
15 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

THREE LAYERS NETWORK INFLUENCE ON CLOUD DATA CENTER PERFORMANCES

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

EUROPEAN COUNCIL MODELLING & SIMULATION

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1619156 since 2016-11-30T14:33:16Z

iris-AperTO
University of Turin’s Institutional Research Information System and Open Access Institutional Repository

	
	
	
	
	
This	is	the	author's	final	version	of	the	contribution	published	as:	
Mauro	Iacvono,	Marco	Gribaudo,	Daniele	Manini	

Three	layers	network	influence	on	cloud	data	center	performances		
	
Proceeding	of	the	30th	European	Conference	on	Modelling	and	Simulation,	ECMS	
2016;	Regensburg;	Germany;	31	May	2016	through	3	June	2016;	
	
ISBN:	978-099324402-5	
	
The	publisher's	version	is	available	at:	

	http://www.scs-europe.net/dlib/2016/ecms2016acceptedpapers/0621-
dis_ECMS_0125.pdf	
	
	
When	citing,	please	refer	to	the	published	version.	
	
	
Link	to	this	full	text:		

[inserire	l'handle	completa,	preceduta	da	http://hdl.handle.net/]	
	
	
	
	
	
	
	
	
	
	
	
	
This	full	text	was	downloaded	from	iris-Aperto:	https://iris.unito.it/		

THREE LAYERS NETWORK INFLUENCE ON

CLOUD DATA CENTER PERFORMANCES

Marco Gribaudo

DEIB

Politecnico di Milano

via Ponzio 51

20133, Milano, Italy

marco.gribaudo@polimi.it

Mauro Iacono

DSP

Seconda Università degli Studi di Napoli

viale Ellittico 31

81100 Caserta, Italy

mauro.iacono@unina2.it

Daniele Manini

DI

Università degli Studi di Torino

corso Svizzera 185

10129, Torino, Italy

manini@di.unito.it

KEYWORDS

cloud networking; data center performances; Markovian

agents; performance modeling; virtualization

ABSTRACT

The effects of networks on the performances of cloud

architectures are a very significant issue in designing a data

center. The efficiency of data transfers and the overall traffic

management are a critical factor that constitutes a potential

performance bottleneck, potentially limiting the number of

computing nodes that can be installed more than their cost

issues. In this paper we present a modeling approach, based

on Markovian agents, that allows a performance analysis of

network effects in high scale cloud architectures.

I. INTRODUCTION

Virtualization is a key technology in the field of cloud

computing. The use of virtual machines (VM) allows to

exploit the enormous amount of computing power available

in modern data centers, by decoupling the computing needs

of the applications from physical processors and memory;

moreover, VM are an efficient mean to neutrally save the

state of a complex computation, to spawn different instances

of the same computing environment or to implement safety

and security related strategies and lower the overall risk in

sensitive applications.

The drawback of using VM is their startup phase. When

not in use, a VM is normally stored in the cloud storage

system, with an (uncompressed) footprint that can be around

several hundreds of megabytes. Additionally, a VM may use

a persistent virtualized storage unit, that is logically mounted

during the startup phase. Starting a VM, by using a standard

predefined snapshot, or restarting a VM, previously stored as

a snapshot at the end of the previous running period, is thus

a time consuming task, due to data transfers from the storage

subsystem of the cloud and the memory of the physical server

chosen to run it.

As the schedule of the cloud depends on the workload, a

snapshot (and, in case, its persistent storage) is not necessarily

stored in the same node that can run it when needed (e.g.

OpenStack): a new VM instance from a standard image has

to be retrieved from the image repository; an existing stored

snapshot may need to be moved on the node that offers enough

physical resources and time slots; if the architecture is made

of different nodes for computing and storage, the snapshot

obviously needs to be properly sent to the computing node;

if the storage subsystem uses a distributed file system (e.g.

CEPH), the snapshot retrieval involves even more complex

mechanisms.

As a consequence, VM startup relies on the efficiency of

the network layer, that is the part of cloud architectures that

grows at the lowest pace. In this paper we present a modeling

technique to evaluate the impact of the network layer and

its organization on the VM startup time in high scale cloud

architectures based on a three-tier network and a standard,

replication based distributed storage model.

The paper is organized as follows: the next Section presents

related works; Section III introduces the reference scenario

for this work; Section IV describes the modeling approach;

Section V shows the application to a case study; conclusions

follow in the last Section.

II. RELATED WORKS

The use of VM is a classic technique, known since the

mainframe era, to optimize the use of a large amount of

resources by smartly sharing them between different, inde-

pendent and isolated complete software stacks, by running

different operating systems on virtualized hardware. A good,

performance evaluation oriented introduction is provided by

[1], that also offers a good historical perspective. VM offer

a great flexibility in the management of cloud resources, that

may give great benefits if a proper performance analysis driven

tuning is implemented [2], as many performance influencing

factors arise from the complexity of the architecture and must

be taken into account [3] [4] [5] [6] [7].

The most critical performance factor in a modern data

center is the efficiency of the network (at the point that data

dependent structures may be needed [8]): to get an idea of the

needs of a large data center, [9] reports about how this problem

has been studied and what solutions have been implemented in

Google facilities. Several well spread architectures emerged,

such as the three layer, the Clos, the fat tree [10] and the DCell

ones [11] [12], but other solutions have been proposed as well

(e.g. VL2 [13] and CONGA [14]). The problem is relevant

also in distributed data centers [15] [16], but the scope of this

paper is focused on the internal infrastructure of a single, high

scale datacenter.

Performance evaluation studies on the main cloud network

architectures have been performed by means of simulation:

two very good examples are given by [11] and [12], that

give a complete and comparative panorama. A simulative

approach is potentially capable of allowing the analysis of

very large scale clouds, at the cost of a long computational

effort: simulation time is as much longer as much the system

behaviors are variable and its scale is large. In this paper an

analytical approach is preferred. An important issue is also the

evaluation of energy consumption in cloud networks: this is

out of the scope of this paper, but interested readers can find

an interesting introduction and recent results in [17] and [18].

The authors already applied analytical and simulative meth-

ods to performance evaluation of cloud systems, both in small

[19] [20] [21] [22] [23] and large scale [24] [25] [26] [27] [28].

Although analytical methods are known to be affected by the

state space explosion problem, some approaches (e.g. product

forms [29] and Markovian agents [30]) proved to be effective

tools to overcome this limit. In this paper Markovian agents are

exploited (as in [26], [27] and [28]) for their special suitability

in modeling systems with very large number of states with

increasing precision.

In this paper OpenStack cloud architecture is used as a

reference. The management of VM images is documented at

[31]; some technical information about typical VM images

for OpenStack can be found at [32]. The network solicitation

due to a VM is described at [33], while the integration of the

operating system of a VM is described at [34] (using Ubuntu

Linux distribution as an example). The main advantage of

our approach woth respect to the rest of the literature is the

capability, thanks to the adoption of Markovian agents, for

seamlessly scaling up the models (and the dimensions and

complexity of datacenters) to thousands of components, while

keeping an analytical approach and increasing the precision of

the approximation.

III. SCENARIO

In this work we focus on a datacenter of medium or

large scale. Figure 1 shows a simplified architecture of the

considered scenario. In a datacenter, the IT equipment is

enclosed into fixed form factor cases called rack units. Units

include computing servers, storage servers, network equip-

ments and power supply units (PSUs). In this work we will

not focus on PSUs; network equipments include switches,

routers, firewalls and load balancers: in this work we will

only focus on switches. Units are organized in columns, that

we will simply address as racks. Racks are further organized

in corridors, to improve the air circulation and the cooling

of units. In particular, corridors are organized into cold aisles

and hot aisles. The former ones present the front panels of

the equipments, and allow technicians to access the controls

of the units. The latter ones instead hold the backs of the units,

and they are where cables interconnecting the units are placed.

Cool air, produced by fans or air conditioners, enters the room

from the cold aisles, flows through the units, cools them down,

and exits the room from the hot aisles. Computing servers are

usually special multiprocessor, multicore, and multithreaded

power and network redundant x86 PCs. They are usually

equipped with a relatively large amount of memory (currently

in the range of 64-128 GB), and can run around 40-80 threads

in parallel. They are however equipped with a limited disk

space, and they relay to external storage to hold most of the

persistent data. Storage units include both RAIDs (Rapid Array

of Independent Disks) and JBOD (Just a Bunch Of Disks).

The former are more expensive and require more advanced

controllers: however they allow for both greater performance

and reliability. The latter are much simpler and less expensive

disk enclosures, whose task is just to allow computing units

to mount them and use them as they were internal disks.

Both units can be equipped with both rotational disks (HDD)

or solid-state disks (SSD): usually a datacenter integrates all

possible combinations of technologies to define different disk

pools to be used for different purposes.

Core

network

equipment

Servers

corridor

Hot aisle
Cold aisle

Server with

multi-core CPUs

TOR switch

High speed

links

Network

aggregator

JBOD/RAID unit

Fig. 1. Architecture of a datacenter.

Several network interconnection strategies for datacenters

have been studied in the literature: a good survey can be

found in [11]. In this work, we will mainly focus on the three-

level network architecture as shown in Figure 2. Computing

and storage units are directly connected to a switch that is

defined as Access switch and that composes the so called

Access layer. The switches can be positioned in two points

that are usually addressed as Top Of the Rack (TOR) or End Of

the Line (EOL). In the former, each rack has a switch, usually

positioned in the top-most slot (for this reason it is called ”top

of the rack”). It has the advantage of requiring a small number

of shorter cables. However it can reduce performances by

placing additional bottlenecks, and it can reduce the size of the

infrastructure. In the other topology, switches are put at the end

of each line of racks. EOL allows a greater scalability, but it is

usually more expensive compared to the TOR solution. In our

example we will focus on the TOR topology. Access switches

are connected together using another level of switches, called

Aggregation layer, that partitions the datacenter topology

into a set of disjoint groups. In the example of Figure 1,

aggregation switches are placed at the end of each corridor,

and all the TOR access switches of the corresponding row

of racks are connected to them. The connectivity of the

datacenter is then completed by a further network, called the

Core layer, that allows the communication between different

aggregation switches. This organization however is affected

by a problem known as the bisection bandwidth, which limits

the maximum communication speed among nodes connected

at different sides of the considered switch. Two techniques

can be used to increase the available bisection bandwidth.

Links that interconnect the different layers together might

be characterized by different network technologies that might

result in different link speeds. Since as the layer increases from

access to aggregate, and from aggregate to core, the number

of connected nodes increases as well, the bisection bandwidth

can be increased by using faster communication technologies

for links at higher levels. The second common way to increase

the bisection bandwidth is by adding extra switches at each

access layer, and using protocols like Equal Cost Multi-Path

(ECMP) [35] to equally share the traffic among the different

routes. For example, Figure 2 shows a 36 nodes architecture

where each access switch is connected to three nodes (two

for computing and one for storage), and access switches are

grouped into bunches of three by the aggregation layer. Finally

the four groups are connected together with the core layer.

The bisection bandwidth is increased by using two aggregation

layers per switch, and the by having three core layer switches.

In this work we mainly focus on a cloud datacenter, where

all the computing nodes are used to host VMs. In our scenario,

users are IaaS clients, that require the system to provide them

a VM. Each user will then use the VM to run his software, and

release it after use. As in a classical cloud scenario, VMs are

started from images, that contain the filesystem of the OS plus

all the other software that could be run in the VM. Persistent

data are then stored using special block services set up by

the cloud provider: they usually simulate the presence of a

network connected disk that can be reached using the iSCSI

protocol (a specific protocol that encapsulates SCSI data inside

internet packets). For example, in Openstack [36], images are

stored by a service called Glance, while persistent storage

is provided by another service called Cinder. Both services

use a lower-level block storage service (which in Openstack

is called Swift). This file system architecture creates a high

load over the network, which in many occasions becomes

the real bottleneck of the system. In particular, the lifetime

cycle of a VM, together with its storage access, is shown

in Fig. 3. Initially, VM OS root disk images and persistent

volume storage images are divided into blocks that are spread

over the storage nodes of the datacenter (Fig. 3a). Root disk

images size ranges from few tenth of MBs (for the smallest

OS distributions) to several tenth of GB (for Windows based

OS, or for more featured Linux installations). As soon as a

VM is started, its root disk image is copied into a local drive

of the computing node where the VM is run (Fig. 3b). This

creates a strong utilization of the network, since GBs of data

must be transferred inside the datacenter. After the image has

been copied, the virtual machine manager can start the VM.

Each OS running on a VM usually can access at least three

different disks: the root disk that contain the OS, a fast but

small local disk (called the ephemeral storage), and a remote

persistent storage. The main characteristic of ephemeral disks

is that they are not persistent: when the VM is released,

they are cleaned, and all their content is lost. During normal

operations, the VM accesses the locally connected disks: the

root disk to install OS updates or other software that must be

run on the VM; ephemeral disks to hold temporary data. In

this case the network is usually accessed only to access the

persistent storage (Fig. 3c). Even if the exact access pattern

is cloud-architecture dependent, it is usually performed by

locally caching the data, and only relatively large blocks of

packed data are sent across the network. At the release of

the VM, the resources required to hold both the root and the

ephemeral disks must be released. The user might require to

perform a snapshot of the root disk in order not to lose the

OS updates that have been made during the VM execution.

This process is called shelfing in Openstack terminology, and

it requires that the new disk image must be transferred from

the node that is releasing the VM to a storage node (Fig. 3d).

IV. MODELING APPROACH

Markovian Agents [37] are a formalism used to describe

large system where elements can interact. Such models are

solved using Mean Field Analysis [38]. In this case, agents

do not communicate using messages, as ordinary Markovian

Agents do, but they can influence each other via induction: the

rate of jumping from one state to another can be influenced

by the number of agents in a given state at a given location.

Moreover, agents can increase in number or decrease (either

spontaneously or induced by other agents), or they can multi-

ply during the transitions.

The Markovian Agent based model depicted in Fig. 4

describes the behavior of a compute node. The system receives

a total of Λ requests for activation of new VMs per time unit.

Each node i receives requests at rate λi(Π) (with ∑i λi(Π)=Λ)

where Π represents the count of agents in each state for each

node. In particular, VMs are randomly assigned to nodes, with

a probability that is proportional to the number of free VMs.

Let us call f reei(Π) the number of VMs that can still be

assigned to node i, and let us call λi(Π). We then have:

λi(Π) = Λ
f reei(Π)

∑ j f ree j(Π)
.

If the disk image of the starting VM is locally present, the

agent goes in state Local with probability pinCache to simulate

the immediate start of the computation. Otherwise, the agent

goes in state Startupi j to represent the image transfer from

storage node j to compute node i. The image is transferred at

Compute node

Storage node

Access switch

Aggregation switch

Core switch

Access link

Aggregation link

Core link

Fig. 2. Logical architecture of a three-tier datacenter interconnection network.

a) Before startup

Image store Volume store

Compute Node

b) Startup

Image store Volume store

Compute Node

vda

vdb

vdc

copy

Image

m
ou

nt

c) Normal operation

Image store Volume store

Compute Node

d) Shutdown

Image store Volume store

Compute Node

vda

vdb

vdc

copy

snapshot

re
ad

/w
rit

e
e

ra
s
e

keep

VM instance

VM instance

Fig. 3. Storage access during the lifetime of a VM: a) storage organization prior to startup, b) startup phase, c) disk access during normal operation, d)
shutdown procedure.

rate σStartupi j
, that is equal to the speed of the link performing

as bottleneck in the route connecting the compute node i to

the storage one j. To be more precise, the computation of the

speed of the route is computed in this way:

1) the total number of VMs NRi j
transferring data from each

compute node i to each storage node j is computed;

2) let us call Rlk = {Ri j, . . .} the set of all routes Ri j that

traverses a link lk. The total number of VMs Nlk using

link lk is computed by considering all the possible routes

i j that traverses that link, and multiplied by the sharing

factor sh(Ri j, lk) of that link in the communication: Nlk =

∑Ri j∈Rlk
NRi j

·sh(Ri j, lk). Sharing factor sh(Ri j, lk) allows

to model protocols like the ECMP;

3) for each link lk, actual link speed σlk is determined

as σlk =
Clk

max(Nlk
,1) , where Clk is the maximum effective

speed of link lk measured in MB/s;

4) for each route Ri j, route speed σRi j
is computed as the

minimum capacity along the path: σRi j
= minlk∈LRi j

σlk ,

where LRi j
= lk is the set of link used by route Ri j;

5) let us call DV Mimage the average size of a VM image.

Rate σStartupi j
is then determined as σStartupi j

=
σRi j

DV Mimage
.

When the transfer is completed, the agent goes in state

Local. The VMs session has duration 1/µshutdown; once it is

terminated the agent goes in state Shutdown with probability

1 − pnoShelve to model the user has performed the shelve

action, otherwise the agent leaves the system. During the

session, access to the remote disk can be requested by some

applications at rate µBlockIO. This behavior is modeled by the

agent moving to the state Block I/Oi j. The agent returns to

the normal state when the I/O is completed. This occurs at

rate σBlockIOi j
=

σRi j

DBlock
, where DBlock is the average I/O block

size. If the VM requests to shelf the new image, the time

spent to leave the system with rate σShutdown considers the

copy of the image snapshot of size DV Msnapshot . Also in this

case the transfer speed depends on the bottleneck link between

the computation and the storage nodes, and it is defined as

σShutdown =
σRi j

DV Msnapshot

Startupj

Local
Block I/Oj

Shutdownj

λ

σStartup

σBlockIO

σShutdown

µBlockIO

µShutdown

pinCache

pnoShelf

Fig. 4. Agent model of a compute node.

V. A CASE STUDY

To test the methodology, we apply the model proposed in

Section IV to study the performances of four different patterns

for placing computing and storage nodes inside a datacenter.

In particular the considered scenarios are:

• Distributed storage (Fig. 5a). In this case there are no

specific storage nodes, and disks are held directly inside

the computing node. In this scenario, computing nodes

have a slightly more limited capacity in term of VMs they

can run, since they must also handle part of the storage

requests.

• Storage on rack (Fig. 1). Each rack has its own set of

storage nodes. This means that computing node might

reach part of the storage nodes using just the switch at

the corresponding access layer.

• Storage on aisle (Fig. 5b). In each aisle, there is a

rack that includes all the storage nodes. In this way,

computing nodes must use switches at the aggregation

layer to reach their storage units. However they can be

easier to maintain, since disks are located in a limited

number of locations (i.e. one per aisle).

• Storage in a given area (Fig. 5c). Storage nodes are

concentrated in a specific aisle (which might also be

physically located in a different room with respect to the

computing nodes). This has the disadvantage that storage

nodes can be accessed only passing through the core

layer. However it ensures a higher security, allowing the

storage to be located in different places.

All the scenarios share the same number of nodes Nnodes =
36, and the same maximum number of VMs that can be run

on the infrastructure NV Ms = 1920. Scenarios 2, 3 and 4 are

characterized by Ncompute = 24 computing nodes, Nstorage = 12

storage nodes, and each node has the capacity of running up

to NV Ms × Node = 80 VMs. In scenario 1, all nodes act both as

computing and storage device: for this reason their capacity

of running VMs NV Ms × Node has been reduced accordingly to

keep the maximum capacity of the system NV Ms = 1920 as in

the other scenarios. Links are characterized by the following

speed: ClAccess
= 500 Mb/s at the access layer, ClAggr

= 500

Mb/s at the aggregation layer and ClCore
= 500 Gb/s at the

core layer1. The average VM image size has been set to

DV Mimage = 80 GB, while the snapshot size for VMs that

are shelved (i.e. the difference from their original image) has

been set to DV Msnapshot = 50 MB. VMs perform block I/O

on the average µBlockIO = 1 block/h, and the block size is

DBlock = 10MB. Requests of new VMs activations arrive at a

rate varying in the range Λ = 5..30 req./h, and each VM has

an average duration of 1/µshutdown = 25h. The probability of

having a VM in cache is pinCache = 0.1%, and the probability

of not shelving a terminating VM is pnoShelve = 90%.

Figures 6, 7 and 8 show the average, minimum and

maximum utilization of the links respectively at the access,

aggregation and core layer. At the access layer, Scenarios 3 and

4 have a higher utilization since nodes produce a higher traffic

to obtain the VMs due to the distribution of storage nodes. At

the access layer, the only one having a lower utilization is

Scenario 4, that is also the only one producing traffic at the

core layer. In this case, however, the smaller utilization is due

to the fact that the system saturates and creates a bottleneck

for some nodes at the access layer.

Figures 9, 10 and 11 show the number of free VMs, the

number of VMs performing IO operations (i.e. VMs laying

in Startup, BlockIO, and Shutdown states), and the number

of VMs in normal activities, respectively. As explained above,

Scenarios 1 and 2 are more stable, as a consequence of the

distribution of computing and storage nodes. It follows that

they have a higher number of VMs performing the normal

activity whereas in Scenarios 3 and 4 there is a higher number

of VMs executing IO operations.

1These speeds roughly corresponds to the maximum effective throughput
that can be achieved on standard 1GB and 10GB Ethernet technologies

b) Dedicated rack c) Dedicated aislea) Totally distributed

storage

Fig. 5. Three alternative storage device organizations: a) storage is co-located with the computing nodes, b) storage is on a dedicated rack, c) storage is on
a dedicated aisle.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25 30

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Req. / hour

L
i
n
k

U
t
i
l
i
z
a
t
i
o
n

Fig. 6. Utilization of the links at access layer

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Req. / hour

L
i
n
k

U
t
i
l
i
z
a
t
i
o
n

Fig. 7. Utilization of the links at aggregation layer

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 5 10 15 20 25 30

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Req. / hour

L
i
n
k

U
t
i
l
i
z
a
t
i
o
n

Fig. 8. Utilization of the links at core layer

VI. CONCLUSIONS

In this paper we proposed an approach for performance

evaluation of the effects of networks in clouds. Our results, at

the best of our knowledge, allow researchers and practitioners

to model higher scale cloud systems with respect to previous

literature, including architectures composed of more than one

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20 25 30

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Req. / hour

N
u
m
b
e
r

o
f

V
M
S

Fig. 9. Free VMs

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 5 10 15 20 25 30

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Req. / hour

N
u
m
b
e
r

o
f

V
M
S

Fig. 10. VMs performing IO operations (Startup-
Block-Shutdown)

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Req. / hour

N
u
m
b
e
r

o
f

V
M
S

Fig. 11. VMs performing normal activity

data center. Future works include the integration with our

previous proposals for a detailed overall evaluation of all

aspects of cloud systems. Moreover, we will study other

network topologies that rely on commodity hardware such

Fat-tree organizations, to see if alternative to the three layer

architectures could improve the performance and reduce the

cost of a data-center.

REFERENCES

[1] D. A. Menasce’, “Virtualization: Concepts, applications, and perfor-
mance modeling,” in Proc. of The Computer Measurement Groups 2005

International Conference, 2005.
[2] M. Gribaudo, P. Piazzolla, and G. Serazzi, “Consolidation and repli-

cation of vms matching performance objectives,” in Analytical and

Stochastic Modeling Techniques and Applications, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2012, vol. 7314, pp.
106–120.

[3] N. Huber, M. Von Quast, F. Brosig, and S. Kounev, “Analysis of the
performance-influencing factors of virtualization platforms,” in Proc. of

the 2010 international conference on On the move to meaningful internet

systems: Part II, ser. OTM’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 811–828.

[4] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and Z. Wang,
“Probabilistic performance modeling of virtualized resource allocation,”
in Proc. of the 7th international conference on Autonomic computing,
ser. ICAC ’10. NY, USA: ACM, 2010, pp. 99–108.

[5] F. Benevenuto, C. Fernandes, M. Santos, V. A. F. Almeida, J. M.
Almeida, G. J. Janakiraman, and J. R. Santos, “Performance models
for virtualized applications.” in ISPA Workshops, ser. Lecture Notes in
Computer Science, G. Min, B. D. Martino, L. T. Yang, M. Guo, and
G. Rnger, Eds., vol. 4331. Springer, 2006, pp. 427–439.

[6] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, and J. Koodziej,
“Resource-aware hybrid scheduling algorithm in heterogeneous dis-
tributed computing,” Future Generation Computer Systems, vol. 51, pp.
61 – 71, 2015.

[7] A. Sfrent and F. Pop, “Asymptotic scheduling for many task computing
in big data platforms,” Information Sciences, vol. 319, pp. 71 – 91, 2015.

[8] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, “A cluster-based
data-centric model for network-aware task scheduling in distributed
systems,” International Journal of Parallel Programming, vol. 42, no. 5,
pp. 755–775, 2014.

[9] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat,
“Jupiter rising: A decade of clos topologies and centralized control
in google’s datacenter network,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 183–197, Aug. 2015.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, Aug. 2008.

[11] K. Bilal, S. U. Khan, L. Zhang, H. Li, K. Hayat, S. A. Madani,
N. Min-Allah, L. Wang, D. Chen, M. I. Iqbal, C. Xu, and A. Y.
Zomaya, “Quantitative comparisons of the state-of-the-art data center
architectures,” Concurrency and Computation: Practice and Experience,
vol. 25, no. 12, pp. 1771–1783, 2013.

[12] R. D. S. Couto, S. Secci, M. E. M. Campista, and L. H. M. K. Costa,
“Reliability and survivability analysis of data center network topologies.”
CoRR, vol. abs/1510.02735, 2015.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible
data center network,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 4,
pp. 51–62, Aug. 2009.

[14] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 503–514, Aug.
2014.

[15] F. Palmieri, U. Fiore, S. Ricciardi, and A. Castiglione, “Grasp-based
resource re-optimization for effective big data access in federated
clouds,” Future Generation Computer Systems, vol. 54, pp. 168–179,
2016.

[16] S. Spoto, M. Gribaudo, and D. Manini, “Performance evaluation of
peering-agreements among autonomous systems subject to peer-to-peer
traffic,” Perform. Eval., vol. 77, pp. 1–20, 2014.

[17] C. Fiandrino, D. Kliazovich, P. Bouvry, and A. Zomaya, “Performance
and energy efficiency metrics for communication systems of cloud
computing data centers,” IEEE Trans. on Cloud Computing, vol. PP,
no. 99, pp. 1–1, 2015.

[18] P. Ruiu, A. Bianco, C. Fiandrino, P. Giaccone, and D. Kliazovich,
“Power comparison of cloud data center architectures,” in Proc. of the

2016 IEEE International Conference on Communications (ICC), 2016.
[19] E. Barbierato, M. Gribaudo, and M. Iacono, “A performance modeling

language for big data architectures.” in ECMS, W. Rekdalsbakken,
R. T. Bye, and H. Zhang, Eds. European Council for Modeling and
Simulation, 2013, pp. 511–517.

[20] ——, “Performance evaluation of NoSQL big-data applications using
multi-formalism models,” Future Generation Computer Systems, vol. 37,
no. 0, pp. 345–353, 2014.

[21] ——, “Modeling apache hive based applications in big data architec-
tures,” in Proc. of the 7th International Conference on Performance

Evaluation Methodologies and Tools, ser. ValueTools ’13. ICST,
Brussels, Belgium: Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, 2013, pp. 30–38.

[22] D. Cerotti, M. Gribaudo, M. Iacono, and P. Piazzolla, “Modeling and
analysis of performances for concurrent multithread applications on
multicore and graphics processing unit systems,” Concurrency and

Computation: Practice and Experience, pp. n/a–n/a, 2015.
[23] ——, “Workload characterization of multithreaded applications on mul-

ticore architectures,” in ECMS, Proc. of the 28th European Conference

on Modelling and Simulation, ECMS 2014, Brescia, Italy, May 27-30,

2014. European Council for Modeling and Simulation, 2014, pp. 480–
486.

[24] M. Gribaudo, M. Iacono, and D. Manini, “Improving reliability and
performances in large scale distributed applications with erasure codes
and replication,” Future Generation Computer Systems, vol. 56, pp. 773
– 782, 2016.

[25] ——, “Modeling replication and erasure coding in large scale distributed
storage systems based on CEPH,” in Proc. of XII conference of the

Italian chapter of AIS, ser. Lecture Notes in Information Systems and
Organisation. Springer Berlin / Heidelberg, 2016, vol. to appear.

[26] A. Castiglione, M. Gribaudo, M. Iacono, and F. Palmieri, “Exploiting
mean field analysis to model performances of big data architectures,”
Future Generation Computer Systems, vol. 37, no. 0, pp. 203–211, 2014.

[27] ——, “Modeling performances of concurrent big data applications,”
Software: Practice and Experience, vol. 45, no. 8, pp. 1127–1144, 2015.

[28] E. Barbierato, M. Gribaudo, and M. Iacono, “Modeling and evaluating
the effects of Big Data storage resource allocation in global scale cloud
architectures,” International Journal of Data Warehousing and Mining,
vol. 12, no. 2, pp. 1–20, 2016.

[29] E. Barbierato, G.-L. D. Rossi, M. Gribaudo, M. Iacono, and A. Marin,
“Exploiting product forms solution techniques in multiformalism model-
ing,” Electronic Notes in Theoretical Computer Science, vol. 296, no. 0,
pp. 61 – 77, 2013.

[30] M. Gribaudo and M. Iacono, “A different perspective of agent-based
techniques: Markovian agents,” in Intelligent Agents in Data-intensive

Computing, ser. Studies in Big Data, J. Kolodziej, L. Correia, and
J. Manuel Molina, Eds. Springer International Publishing, 2016, vol. 14,
pp. 51–70.

[31] “OpenStack: Images and instances,” http://docs.openstack.org/
admin-guide-cloud/compute-images-instances.html, accessed: 2016-02-
06.

[32] “Where to find OpenStack cloud images,” https://thornelabs.net/2014/06/
01/where-to-find-openstack-cloud-images.html, accessed: 2016-02-06.

[33] “OpenStack networking tutorial: Single-host Flat-
DHCPManager,” https://www.mirantis.com/blog/
openstack-networking-single-host-flatdhcpmanager/, accessed: 2016-
02-06.

[34] “Ubuntu documentation: CloudInit,” https://help.ubuntu.com/
community/CloudInit, accessed: 2016-02-06.

[35] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” United
States, 2000.

[36] “OpenStack web site,” https://www.openstack.org/, accessed: 2016-02-
06.

[37] M. Gribaudo, D. Cerotti, and A. Bobbio, “Analysis of on-off policies in
sensor networks using interacting markovian agents.” in Proc. of the 4th

International Workshop on Sensor Net-works and Systems for Pervasive

Computing - PerSens 2008, 2008.
[38] B. M. and L. J.Y., “A class of mean field interaction models for computer

and communication systems.” Performance Evaluation, vol. 65, no. 11-
12, pp. 823–838, 2008.

