dopaminergic neurons express also kisspeptin (Kauffman et al., 

2007).

Many other neurotrasmitters, neuropeptides and/or their receptors are expressed in a 

sexually dimorphic way throughout the entire central nervous system. Sex differences have 

been detected also at molecular level in mechanisms that are potentially widespread in the 



brain. For example electron microscopic studies discovered sexual differences in spine 

synapse density in females but not males in the caudal part of nucleus accumbens (Wissman 

et al., 2012). In the hippocampus, brain-born E2 rapidly suppresses inhibitory synaptic 

transmission blocking GABA release from CB1 receptor-containing inhibitory presynaptic 

endings in females but not in males (Huang and Woolley, 2012). A recent study demonstrated 

that this suppression is due to inositol triphosphate (IP3) generation, activation of the IP3 

receptor, and postsynaptic endocannabinoid release (Tabatadze et al., 2015). The complexes 

of ERa, glutamate receptor and IP3R are present in both sexes, but are regulated by E2 only in 

females (Tabatadze et al., 2015).

The development of imaging techniques opened a new field of investigations for the human 

brain. In fact, it is now possible to select more homogeneous groups of volunteers, and it is 

easier to study also sex differences in the human brain. A recent study discovered unique sex 

differences in brain connectivity by using diffusion tensor imaging in more than 900 youths 

(aged 8-22 y, more than 400 males and 500 females). Males had greater intra-hemispheric 

connectivity, whereas in females more inter-hemispheric connectivity has been observed

(Ingalhalikar et al., 2013). However, another study performed on more than 1,400 subjects 

revealed extensive overlap between the females and males characteristics for gray matter, 

white matter, and connections, revealing that most brains are "mosaics" of features, some 

more common in females, some more common in males, and some common in both sexes (Joel

et al., 2015), but these conclusions and the applied statistical tools were critically questioned

(Del Giudice et al., 2016). Also optogenetic techniques have been recently applied to 

investigate sex differences in the inferior temporal cortex of macaque monkeys performing a 

facial gender-discrimination task (Afraz et al., 2015). 

These and many other data are therefore contrasting the hypothesis that sexually dimorphic 

circuits are located only in the hypothalamus or in other regions controlling behaviors related 

to reproduction: their distribution is much larger and involves several parts of the central 

nervous system. In addition, the endpoints that can be considered are numerous, starting from

large anatomical differences (as the volume of the rat SDN or of the quail POM) and ending to 

very subtle neurochemical differences (as the modulation of GABA release).

3. Mechanisms determining the development of sexual differences within the central 

nervous system



There is a strong connection among gonadal hormones and the development of sex 

differences of the body including the brain, however the mechanisms may vary in different 

species and other factors have important, even preeminent, roles. Early in development, the 

increased volume of the SDN in rat males depends by the availability of E2 locally produced 

from circulating T by the action of the enzyme ARO. In the female, blood circulating E2 is 

blocked by the alpha-fetoprotein (Bakker et al., 2006), therefore the increase of SDN volume 

happens only in males. Estrogens may prevent cell death in the male SDN by inhibiting 

capsases (Choi et al., 2008) or/and by regulating anti-apoptotic proteins (Gill and Christakos, 

1995). This mechanism is valid for the rat SDN (and may be for other mammals), but in other 

vertebrates, as galliform birds, E2 is acting in an opposite way inducing demasculinization of 

the volume of the medial preoptic nucleus (Aste et al., 1991) and of the sexually dimorphic 

parvocellular AVT system in the BST (Panzica et al., 1998). The regulation of cell proliferation 

during the embryonic period (in particular around the E12-14, that is the end of the critical 

period in galliforms) seems to be also in this case one of the key mechanisms, however no 

clear hypothesis has been presented (Bardet et al., 2012). 

Another example is the sexual differentiation of the AVPV (located in the most medial part of 

the MPOA). The AVPV is larger in volume and cell number in females as compared with males

(Bleier et al., 1982; Simerly et al., 1985). This sex difference results by an androgen-dependent

mechanism, in fact cell number is reduced in females pre- or post-natally treated with T 

propionate (Arai et al., 1994; Murakami and Arai, 1989).  Androgens and androgen receptors 

are also important for the sexual differentiation of other brain circuits, as demonstrated by the

alteration of nitrergic population in the MPOA, VMH and BST nuclei (Martini et al., 2008) or of 

the AVP system in the BST and medial amygdala (Allieri et al., 2013) in androgen receptor 

defective  (Tfm) male rats.

Estrogens and androgens are produced by the gonads, that differentiate through a genetic 

mechanism linked to the presence of X and Y chromosomes, in particular, in mammals, by the 

presence of the Sry gene.  It is therefore possible that some brain differences are directly 

depending by a chromosomal effect and not by an epigenetic effect of gonadal hormones. The 

TH system represents a very peculiar system to investigate this mechanism. In fact, in cell 

cultures extracted from the mesencephalic region at the embryonic day 14 (before the surge of

T in the rat male embryo), the uptake of dopamine (a marker of the functional maturation of 

these neurons) as well as the number of cells were sexually differentiated (Beyer et al., 1992; 

Beyer et al., 1991; Engele et al., 1989; Reisert et al., 1990). This suggests that the genome 



should be responsible of sex differences in rodent mesencephalic dopaminergic system

(Reisert and Pilgrim, 1991). This hypothesis was confirmed by experiments demonstrating 

the hormonal independence of these sex differences in long-term steroid-exposed mice (Sibug

et al., 1996). 

An interesting genetic model to test the effects of the genome is the so-called  "four core 

genotypes (FCG)" mouse model (Arnold, 2009a; Arnold and Chen, 2009) that comprises mice 

in which sex chromosomes (XX vs. XY) are unrelated to the animal's gonadal sex. The males 

are either XY or XX
+Sry

, and the females are XX or XY
-Sry

, all males have testis and females have 

ovaries. Thus, the FCG model may provide information regarding the non-gonadal origins of 

sex differences. For the mesencephalic dopaminergic system, cell cultures from the 

mesencephalon of E14 FCG mice confirmed the effect of genetic sex on these sex differences. 

Cell cultures from XY males or XY
-Sry

 females had more TH- cells than XX or XX
+Sry

 cultures

(Carruth et al., 2002). Therefore, the genes located in the Y chromosome (and not the Sry 

which is determining the development of gonads) are important for the sexual differentiation 

of this circuit.

In contrast to these results, the sexual differentiation of the TH-containing neurons of the 

AVPV is strictly dependent by the perinatal hormonal environment. In fact, the disruption of 

the ERa feminizes the system, inducing a 3 times increase in the number of TH neurons of 

AVPV in ERaKO males in comparison to the wild type, while no changes have been detected 

within the AVPV of female ERaKO mice.  The androgen receptor seems not to be involved, in 

fact Tfm mice contain the same number of TH-immunoreactive neurons in the AVPV (Simerly 

et al., 1997).  The action of E2 in males is probably linked to an increase of the apoptosis, as 

demonstrated in vitro and in vivo by using drugs inhibiting capsase that induced an increase of

TH-immunoreactive neurons (Waters and Simerly, 2009).

Outside the hypothalamus, gonadal hormones have an important role as regulative factors of 

adult neurogenesis (Galea et al., 2013). In the hippocampus they differentially affect cell 

proliferation and survival in male and female rat: repeated administration of E2, decreased the 

survival of new neurons, increased cell proliferation, and decreased cell death in the female, 

whereas they have no effect in male (Barker and Galea, 2008). Cellular proliferation 

decreases in ovariectomized females, and it is restored by acute treatment with E2 (Tanapat et 

al., 2005). In male rats, androgens (T and dihydrotestosterone), but not E2, stimulate cell 

survival (Spritzer and Galea, 2007). In the subventricular zone (SVZ), the modulatory effects of



gonadal hormones are highly variable according to sex, species, treatment and strain. In a 

recent study (Farinetti et al., 2015) we demonstrated that E2 and T, but not 

dihydrotestosterone, increase proliferation in the SVZ of adult castrated male rats, whereas 

ovariectomized female rats treated with E2 or T do not show any significant effect. 

Recently, major attention has been paid to the epigenetic mechanisms occurring at the DNA 

level. In a recent study (Nugent et al., 2015) the authors found that gonadal steroids act in the 

MPOA to reduce activity of DNA methyltransferase enzymes, decreasing DNA methylation and 

inducing the activation of masculinizing genes. Pharmacological inhibition of these enzymes 

induced the masculinization of neuronal markers and the appearance of male sexual behavior 

in female rats. Also conditional knockout mice for one of the isoforms of DNA 

methyltransferase enzymes (Dnmt3a) showed masculinized sexual behavior in female. These 

data show that "brain feminization is maintained by the active suppression of masculinization 

via DNA methylation" (Nugent et al., 2015). 

In conclusion, the organization of sexually differentiated circuits is based not only on 

circulating gonadal hormones secreted by gonads, but also by locally synthetized E2, by 

androgens, by genes located in the sex chromosomes, not limited to the Sry, and by epigenetic 

factors.

4. Sex difference in neuroactive steroids.

Data so far discussed seems to suggest that only sex steroids produced by peripheral glands 

(or their direct metabolites, as the case of E2 derived from T) are able to influence sexual 

differences in the nervous structures. However, the last three decades of investigations have 

clearly indicated that steroids affecting nervous function are not only those coming from the 

periphery (i.e., steroid hormones) but also those directly synthesized in the nervous system 

(i.e., neurosteroids). These two classes of steroid molecules are now integrated in the term 

neuroactive steroids (Giatti et al., 2015; Melcangi et al., 2008; Melcangi and Panzica, 2006; 

Rupprecht and Holsboer, 1999). Indeed, nervous system expresses molecules involved in the 

transport of cholesterol into the mitochondria, such as steroidogenic acute regulatory protein 

(StAR) and translocator protein, as well as several steroidogenic enzymes (Melcangi et al., 

2008). Thus, nervous system possesses the capability to synthesize and to metabolize 

neuroactive steroids. Importantly, StAR, the cytochrome P450 side chain cleavage (i.e., the first



steroidogenic enzyme) and ARO show sex differences in the nervous system (Lavaque et al., 

2006; Lavranos et al., 2006). Interestingly, it has been recently demonstrated that, in the FCG 

mouse model, sex chromosome complement determines sex differences in ARO expression in 

brain structures. Thus, the bed nucleus of the stria terminalis and the anterior amygdala of 16 

days old XY and XY
-Sry

 mouse embryos show higher aromatase expression than the brain of XX 

and XX
+Sry

 embryos (Cisternas et al., 2015). In physiological conditions the levels of several 

neuroactive steroids show sex differences within the nervous system (Melcangi et al., 2016),

The so-called classical action of steroid hormones is performed through nuclear receptors 

that, after binding the appropriate ligand, show a conformational change allowing receptors to

bind directly to specific steroid response elements in the promoter regions of specific genes

(O'Malley and Means, 1974). However, neuroactive steroids, including E2, (Balthazart and Ball, 

2006) may induce rapid changes that occur within seconds to milliseconds, this is called the 

non-classical action and it is due to G protein–coupled and ligand-gated ion channel 

membrane receptors (for a review see King, 2008). Many receptors are involved, as glycine 

receptors, metabotropic sigma type 1 receptors, N-methyl-D-aspartic acid (NMDA) receptors 

and g-aminobutyric acid type A (GABAA) receptors. Recently, a G-protein coupled estrogen-

sensitive receptor (termed G-protein estrogen receptor 1, GPER1) has been described within 

the brain (Hazell et al., 2009). Several studies elucidated the distribution and subcellular 

localization of this receptor in the brain, as well as some of the roles that this receptor may 

play in the brain particularly in the control of synaptogenesis and spinogenesis and the impact

that estrogens may have over brain diseases (for reviews see Hara et al., 2015; Sellers et al., 

2015; Srivastava and Evans, 2013).  In agreement with these concepts, several observations 

have been obtained indicating that neuroactive steroids play important roles in sexual 

function and behavior (see for a review King, 2008). 

In conclusion, the three main assumptions reported in the introductions, are contradicted, at 

least partly, by the recent findings. In particular: (1) sexually dimorphic circuits are located all 

over in the brain and the spinal cord. (2) The organization of sexually differentiated circuits 

depends by several mechanisms including circulating gonadal hormones, locally synthetized 

E2, androgen and estrogen receptors, genes located in the sex chromosomes, and epigenetic 

factors. (3) The action of steroids in the central nervous system includes both classical and 

non-classical mechanisms. Finally, brain-born steroids (i.e., neurosteroids) are involved in 

many physiological regulations.        



5. Sex differences in neurodegenerative and psychiatric disorders

Sex differences are not only present in physiological status but also in neural pathologies. 

Indeed, as reported in this special issue and by an extensive recent literature (Young and Pfaff, 

2014) sex differences have been observed in psychiatric disorders (e.g., epilepsy, 

schizophrenia, autism, anxiety and depression) (Altemus et al., 2014; Cozzoli et al., 2014; Hill, 

2016; Kelley et al., 2011; Lovick, 2014; McHenry et al., 2014; Mendrek and Mancini-Marie, 

2016; Reddy, 2014; Scharfman and MacLusky, 2014; van Luijtelaar et al., 2014), stress-related 

psychiatric disorders (Bangasser and Valentino, 2014), and addictive disorders (Fattore et al., 

2014; Zhou et al., 2016). Neurodevelopmental disorders (Romano et al., 2016), autoimmune 

disease (Ngo et al., 2014), neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's 

disease, Huntington's disease, multiple sclerosis) (Gillies et al., 2014; Grimm et al., 2016; Kipp 

et al., 2016; Li and Singh, 2014; Litim et al., 2016; Mosera and Pike, 2016; Ramien et al., 2016),

trauma  (e.g., traumatic brain injury, spinal cord, stroke, post-traumatic stress disorder)

(Gibson and Attwood, 2016; Inslicht et al., 2014), and diabetes (e.g., diabetic encephalopathy 

and peripheral neuropathy) (Lipscombe et al., 2014; Pesaresi et al., 2010; Zhao et al., 2014) 

also show sex differences in their incidence, symptoms and neurodegenerative outcome. 

Interestingly, neuroactive steroid levels present in brain areas are also influenced by these 

pathologies in a sexually dimorphic way (Melcangi et al., 2016). Moreover, examples of sex 

specific effects of neuroactive steroids have been demonstrated, at least in experimental 

models (Mannix et al., 2014; Murray et al., 2003; Pesaresi et al., 2011a; Pesaresi et al., 2011b; 

Peterson et al., 2015; Zup et al., 2014). That is particularly interesting because may provide a 

possible background for a gender medicine based on these molecules to be applied in case of 

nervous pathologies (for a review see Porcu et al., 2016).  

6. Conclusions.

Sex differences in the central and peripheral nervous system are widely diffused in 

vertebrates, in mammals and in humans. The mechanisms that cause the establishment of 

these dimorphisms may vary according to location and species, and involves several actors 

including: genes located in sexual chromosomes, epigenetic factors, gonadal hormones as well 

as neurosteroids. An increasing number of studies link human nervous pathologies with the 



action of neuroactive steroids and with an effect of gender. Therefore, future research both in 

physiological and pathological conditions should consider more the interactions among genes,

gonadal and brain-born hormones, epigenetic and environmental factors (as for example the 

exposure to endocrine disruptors, Frye et al., 2012), in order to have a more complex 

approach to the genesis of neural pathologies.
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