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Abstract 

In livestock production corticosteroids are licensed only for therapy, nevertheless they are 

often illegally used as growth promoters. The aim of this study was to identify morphological or 

biomolecular alterations induced by prednisolone (PDN) in experimentally treated beef cattle, since 

PDN and its metabolites are no longer detectable by LC-MS/MS methods in biological fluids. 

Moreover, PDN do not induce any histological alterations in thymus, differently from 

Dexamethasone treatments. Therefore, a marker of illicit treatment for this growth promoter could 

be useful. Eight male Italian Friesian beef cattle were administered prednisolone acetate 30 mg 

day
−1

 per os for 35 days, while seven beef cattle represented the control group. Six days after drug 

withdrawal the animals were slaughtered. Morphological and morphometric modifications were 

evaluated in epididymis and testis, whereas transcriptomic changes induced by PDN administration 

were investigated in Peripheral Blood Mononuclear Cells (PBMCs) at different sampling times, and 

in skeletal muscle and testis sampled at slaughtering. In the epididymis, spermatozoa number 

decreased in PDN treated animals, and in some cases they were totally absent. Correspondently, in 

testis of treated animals, down-regulation for serine/threonine kinase 11 (STK11) gene expression 

was detected (p<0.01). DNA microarray analysis revealed a total of 133 differentially expressed 

genes in skeletal muscle and testis, and 907 and 1,416 in PBMCs after 33 days of treatment and at 

slaughtering, respectively. Histological investigations on epididymal content could represent a 

promising marker for PDN treatment in beef cattle, and could be used as a screening method in 

order to identify animals worthy of further investigation with official methods. Moreover, the clear 

transcriptomic signature of PDN treatment evidenced in PBMCs supported for the possibility of 

using this matrix to monitor the illicit treatment in vivo during ranching. 
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Introduction 

Dexamethasone (DEX) and prednisolone (PDN) are corticosteroids (CSs) frequently used in 

livestock production. They are licensed for therapy in human and veterinary medicine due to their 

anti-inflammatory and immunosuppressive properties
1
. Moreover, CSs are often illegally used as 

growth promoters in animal husbandry, usually at low dosages and by oral administration, either 

alone or in cocktails containing different anabolic agents
2
. To protect consumer’s health, European 

Union established maximum residue limits for these CSs in several biological matrices, such as 

muscle, kidney, liver and milk from different species
3
. Since 2008, the Italian National Program for 

Residue Surveillance (PNR) has detected a marked increase of cattle positive for CS treatments, 

including PDN
4
. Due to the rapid metabolism and excretion of PDN, the analyses of its residues by 

LC/MS-MS are not suitable. The Italian Ministry of Health introduced thymus histological 

examination as a screening test
5
, in order to identify DEX illegal treatments in cattle, since DEX 

induces thymus atrophy 
6-10

. Unfortunately, PDN illegal treatments does not induce thymus 

morphological alterations in beef cattle
11

; moreover, gene expression profiling by DNA-microarray 

on thymus has revealed to be a weak tool to detect the illegal use of PDN
12

. Consequently, new 

reliable tests would be helpful to reveal PDN abuse in livestock production. 

The aim of this study was to recognize alterations induced by PDN treatment in other 

biological matrices. Morphological and morphometric modifications were evaluated in epididymis 

and testis, whereas transcriptomic signatures of PDN administration were investigated in Peripheral 

Blood Mononuclear Cells (PBMCs), skeletal muscle (Biceps brachii) and testis collected from 

experimentally treated beef cattle, in order to identify and recognize potential biomarkers to be used 

for screening purposes. 

 

Material and methods 

Animals and Experimental Design  



Experimental design was already described in details by Cannizzo et al.
12

. Briefly, fifteen 

male Italian Friesian beef cattle (9-17 month-old) were randomly assigned to two groups: group P 

(n = 8) was administered prednisolone acetate (PA, Novosterol, Italy) 30 mg day
−1

 per os for 35 

days, from day 51 to day 85, while group K (n = 7) represented the control group. Six days after 

drug withdrawal the animals were slaughtered. The experiment was authorized by the Italian 

Ministry of Health and the Ethics Committee of the University of Turin and the carcasses of the 

treated beef cattle were appropriately destroyed
13

.  

Animals were weighed before first treatment and the day before slaughtering and weight 

gain was recorded, as reported in Cannizzo et al.
12

. Relative testis weight was calculated as testis 

weight (g)/animal weight (kg) ratio. 

 

PBMCs isolation  

Blood samples were collected from each animal with evacuating tubes containing acid-

citrate-dextrose (ACD) as anticoagulant from the external jugular vein at 0 (T0), 51 (T1), 61 (T2), 

84 (T3), and 92 (T4) days (Fig. 1). The PBMCs were isolated on Ficoll-gradient as previously 

described
14

. PBMCs were pelleted by centrifugation, and resuspended in RNAlater® (Thermo 

Fisher Scientific, MA, USA). Pellet was frozen in TRIzol Reagent (Thermo Fisher Scientific) at 

−80°C until RNA extraction. 

 

Post mortem tissue sampling and processing  

At slaughtering, samples from Biceps brachii muscle, testis and caudal epididymis were 

collected from each animal and opportunely stored for subsequent investigations. For histological 

analysis testicular and epididymal tissues were immediately fixed in Bouin-Hollande solution for 

approximately 24 h, then dehydrated in ethanol, paraffin embedded, and sectioned at 4 µm. 

Haematoxylin and eosin (HE) stained sections were observed under a light microscope, and 

submitted to morphometric analysis and immunohistochemistry for Ki67. Samples from testis and 



epididymis were also glutaraldehyde fixed and ultrastructural features were examined by 

transmission electron microscopy (TEM). For TEM analysis the samples were cut into small pieces 

(2x2 mm), fixed in 2.5% glutaraldheyde (TAAB, England) at 4°C in PBS pH 7.4 for 2 h, and post 

fixed in 1% tetraoxide osmium (OsO3) (Next Chimica, South Africa) at 4°C in PBS for 2 h. The 

tissues were then dehydrated through ascending grades of ethanol, incubated in propylene oxide 

(TAAB) at room temperature for 5 min and embedded in Epon 812 (TAAB). Resin blocks were 

solidified at 60°C for 48 h. Semithin sections (1 µm) were cut and stained with 1% toluidine blue 

(w/v) pH 3.5. Silver coloured ultrathin sections (60-70 nm) were collected onto copper grids coated 

with a Formvar layer (EMS, PA, USA) and double stained with uranyl acetate and lead citrate. 

Microphotographs were obtained at 80 kV on a CM12 STEM electron microscope (Philips).  

For gene expression analysis a portion of skeletal muscle and testis (approximately 100 mg) 

was immediately fixed in RNAlater
®
 and stored at -80°C. 

 

Morphometric Analysis  

Morphometric analyses on testis and epididymis samples were performed on HE stained 

sections. Digital microphotographs were obtained with a Nikon DS-Fi1 color digital camera (Nikon 

Instruments, Italy), at 200x magnification for testis and at 600x for epididymis under a light 

microscope. For testis, at least 40 randomly selected complete tubules per animal were examined 

using Image-Pro Plus software (Media Cybernetics, MD, USA). Seminiferous tubular equivalent 

diameter (STED), seminiferous epithelial height (SHE), area occupied by the seminiferous tubules 

and interstitial area were evaluated. Furthermore, the number of Sertoli cells, spermatogonia, 

spermatocytes, immature and mature spermatids and immature spermatozoa (ready to be released) 

present in at least 30 tubules for each animal were annotated, analyzing sections at 400x 

magnification. For epididymis, at least 25 randomly selected ducts per animal were examined and 

the epithelial height was recorded. 

 



Evaluation and quantification of cell proliferation 

Immunohistochemical staining for Ki67 antigen was performed to evaluate proliferating 

cells on testis sections. Endogenous peroxidases were inactivated and antigen retrieval was 

performed with citrate buffer 10 mM, pH 6.0 at 98°C for 40 min in a water bath. The sections were 

subsequently incubated at room temperature with anti-Ki67 monoclonal antibody (1:50 in PBS) 

(clone MIB-1, Dako, Italy) for 90 min. The staining was visualized with the Dako REAL EnVision 

Detection System (K5007, Dako, Italy) by a Dako Autostainer (Dako). Ten randomly selected fields 

for each section were analyzed, after taking microphotographs at 200x magnification by light 

microscopy, using Image-Pro Plus software. The area of Ki67-positive nuclei was recorded and 

expressed as a percentage (mean ± sd). 

 

Detection of apoptosis in testis 

From each animal 4 μm thick sections of testis were stained using the ApopTag In Situ 

Apoptosis Detection Kit (Merck Millipore, MA, USA) according to the manufacturer’s instructions. 

The immunohistochemical TUNEL (terminal uridine deoxynucleotidyl transferase dUTP nick-end 

labeling) staining was used to reveal the apoptotic nuclei, counterstaining the reaction with methyl 

green 0.5 per cent (w:v) for 10 minutes, and destaining in n-butanol.  

 

RNA extraction  

Samples of testis, skeletal muscle and PBMCs were treated with TRIzol Reagent 

(Ambion®, Thermo Fisher Scientific) and, in order to remove DNA contamination, the extracted 

RNA was subjected to DNAse digestion with the QIAGEN RNase-Free DNase Set (Qiagen, 

Germany). RNA purification was performed with the RNeasy MinElute Cleanup Kit (Qiagen, 

Germany). The concentration of RNA samples was determined by a UV-Vis spectrophotometer 

NanoDrop ND-1000 (Nanodrop Technologies, DE, USA) and RNA integrity was checked using an 



Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA). Only RNA samples with RNA 

integrity number (RIN) ≥ 7.0 were included in the analysis. 

 

Relative quantification of STK11 by qPCR 

cDNA was synthesized from 1 μg of total RNA using the QuantiTect Reverse Transcription 

Kit (Qiagen, Germany). The relative amounts of specific Bos taurus serine/threonine kinase 11 

(STK11) mRNA (XM_003586293) was calculated submitting the cDNA to qPCR
15

 with an IQ5 

detection system (BioRad) using IQ SYBR Green Supermix (BioRad, CA, USA). Primer sequences 

of STK11 were designed using Primer 3 (vers. 0.4.0)
16

 (forward: GACAGTGATGCCCTACCTGG, 

reverse: GGCACTGTGAAGTCCTGAGT, amplicon size 108 bp). The peptidylprolyl isomerase A 

(PPIA) gene was used as a housekeeping gene control as previously reported
17

.  

After confirming that target and housekeeping gene amplifications had similar efficiencies, 

gene expression levels were determined using a relative quantification assay, using the comparative 

Cq method (Cq method)
18

. Then, the relative abundances of each transcript were calculated as 2
-

Cq
 (fold increase)

19-21
, normalised to PPIA and relative to the control sample. 

 

RNA amplification, labeling and hybridization  

Sample labeling and hybridization were performed according to the Agilent One-Color 

Microarray-Based Gene Expression Analysis protocol, as reported in details in Pegolo et al. (2012). 

Briefly, 200 ng of total RNA were linearly amplified for each sample and labeled with Cy3-dCTP. 

Microarray data have been deposited in NCBI's Gene Expression Omnibus
22

 (GSE50037, GEO 

Series accession number). 

 

Normalization of microarray data 

Microarray data extraction was performed using the standard procedures of the Agilent 

Feature Extraction Software version 9.5.1. On the basis of the uniformity of the Spike-in intensities 



across the samples, all samples (negative and treated samples) were normalized together in a single 

run using the cyclic LOWESS (Locally-weighted Regression) normalization procedure. 

After normalization, an additional quality control step was introduced to remove probes with  

intensity values lower than the second lowest spike-in concentration in the 70% of samples, as this 

value was considered too close to the limit of detection. The cut-off intensity values corresponded 

to 3.5 for muscle and testis samples and to 4 for PBMCs samples. This filtering step resulted in the 

removal of 1,350, 4,162 and 4,318 unique transcripts for testis, muscle and PBMCs, respectively. 

Filtering and normalization procedures were performed using R statistical software, 

available at http://www.r-project.org/. 

 

Statistical analyses  

t-test or the non parametric Mann-Whitney Test were performed using GraphPad InStat 

(vers. 3.05) statistical software (GraphPad, CA, USA). The Grubbs test was used to exclude 

potential outliers. A p value of <0.05 was considered to be statistically significant. 

Differential expression of microarray data was tested by t-test statistics using TMEV suite
23

 

and the differentially regulated genes (DEG) were identified on the basis of a false discovery rate 

(FDR) <0.05 and a fold change (FC) >1.5. Sample class prediction was implemented using the 

program PAM
24

, available online at http://www.stat.stanford.edu/~tibs/PAM.  

 

Functional enrichment analysis 

The Functional Annotation tool available in the DAVID Database 

(http://david.abcc.ncifcrf.gov/) was adopted to carry out the enrichment analysis on the 

differentially up- and down-regulated genes. All GO terms and KEGG (Kyoto Encyclopedia of 

Genes and Genomes) pathways included in the DAVID knowledgebase were included. For KEGG 

terms, GO Biological Process (BP_FAT) and Molecular Function (MF_FAT), the following 

parameters were selected: gene count 4, ease 0.05.  



 

Results 

Animal welfare and livestock performances 

As already reported by Cannizzo et al.
12

, when compared to the control group, weight gains 

were larger in group treated with PDN (p = 0.0047), indicating that the animals responded to PDN 

administration. Also, the average daily gain was higher in group P, compared to group K (1.587 vs. 

1.178 kg/day; P = 0.007), whereas relative testis weight did not vary between treated animals and 

controls (0.583±0.117 vs. 0.606±0.051 g/kg).  

 

Testis morphological features 

Morphological and ultrastructural analyses of testis showed a wide heterogeneity of tubular 

epithelium appearance in animals belonging to group P. The interstitium did not show significant 

alterations. Lesions were totally absent in three cases, whereas they heavily characterized the other 

treated animals. Two cases showed an apparently reduced SHE, whereas in other animals the germ 

line appeared complete. Both light microscopy and TEM revealed in group P a prominent 

vacuolization of the seminiferous epithelium near the basement membrane towards Sertoli cells 

(Figs. 2b and 3b).  

Ultrastructurally, the vacuolated spaces observed in the region between the basement 

membrane and the basal epithelial layer revealed cytoplasmic contractions that shrink the 

intercellular spaces between Sertoli cell and the neighboring germ cells with formation of 

membrane-bounded vacuoles encircled by processes of Sertoli cells. The germinal epithelium rested 

on a basement membrane with an irregular arrangement (Fig. 3b). Moreover, the degeneration of 

the superficial layer characterized by cells fragmentation and anucleation was also evident. 

Spermatids appeared swollen, filled with vacuoles containing cellular debris that pushed the 

eccentrically placed nuclei, indicating a vacuolar degeneration of these germ cells. Retained and 

altered spermatids with nuclear vacuoles were identified in the basal compartment of the epithelium 



and embedded in Sertoli cells, that exhibited severe destruction and rarefaction of cytoplasm. No 

Sertoli cell and spermatid plasma membranes were visible, suggesting a possible phagocytic 

activity (Figs. 3 c-d).  

 

Epididymis morphological features 

In control group the epithelium of epidydimis consisted of tall columnar principal cells 

(PC), that exhibited a highly developed secretory and endocytic apparatus, and basally aligned 

nuclei. Stereocilia were abundant and the epididymal ducts appeared filled with spermatozoa (Figs. 

2 c-e). PC showed apical cytoplasmic protrusions referred to apical blebs that originated by apocrin 

secretion. Ultrastructurally, the apical blebs were found along the entire epididymis and they were 

characterized by heterogeneous shape and size at the apical surface of PC. These protrusions were 

directed towards the luminal compartment and contained several types of organelles, embedded in a 

homogeneous matrix. The blebs detached from the PC and entering the lumen, showed 

fragmentation and formation of aposomes, spherical membrane-bound bodies, closely related to 

spermatozoa. Aposomes contained electron dense particles and heterogeneous membrane-bounded 

vesicles, termed epididymosomes, that gave them different grades of electron density (Figs. 3 e-f)
25-

26
. 

As in control tissues, in animals belonging to group P the ultrastructural features of the 

lining epithelium revealed well developed secretory cells, with no apparent morphological 

differences. However, the most striking feature observed in treated group was related to the 

intraluminal compartment, where the spermatozoa number decreased significantly, up to disappear, 

and this reduction was accompanied by an increased presence of cellular debris (Fig. 2). Under 

TEM observation, the apocrin protrusions consisted of membrane-bound balloons containing a 

proteinaceous material and blebbing at the apical pole of secretory cells (Figs. 3 g-h). 

 

Morphometric Analysis  



Morphometric analyses on light microscopy showed an increase (p<0.05) of the area 

occupied by the seminiferous tubules in group P compared to controls (80.9±2.2 vs. 75.3±4.7 % of 

examined area). On the contrary, STED and SHE did not vary significantly between the groups 

(respectively, P vs K, 253.9±19.1 vs. 250.2±16.5 µm and 72.0±5.9 vs. 73.4±8.3 µm). Neither the 

epithelial height of epididymal ducti varied significantly between the groups (P vs. K 80.1±19.1 vs. 

88.6±11.3µm).  

The mean number of Sertoli cells, spermatogonia, spermatocytes, mature and immature 

spermatids per tubule section did not vary between the groups; group P showed a greater number of 

immature spermatozoa compared to controls (p<0.05) (Fig. 4).  

 

Evaluation and quantification of cell proliferation and apoptosis 

Immunohistochemical staining for Ki67 antigen did not reveal any significant difference 

between groups P and K, even if the percentage of the positive nuclear area was higher in control 

group than in PDN treated animals (2.105 ± 0.89 % vs. 1.525 ± 0.88 %). 

TUNEL assay did not reveal appreciable amounts of apoptotic cells, neither in group K nor 

in group P. 

 

Relative gene expression of STK11 in testis 

Administration of PDN induced a down-regulation (p<0.01) of the STK11 gene in testis by 

1.87-fold in group P compared to control group. Normalized fold expression (2
-Cq

) for P group 

was 0.534±0.170. 

 

Microarray data analysis 

After data extraction, normalization, and filtering, microarray data between group P and 

group K were compared for all the biological matrices under investigation. In skeletal muscle and 



testis, t-test statistics evidenced a total of 133 genes differentially expressed. Considering PBMCs,  

907 genes were differentially expressed at T3 and 1,416 T4 (Table 1).  

The functional analyses were performed on the DEG lists obtained for all the comparisons. 

In testis, analysis of gene function using Functional Annotation tool in DAVID did not reveal 

specific pathways significantly enriched in testis samples from PDN-treated animals. Nevertheless, 

DEG were found to be variously involved in the olfactory transduction (6 genes), as well as 

regulators of calcium homeostasis (6 genes), xenobiotic metabolism (5 genes), immune system 

regulation (12 genes), and apoptosis and cell cycle regulation (8 genes) (Table 2). The functional 

analysis of the DEG in skeletal muscle samples revealed a weak regulation of  single unrelated 

genes at the most (Table 3).On the other hand, enrichment analysis using the Functional Annotation 

tool in DAVID recognized several GO terms and KEGG pathways significantly enriched in PBMCs 

samples from both sampling times (Tables 4 and 5). 

A statistical approach for class prediction implemented in PAM software was applied to 

microarray expression data of all PBMCs samples (both sampling times, treated animals and 

controls) to evaluate the ability of sample classification. Firstly, a discriminant analysis was 

performed on selected samples (both controls and treated animals; Training Sample Set) to identify 

the smallest panel of genes which provided the smallest misclassification error. Cross-validation 

allows to evaluate the accuracy of class prediction on the Training Sample Set (10% of samples 

were randomly extracted and classification was based on the discriminant function calculated on the 

residual cases).PAM enabled to exactly discriminate the two classes (controls and treated animals) 

for 93% of samples using only 36 genes out of 17,157 (Fig. 5; Table 6). 

 

Discussion 

For many years several research groups have attempted to identify molecular markers useful 

to detect different anabolic treatments in cattle
27-31

. The usefulness of histological analyses on 

thymus morphology as a screening tool to identify illegal DEX treatments in cattle was already 



established
6-10

. On the contrary, gross and histopathological investigations on thymus were not 

useful to detect anabolic treatments with PDN in beef cattle
11

, and even gene expression profiling 

by DNA-microarray on thymus has revealed to be a weak tool
12

. In the same study, no PDN 

residues were found in the urine of treated animals, probably because of PDN rapid metabolism and 

excretion, and of the suspension of the treatment. Due to the scarce results obtained with thymus, 

the authors investigated on other biological matrices the potential alterations induced by PDN 

anabolic treatment, in order to identify and recognize potential biomarkers to be used for screening 

purpose. Reproductive tract, i.e. epididymis and testis, was analyzed to detect morphological and 

morphometric modifications. Moreover, transcriptomic signatures of PDN administration were 

investigated in PBMCs, skeletal muscle and testis.  

Testis relative weight did not vary between PDN treated animals and controls. Morphologic 

and ultrastructural appearance of testicular tissues was not exhaustive in identifying treatments, 

since the findings were very different from one animal to the other. Three cases were totally similar 

to animals of group K, whereas lesions heavily characterized the other treated animals, delineating a 

significant impact of treatment especially on spermatids. Morphometric analyses only revealed a 

significantly higher number of immature spermatozoa and an increase of the percentage of the area 

occupied by the seminiferous tubules in PDN treated beef calves compared to controls. Moreover, 

in the intraluminal compartment of epididymis, spermatozoa concentration decreased significantly 

up to disappear, whereas an increased presence of cellular debris was recorded. 

 The expression of STK11, also known as LKB1, in mammalian testis was demonstrated to 

be an essential regulator of spermatozoa release during spermiation
32

. This serine/threonine kinase 

is implicated in a number of key cellular processes. During the final phase of spermatogenesis, 

termed spermiation, mature spermatids detach from the supporting Sertoli cells and are released into 

the lumen of the seminiferous tubule. Denison et al.
32

  showed that spermiation is defective in the 

absence of LKB1. To the authors’ best knowledge this protein has never been investigated in bovine 

testis. The gene expression analysis showed in PDN treated animals a significant down-regulation 



for this gene. This data supports the hypothesis that the PDN treatment did not affect the production 

of mature spermatids, but it interfered with spermiation, probably involving STK11 pathway. The 

outcomes were represented by an apparently “healthy” morphology of testis, along with a huge 

decrease of spermatozoa in epididymis. These findings should be further investigated in order to 

verify if the association of morphometric analyses on testis and epididymis with STK11 expression 

could represent a useful marker for PDN treatment. 

Immunohistochemical staining for Ki67 antigen on testicular and epididymal tissues did not 

reveal a significant difference between group P and K, even if the percentage of the positive nuclear 

area was higher in K group. TUNEL assay did not reveal appreciable amounts of apoptotic cells, 

nor in group K and in group P. 

DNA microarray analysis identified a small set of differentially expressed genes between 

controls and PDN-treated animals in both testis and skeletal muscle samples.  

In testis samples, apoptosis pathway and/or cell cycle regulation seemed to be affected by 

the treatment even if the weak differences observed could not explain the histological findings of 

testis samples. However, up-regulation of tumour necrosis factor receptor superfamily member 10A 

(TNFRSF10A) was observed. This receptor is activated by tumour necrosis factor-related apoptosis 

inducing ligand (TNFSF10/TRAIL), inducing cell apoptosis. Testicular germ cells, and specifically 

spermatocytes, were shown to be sensitive to TRAIL-mediated apoptosis. In reproductive tissues, a 

well-characterized apoptotic pathway involves the signal transduction pathway of Fas
33

, a receptor 

which induces apoptosis after binding its ligand (FasL, up-regulated in PDN-treated animals) 

through an autocrine/paracrine signaling pathway
34

.  

Interestingly, olfactory transduction pathway was also regulated with 6 differentially 

expressed genes (Table 2). Surprisingly, a high number of olfactory receptors (ORs) expressed 

genes was found in the human testis and OR genes were shown to be more highly expressed in 

testis than in any other tissue
35

. A putative role for some members of this family in regulation of 

sperm motility was evidenced. In particular, various bioassays evidenced that the activation of 



hOR17-4 and mOR23 in human and mouse sperm, respectively, mediated flagellar motion patterns 

and chemotactic behavior 
36

.  

Regulation of genes involved in the xenobiotic metabolism was observed as well. In 

particular, some cytochrome P450 (CYP) isoforms (CYP11B2, CYP4F2, and CYP24A1) and one 

phase II enzyme (sulfotransferase family, cytosolic, 1C, member 2, SULT1C2) were up-regulated 

after the PDN treatment. Glucocorticoids play an important role in the control of Leydig cell 

function, but they have been associated to an impairment of the steroidogenic pathway, when in 

excess (even following DEX administration)
 37

. Testis expresses many drug-metabolizing enzymes, 

whose various physiological functions are not definitely known. Some isoforms are involved in 

xenobiotic drug metabolism, thereby probably determining testicular toxicity
38

. In cattle testis the 

administration of DEX alone or in combination with 17beta-oestradiol regulated the expression of 

some CYP isoforms (i.e. CYP1A1, CYP2E1, CYP17A1) and related transcription factors(e.g. 

peroxisome proliferator-activated receptor alpha)
39-40

, suggesting the potential usefulness of testis in 

the screening of drugs abuse in livestock farming.  

Very poor information could be extrapolated from microarray results in skeletal muscle 

tissue, apart from the confirmation of a putative bias towards cell differentiation rather than 

proliferation which was already showed for other anabolic growth promoter treatments
41-42

. The 

PDN treatment seemed indeed to affect single unrelated genes in bovine muscle rather to regulate 

more complex pathways or processes. 

The analysis of the microarray data relative to the bovine PBMCs collected at different 

sampling times revealed instead more interesting information. In particular, cytokine-cytokine 

receptor interaction pathway was significantly enriched at both sampling times with 18 and 20 

genes differentially expressed at T3 and T4, respectively. The analysis of the regulated cytokines 

seemed to suggest that the PDN treatment produced a more polarized response of Th2 at T3, e.g. 

IL4-receptor (IL4R), IL10R-alpha, IL2RG, transforming growth- factor beta 1, IL1R antagonist 

were over-expressed, and gamma interferon was down-regulated. On the other hand, at T4 no 



marked shift towards a specific T-helper sub-population seemed to occur, e.g.IL6R, IL15 and IL7 

were over-expressed and gamma interferon receptor alpha 2 and IL2 were down-regulated. IL2 

receptor signaling regulates tolerance and immunity. IL2 contributes to T-cell dependent activity, 

influencing CD8+ T cells activity, terminal differentiation of effector cells in primary response, and 

memory recall responses. IL2 is also the major cytokine contributing to the homeostasis of 

peripheral Treg cells: It is linked to Treg cells fitness maintaining both homeostasis and the 

suppressive program through induction of signal transducer and activator of transcription 5 

(STAT5; STAT5B was up-regulated in PBMCs at T3), which directly contributes to forkhead box 

P3 transcription
43

. In addition, it is known that glucorticoid receptor associates with several  

transcription factor  complexes which are regulated by signal transduction, such as STAT5
44

. Up-

regulation of IL2RG, STAT5B and many Th2 cytokines seemed to suggest a putative shift towards 

immune tolerance and anti-inflammatory pathways at T3. This is consistent with evidences 

indicating that glucocorticoids may cause a selective suppression of the Th1 immune response (e.g 

interferon gamma), and a Th2 shift, rather than generalized immunosuppression
45

. At T4 the 

scenery appeared to be more complex: overall, less cytokines were regulated respect to T3, 

probably due to the 6 days suspension of the treatment, and some of them showed a double effect 

acting as pro- or anti-inflammatory depending on the context (e.g. IL6, whose receptor was up-

regulated
46

). However, most of them seemed to be important for T and NK cell survival, 

development and homeostasis
47-48

. Interestingly, microarray analyses evidenced IL7 receptor alpha 

as a glucorticoid-inducible gene associated with enhanced IL-7 mediated signaling and function
49

. 

Toll-like receptor (TLR) pathway (11 genes) and MAPKK pathway (22 genes) were regulated at T4 

as well, thereby confirming a PDN effect on innate components of immunity
12

. Indeed, 

glucocorticoids were shown to regulate the expression of TLRs (e.g. TLR2, TLR3 and TLR4) in 

immune cells thereby affecting inflammation and host defense mechanisms
50

. Many genes 

implicated in transcription regulation are also altered by PDN treatment at both sampling times, 

most of which are involved in the control of PBMCs proliferation and/or differentiation (e.g., bone 



morphogenic protein 4, peroxisome proliferator-activated receptor-gamma, hypoxia-inducible 

factor 1-alpha, activin A receptor type 1). For instance, the up-regulation of peroxisome 

proliferator-activated receptor-gamma observed at T3, may support for the inhibition of cytokines 

that are important for Th1-cell differentiation
51

. Apart from confirming the effects on PDN on the 

maintenance of immunologic homeostasis, differentiation of T-lymphocytes population and its 

effect on both innate and adaptive arms of immune system
11

, what emerged from our investigation 

is that despite a mild effect obtained by PDN treatment on bovine thymus, PBMCs showed a more 

pronounced responsiveness against the treatment. This clear corticosteroid signature could allow to 

propose this matrix as an useful tool to identify animals potentially treated with PDN. In particular, 

the application of bioinformatics tools as PAM allowed to correctly discriminate 93% of samples 

using only 36 predictive genes that could be proposed as potential biomarkers not only during the 

illicit treatment with PDN but also after 6 days suspension. 

PDN and its metabolites are no longer detectable by LC-MS/MS methods in biological 

fluids. Moreover, they do not induce any histological alterations in thymus, differently from DEX 

treatments
11

. The present study confirmed the usefulness of an integrated approach to the 

investigation of PDN abuse in beef cattle, as previously reported
12,52

. Concerning indirect 

biomarkers, blood chemistry analysis and histological techniques have been proposed and adopted 

as alternative screening methods for the prevention of CSs abuse. Recent studies revealed the 

feasibility of transcriptome analysis using DNA-microarrays as a screening tool to identify the 

biological response to different illegal drugs, and could be useful to flank the official methods in 

detecting the use of anabolic compounds in beef cattle
12,52-55

.  

Histological investigations on epididymal tissues could represent a promising marker for 

PDN treatment in beef cattle. This simple and cheap analysis, in association with transcriptomic 

approach and TEM observation, could be used as a screening method in order to identify animals 

worthy of further investigation with official methods. Moreover, PBMCs markers suggested in this 

work could be very useful to monitor the illicit treatment in livestock. 
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Figure legends 

 

Fig. 1. Protocol of PDN treatment and PBMCs collection times. Beef calves were assigned to two 

experimental groups: Group P was administered prednisolone acetate (PA, Novosterol, Ceva Vetem 

spa, Italy) 30 mg day−1 per os for 35 days; Group K represented the control group. Six days after 

drug withdrawal the animals were slaughtered.   

 

Fig. 2. Semithin sections of testis and epididymis stained with toluidine blue (a, c, e: controls; b, d, 

f: treated). a, b testis samples; c-f epididymis samples. 

 a, c, e: Control animal: normal testis and epididymis with luminal spermatozoa scattered amongst 

the aposomes. 

 b, d, f:  PDN treated animal: prominent vacuolization of the seminiferous epithelium near the 

basement membrane. In epididymis spermatozoa concentration decreased significantly up to 

disappear, and this reduction was accompanied by an increased presence of cellular debris  (bar 10 

µm). Bm=Basement membrane.  

 

Fig. 3 Transmission electron micrographs of:  

a-d: Treated animal germinal epithelium: cytoplasmic shrinkage, extensive round spermatid 

exfoliation and atypical residual bodies in the luminal surface (rb). Degenerative changes in round 

and elongated spermatids (arrows) (–a: bar 10µm; b, c: bar 5 µm). 

e-f: Epithelium of epidydimis in control animals: aposomes (AP) found in the epididymal lumen 

anchoring the sperm nucleus (e: bar 5 µm). Epididymosomes represented by a heterogeneous 

variety of vesicles (asterisk) (f: bar 1 µm). 

g-h: Treated animal epididymis: columnar epithelial cells showing microvilli (mv) and apical blebs 

(ab) (g: bar 5 µm). Ultrastructure of an aposome (AP) anchored to an immature sperm cell with 

swelling of sperm head plasma membrane (asterisk) (h: bar 5 µm). Basement membrane (Bm), 



spermatogonia (Sg), Sertoli cell (Sc), spermatocytes (Sp), elongated spermatides (eS), round 

spermatides (rS) and residual bodies (rb). 

 

Fig. 4. Graphic representation of the distribution of the mean number of Sertoli cells, immature 

spermatozoa, round and elongated spermatids, spermatocytes, and spermatogonia per tubule section 

(P = prednisolone; K = control; *p<0.05) 

 

Fig. 5. Plot of cross-validated probabilities for sample classification using DEG (t-test). On x-axis 

individual samples: 1–14 negative controls (K), 15–30 PDN-treated animals (P); on y-axis the 

probability of being classified as controls (diamonds) or treated (squares); training error 0.03.  

  



Table 1 

DEG obtained from t-test analysis of testis, skeletal muscle and PBMCs samples  

 Skeletal muscle Testis PBMCs (T3) PBMCs (T4) 

Up-regulated 64 84 539 768 

Down-regulated 69 49 368 648 

p<0.05, FC≥1.5 

  



Table 2  

DEG obtained from t-test analysis of testis samples from bovine treated with PDN. 

Identifier Gene FC 

 Olfactory transduction  

XM_593044 Olfactory receptor 6B2 (LOC515090) -1.6 

XM_591408 Olfactory receptor, family 52, subfamily M, member 1 (OR52M1) 1.9 

XM_864501 Olfactory receptor, family 6, subfamily C, member 75 (OR6C75) 1.8 

XM_582572 Olfactory receptor, family 2, subfamily AG, member 1 (OR2AG1) 1.6 

AF074014 Cyclic nucleotide-gated cation channel beta-1 isoform c (CNGB1) 1.6 

XM_003584236 Olfactory receptor 8G1-like (LOC616755) 1.5 

 Calcium homeostasis  

NM_001192710 Cholinergic receptor, nicotinic, alpha 2 (neuronal) (CHRNA2) 2.3 

NM_173954 Parathyroid hormone (PTH) 1.8 

U81159 Magnesium-dependent calcium inhibitable phosphatase (MCPP) 1.8 

XM_608438 Calcium channel, voltage-dependent, alpha 2/delta subunit 4 (CACNA2D4) 1.7 

NM_173957 Regucalcin (senescence marker protein-30) (RGN) -1.6 

XM_614307 5-Hydroxytryptamine (serotonin) receptor 3B, ionotropic (HTR3B) 1.5 

 Xenobiotics metabolism  

NM_173993 Aryl hydrocarbon receptor nuclear translocator (ARNT) -1.5 

NM_174638 Cytochrome P450, subfamily XI B, polypeptide 1 (CYP11B2) 2.8 

XM_864665 Sulfotransferase family, cytosolic, 1C, member 2 (SULT1C2) 1.7 

NM_001075322 Cytochrome P450, family 4, subfamily F, polypeptide 2 (CYP4F2) 1.5 

XM_591370 Cytochrome P450, family 24, subfamily A, polypeptide 1-like, transcript 

variant 2 (CYP24A1) 

1.5 

 
Immune system regulation  

XR_083623 Recombination activating gene 1 activating protein 1-like (LOC520463) 

miscRNA 

-4.1 

NM_001205850 Cytoplasmic FMR1 interacting protein 2 (CYFIP2) -3.1 

NM_001101251 Interferon, gamma-inducible protein 30 (IFI30) -1.5 



NM_001075142 Interleukin 4 receptor (IL4R) -1.5 

XM_003587343 Leukocyte immunoglobulin-like receptor subfamily A member 6-like 

(LOC790255) 

1.9 

XR_082749 Colony stimulating factor 3 receptor (CSF3R) 1.7 

NM_001105388 IL2-inducible T-cell kinase (ITK) 1.6 

XM_584848 Immunoglobin superfamily, member 21-like (IGSF21) 1.5 

NM_001045933 Forkhead box P3 (FOXP3) 1.5 

NM_001075291 Zinc finger CCCH-type containing 8 (ZC3H8) 1.5 

NM_001075807 CKLF-like MARVEL transmembrane domain containing 2 (CMTM2) 1.5 

XM_002699526 Interferon regulatory factor 2 binding protein 1 1.5 

 Apoptosis and cell cycle regulation  

NM_001205850 Cytoplasmic FMR1 interacting protein 2 (CYFIP2) -3.1 

NM_173957 Regucalcin (senescence marker protein-30) (RGN) -1.6 

BC149759 Tumor necrosis factor receptor superfamily member 10A (TNFRSF10A) 2.0 

NM_001192518 Unc-5 homolog D (C. elegans) (UNC5D) 1.9 

NM_001098859 Fas ligand (TNF superfamily, member 6) (FASLG) 1.5 

BM255900 Cyclin-dependent kinase 6 (CDK6) 1.5 

CB427007 Cyclin-T1 (CCNT1) 1.5 

NM_001046178 Protein phosphatase 1, regulatory subunit 15A (PPP1R15A) 1.5 

p<0.05, FC≥1.5 

  



Table 3 

DEG obtained from t-test analysis of skeletal muscle samples from bovine treated with PDN. 

Identifier Gene FC 

 Xenobiotic metabolism 
 

NM_001075823 Sulfotransferase family cytosolic 1B member 1 (SULT1B1) -2.1 

NM_174530 Cytochrome P450, family 2, subfamily E, polypeptide 1 (CYP2E1) 1.7 

 Cell cycle regulation   

NM_001076062 Cell cycle associated protein 1 (CAPRIN1) -1.5 

NM_001083449 Cell death-inducing DFFA-like effector a (CIDEA) 1.9 

NM_173954 Zygote arrest 1-like (ZAR1L) 1.8 

NM_001206050 Meteorin, glial cell differentiation regulator-like (METRNL) 1.7 

NM_001101183 Transforming growth factor, beta 3 (TGFB3) 1.5 

 Cytokine activity  

NM_174356 Interleukin 12B (IL12B) -1.5 

NM_174006 Chemokine (C-C motif) ligand 2 (CCL2) 3.9 

NM_174007 Chemokine (C-C motif) ligand 8 (CCL8) 2.2 

p<0.05, FC≥1.5 



Table 4.  

Biological processes, molecular functions and KEGG pathways significantly enriched in T3 

PBMCs from PDN group animals using the list of DEG (t-test). 

Category  Count PValue FE FDR 

GO_BP positive regulation of transcription, DNA-

dependent 

19 3E-04 3E+00 0.58 

GO_BP positive regulation of RNA metabolic 

process 

19 3E-04 3E+00 0.58 

GO_BP positive regulation of transcription 21 5E-04 2E+00 0.81 

GO_BP positive regulation of macromolecule 

metabolic process 

26 8E-04 2E+00 1.38 

GO_BP positive regulation of gene expression 21 8E-04 2E+00 1.39 

GO_BP regulation of transcription from RNA 

polymerase II promoter 

22 1E-03 2E+00 1.77 

GO_BP positive regulation of transcription from 

RNA polymerase II promoter 

16 1E-03 3E+00 1.84 

GO_BP positive regulation of nucleobase, 

nucleoside, nucleotide and nucleic acid 

metabolic process 

21 1E-03 2E+00 2.46 

GO_BP positive regulation of macromolecule 

biosynthetic process 

22 2E-03 2E+00 2.88 

GO_BP regulation of transcription, DNA-dependent 43 2E-03 2E+00 3.28 

GO_BP positive regulation of nitrogen compound 

metabolic process 

21 2E-03 2E+00 3.50 

GO_BP positive regulation of cellular biosynthetic 22 3E-03 2E+00 4.41 



process 

GO_BP regulation of RNA metabolic process 43 3E-03 2E+00 5.01 

GO_BP positive regulation of biosynthetic process 22 3E-03 2E+00 5.15 

GO_BP heart development 11 6E-03 3E+00 9.32 

GO_BP negative regulation of cell proliferation 12 7E-03 3E+00 11.59 

GO_BP regulation of transcription 53 1E-02 1E+00 16.02 

GO_BP positive regulation of cell differentiation 10 1E-02 3E+00 17.51 

GO_BP regulation of cell proliferation 20 2E-02 2E+00 25.21 

GO_BP regulation of growth 12 2E-02 2E+00 26.01 

GO_BP BMP signaling pathway 4 2E-02 7E+00 26.04 

GO_BP positive regulation of developmental 

process 

11 2E-02 2E+00 27.98 

GO_BP transmembrane receptor protein 

serine/threonine kinase signaling pathway 

6 2E-02 4E+00 28.66 

GO_BP placenta development 5 3E-02 4E+00 36.29 

GO_BP tRNA modification 4 3E-02 6E+00 37.31 

GO_BP fat cell differentiation 5 3E-02 4E+00 40.42 

GO_BP pattern specification process 9 4E-02 2E+00 46.01 

GO_BP tRNA processing 6 5E-02 3E+00 54.72 

GO_MF cytokine binding 12 4E-05 5E+00 0.06 

GO_MF sequence-specific DNA binding 24 3E-04 2E+00 0.50 

GO_MF transcription factor activity 29 6E-04 2E+00 0.89 

GO_MF transcription regulator activity 41 8E-04 2E+00 1.09 

GO_MF cytokine receptor activity 6 7E-03 5E+00 9.36 

GO_MF C-C chemokine binding 5 7E-03 6E+00 10.03 



GO_MF C-C chemokine receptor activity 5 7E-03 6E+00 10.03 

GO_MF chemokine receptor activity 5 1E-02 5E+00 17.53 

GO_MF chemokine binding 5 2E-02 5E+00 23.73 

GO_MF protein dimerization activity 15 3E-02 2E+00 38.01 

GO_MF DNA binding 45 4E-02 1E+00 44.04 

KEGG Cytokine-cytokine receptor interaction 18 2E-04 3E+00 0.24 

KEGG Systemic lupus erythematosus 11 4E-04 4E+00 0.52 

KEGG Chemokine signaling pathway 12 4E-02 2E+00 39.63 

GO: Gene Ontology; BP: Biological Processes; MF: Molecular Functions; KEGG: KEGG 

pathways; FE: Fold Enrichment; FDR: False Discovery Rate 

  



Table 5.  

Biological processes, molecular functions and KEGG pathways significantly enriched in T4 

PBMCs from PDN group animals using the list of DEG (t-test). 

Category  Count PValue FE FDR 

 

GO_BP 

 

regulation of transcription, DNA-dependent 

 

56 

 

0.004 

 

1.439 

 

7.2 

GO_BP regulation of phosphorylation 20 0.004 2.009 7.3 

GO_BP regulation of transcription 74 0.006 1.339 9.3 

GO_BP regulation of phosphorus metabolic process 20 0.006 1.940 10.5 

GO_BP regulation of phosphate metabolic process 20 0.006 1.940 10.5 

GO_BP regulation of RNA metabolic process 56 0.007 1.406 11.2 

GO_BP regulation of protein kinase activity 14 0.008 2.243 13.4 

GO_BP regulation of transferase activity 15 0.009 2.161 13.5 

GO_BP cell activation 15 0.009 2.161 13.5 

GO_BP positive regulation of transferase activity 11 0.009 2.572 14.3 

GO_BP positive regulation of protein kinase activity 10 0.012 2.641 18.1 

GO_BP regulation of kinase activity 14 0.014 2.102 21.8 

GO_BP cell cycle 25 0.015 1.658 22.2 

GO_BP positive regulation of kinase activity 10 0.016 2.502 24.5 

GO_BP ribonucleoside monophosphate biosynthetic 

process 

5 0.022 4.457 31.4 

GO_BP leukocyte activation 13 0.022 2.060 31.6 

GO_BP regulation of MAP kinase activity 8 0.025 2.716 34.9 

GO_BP transcription 38 0.026 1.415 35.9 

GO_BP ribonucleoside monophosphate metabolic 5 0.033 3.961 43.4 



process 

GO_BP protein kinase cascade 12 0.036 1.990 46.6 

GO_BP positive regulation of MAP kinase activity 6 0.037 3.169 47.1 

GO_BP MAPKKK cascade 8 0.043 2.427 52.7 

GO_BP ribosome biogenesis 9 0.043 2.252 52.8 

GO_MF phosphoinositide binding 10 3E-04 4E+00 4E-01 

GO_MF phospholipid binding 13 1E-03 3E+00 2E+00 

GO_MF heparin binding 7 1E-02 4E+00 1E+01 

GO_MF N-methyltransferase activity 6 2E-02 4E+00 2E+01 

GO_MF sequence-specific DNA binding 25 2E-02 2E+00 2E+01 

GO_MF transcription regulator activity 47 3E-02 1E+00 3E+01 

GO_MF glycosaminoglycan binding 8 3E-02 3E+00 4E+01 

GO_MF peptide receptor activity 10 3E-02 2E+00 4E+01 

GO_MF peptide receptor activity, G-protein coupled 10 3E-02 2E+00 4E+01 

GO_MF GTPase activity 10 4E-02 2E+00 4E+01 

GO_MF chemokine receptor activity 5 4E-02 4E+00 5E+01 

GO_MF low-density lipoprotein binding 4 5E-02 5E+00 5E+01 

KEGG Intestinal immune network for IgA production 9 0.002 3.637 2.9 

KEGG Cytokine-cytokine receptor interaction 20 0.005 1.966 6.0 

KEGG Toll-like receptor signaling pathway 11 0.028 2.163 28.5 

KEGG MAPK signaling pathway 22 0.030 1.600 30.6 

GO: Gene Ontology; BP: Biological Processes; MF: Molecular Functions; KEGG: KEGG 

pathways; FE: Fold Enrichment; FDR: False Discovery Rate 

  



Table 6 

Most predictive genes identified by PAM software. 

ProbeID GenBank 

Accession 

GeneSymbol Description 

A_73_100298 NM_001102271 CLK1 Bos taurus CDC-like kinase 1 (CLK1) 

A_73_100941 XM_015475453 FBRSL1 Bos taurus fibrosin-like1 

A_73_100990 NM_001037616 HMGB2 Bos taurus high mobility group box 2 

A_73_101271 NM_001114192 HSPA4 Bos taurus heat shock 70kDa protein 4 

A_73_101276 NM_001080730 MRPL39 Bos taurus mitochondrial ribosomal protein L39 

A_73_103257 NM_001192222 THUMPD2 Bos taurus THUMP domain containing 2 

A_73_103288 BM087726 - Rep: Pistil extensin like protein - Nicotiana 

tabacum (Common tobacco), partial (6%) 

A_73_103758 NM_001038074 COX4NB Bos taurus COX4 neighbor 

A_73_103832 NM_001045900 PSMD3 Bos taurus proteasome (prosome, macropain) 

26S subunit, non-ATPase, 3 

A_73_103999 BF041736 - Rep: 3-oxoacyl-acyl-carrier protein reductase - 

Plasmodium yoelii yoelii, partial (5%) 

A_73_104896 DV786218 - HW_Liver_4_D04 Bos taurus CF-24-HW liver 

cDNA library Bos taurus cDNA 

A_73_105049 NM_001035389 ING4 Bos taurus inhibitor of growth family, member 4 

A_73_105411 NM_001191328 TSSC1 Bos taurus tumor suppressing subtransferable 

candidate 1 

A_73_106645 NM_001098863 MSMO1 Bos taurus methylsterol monooxygenase 1 

A_73_107442 XM_001790523 EXOSC5 Bos taurus exosome component 

A_73_108504 NM_001206196 KLHL24 Bos taurus kelch-like 24 (Drosophila) 

A_73_110210 XM_001787300 CABLES1 Bos taurus Cdk5 and Abl enzyme substrate 1 

A_73_112712 NM_001046136 ABCF2 Bos taurus ATP-binding cassette, sub-family F, 

member 2 

A_73_113837 NM_001101131 MAT2A Bos taurus methionine adenosyltransferase II, 

alpha 

A_73_114350 XM_002705068 AKNA Bos taurus AT-hook transcription factor 

A_73_115182 NM_001035358 MKNK1 Bos taurus MAP kinase interacting 

serine/threonine kinase 1 

A_73_115262 NM_001038088 NASP Bos taurus nuclear autoantigenic sperm protein 

(histone-binding) 

A_73_115371 XM_870542 GRK6 Bos taurus similar to G protein-coupled receptor 

kinase 6 

A_73_115718 NM_001191138 ELF2 Bos taurus E74-like factor 2 

A_73_116099 NM_178317 TRIB2 Bos taurus tribbles homolog 2 (Drosophila) 

A_73_116856 XM_001788896 GPCPD1 Bos taurus glycerophosphocholine 

phosphodiesterase GDE1 homolog (S. 

cerevisiae) 



A_73_117218 XM_867197 FCHSD2 Bos taurus FCH and double SH3 domains 2, 

transcript variant X1 

A_73_117533 NM_174759 PDCL Bos taurus phosducin-like 

A_73_117749 NM_001083515 TMEM87A Bos taurus transmembrane protein 87A 

A_73_117986 NM_001076257 ARRDC3 Bos taurus arrestin domain containing 3 

A_73_119285 NM_001075217 SIRT7 Bos taurus sirtuin 7 

A_73_119510 NM_001075558 HERPUD2 Bos taurus HERPUD family member 2 

A_73_119516 NM_001206899 MNT Bos taurus MAX binding protein 

A_73_119519 CN442042 - BE04028A1A06 Normalized and Subtracted 

bovine embryonic and extraembryonic tissue 

Bos taurus cDNA clone BE04028A1A06 5 

A_73_120487 NM_001045866 BRD2 Bos taurus bromodomain containing 2 

A_73_121009 NM_001099065 C16H1orf55 Bos taurus chromosome 16 open reading frame, 

human C1orf55 
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