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In the fragmentation of a transversely polarized quark several left–right asymmetries are possible for the 
hadrons in the jet. When only one unpolarized hadron is selected, it exhibits an azimuthal modulation 
known as the Collins effect. When a pair of oppositely charged hadrons is observed, three asymmetries 
can be considered, a di-hadron asymmetry and two single hadron asymmetries. In lepton deep inelastic 
scattering on transversely polarized nucleons all these asymmetries are coupled with the transversity 
distribution. From the high statistics COMPASS data on oppositely charged hadron-pair production we 
have investigated for the first time the dependence of these three asymmetries on the difference 
of the azimuthal angles of the two hadrons. The similarity of transversity induced single and di-
hadron asymmetries is discussed. A new analysis of the data allows quantitative relationships to be 
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established among them, providing for the first time strong experimental indication that the underlying 
fragmentation mechanisms are all driven by a common physical process.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The description of the partonic structure of the nucleon at 
leading twist in the collinear case requires the knowledge of 
three parton distribution functions (PDFs), the number, helicity 
and transversity functions. Very much like the helicity distribution, 
which gives the longitudinal polarization of a quark in a longi-
tudinally polarized nucleon, the transversity distribution gives the 
transverse polarization of a quark in a transversely polarized nu-
cleon. Its first moment, the tensor charge, is a fundamental prop-
erty of the nucleon. While the number and the helicity PDFs can 
be obtained from cross-sectional measurements of unpolarized or 
doubly polarized lepton–nucleon deeply inelastic scattering (DIS), 
respectively, the transversity distribution is chiral-odd and as such 
can be measured only if folded with another chiral-odd quantity. 
As suggested more than 20 years ago [1,2], it can be accessed 
in semi-inclusive DIS (SIDIS) off transversely polarized nucleons 
from a left–right asymmetry of the hadrons produced in the struck 
quark fragmentation with respect to the plane defined by the 
quark momentum and spin directions. Recently, both the HERMES 
and the COMPASS experiments have provided unambiguous evi-
dence that transversity is different from zero by measuring SIDIS 
off transversely polarized protons [3]. Two different processes have 
been addressed. In the first process, a target spin azimuthal asym-
metry in single-hadron production is measured, referred to as 
Collins asymmetry [2]. It depends on the convolution of transver-
sity and a hadron transverse-momentum dependent chiral-odd 
fragmentation function (FF), the Collins function, which describes 
the correlation between the hadron transverse momentum and the 
transverse polarization of the fragmenting quark. The second pro-
cess is the production of two oppositely charged hadrons [1,4–6]. 
In this case the so-called di-hadron target spin azimuthal asymme-
try originates from the coupling of transversity to a di-hadron FF, 
also referred to as interference FF, in principle independent from 
the Collins function. In both cases, measurements of the corre-
sponding azimuthal asymmetries of the hadrons produced in e+e−
annihilation [7–9] provided independent information on the two 
types of FFs, allowing for first extractions of transversity from the 
SIDIS and e+e− data [10–13].

The high precision COMPASS measurements on transversely po-
larized protons [14,15] showed that in the x-Bjorken region, where 
the Collins asymmetry is different from zero and sizable, the pos-
itive and negative hadron asymmetries exhibit a mirror symmetry 
and the di-hadron asymmetry is very close to and somewhat larger 
than the Collins asymmetry for positive hadrons. These facts have 
been interpreted as experimental evidence of a close relationship 
between the Collins and the di-hadron asymmetries, hinting at a 
common physics origin of the two FFs [15–18], as suggested in 
the 3P0 recursive string fragmentation model [19,20] and, for large 
invariant mass of the hadron pair, in Ref. [21]. The interpreta-
tion is also supported by calculations with a specific Monte Carlo 
model [22].

In order to better investigate the relationship between the 
Collins asymmetry and the di-hadron asymmetry the correlations 
between the azimuthal angles of the final state hadrons produced 
in the SIDIS process μp → μ′h+h− X have been studied using the 
COMPASS data. These correlations play an important role in the 
understanding of the hadronization mechanism and in so far have 
been studied only in unpolarized SIDIS [23]. In this article for the 
Fig. 1. Definition of the Collins angle �C of a hadron h. The vectors �pT , �s and �s ′
are the hadron transverse momentum and the spin of the initial and struck quarks 
respectively.

first time the results for SIDIS off transversely polarized protons 
are presented. The investigation has proceeded through three ma-
jor steps:

i) the Collins asymmetries for positive and negative hadrons 
have been compared with the corresponding asymmetries 
measured in the SIDIS process μp → μ′h+h− X , i.e. when in 
the final state at least two oppositely charged hadrons are de-
tected (2h sample);

ii) using the 2h sample the asymmetries of h+ and h− have been 
measured and their relation has been investigated as func-
tion of �φ, the difference of the azimuthal angles of the two 
hadrons;

iii) the dihadron asymmetry has been measured as function of �φ

and, using a new general expression, compared with the h+
and h− asymmetries. The integrated values of the three asym-
metries have also been compared.

2. The COMPASS experiment and data selection

COMPASS is a fixed-target experiment at the CERN SPS tak-
ing data since 2002 [24]. The present results have been extracted 
from the data collected in 2010 with a 160 GeV/c μ+ beam and 
a transversely polarized proton (NH3) target, already used to mea-
sure the transverse spin asymmetries [14,25,15]. They refer to the 
2h sample, i.e. SIDIS events in which at least one positive and one 
negative hadron have been detected.

The selection of the DIS events and of the hadrons is described 
in detail in Ref. [15]. Standard cuts are applied on the photon vir-
tuality (Q 2 > 1 GeV2/c2), on the fractional energy transfer to the 
virtual photon (0.1 < y < 0.9), and on the invariant mass of the fi-
nal hadronic state (W > 5 GeV/c2). Specific to this analysis is the 
requirement that each hadron must have a fraction of the virtual 
photon energy z1,2 > 0.1, where the subscript 1 refers to the pos-
itive hadron and subscript 2 to the negative hadron. A minimum 
value of 0.1 GeV/c for the hadron transverse momenta pT 1,2 en-
sures good resolution in the azimuthal angles. As shown in Fig. 1
the virtual photon direction is the z axis of the coordinate system 
while the x axis is directed along the lepton transverse momen-
tum. The direction of the y axis is chosen to have a right-handed 
coordinate system. Transverse components of vectors are defined 
with respect to z axis. 

The 2h sample consists of 33 million h+h− pairs, to be com-
pared with the 85 million h+ or 71 million h− of the standard 
event sample (1h sample) of the previous analysis [15], where at 
least one hadron (either positive or negative) per event was re-
quired.

http://creativecommons.org/licenses/by/4.0/
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Fig. 2. (Color online.) Comparison of the CL asymmetries for h1 (full red circles) and 
h2 (full black triangles) in lp → l′h+h− X with the standard Collins asymmetries in 
lp → l′h± X for z > 0.1 (open circles and triangles) measured as function of x.

Table 1
Integrated values of the Collins and CL asymmetries for positive and negative 
hadrons in the region x > 0.032.

Collins asymmetry Collins-like asymmetry

h1 −0.017 ± 0.002 −0.018 ± 0.003
h2 0.018 ± 0.002 0.020 ± 0.003

3. Comparison of 1h and 2h sample asymmetries

For each hadron the Collins angle �Ci , i = 1, 2, is defined as 
usual as �Ci = φi + φS − π , where φi is the azimuthal angle 
of the hadron transverse momentum, φS is the azimuthal angle 
of the transverse nucleon spin, and π − φS is the azimuthal angle 
of the spin �s ′ of the struck quark [26], as shown in Fig. 1. All the 
azimuthal angles are measured around the z axis. For the positive 
and negative hadrons in the 2h sample, the amplitudes Asin �C1

CL1

and Asin �C2
CL2 of the sin �C1,2 modulations in the cross-section have 

been extracted with the same method as of Ref. [15] and labeled 
“CL” (Collins-like) to distinguish them from the standard Collins 
asymmetries, which are defined in the 1h sample. 

Within the accuracy of the measurements the CL asymmetries 
turn out to be the same as the standard Collins asymmetries, as 
can be seen in Fig. 2. The integrated values of the Collins and 
CL asymmetries are given in Table 1 for x > 0.032 that is in the 
x-region where they are sizable. Taking into account statistical cor-
relation the difference between the Collins and the CL asymmetries 
is less than a standard deviation for both h1 and h2. This observa-
tion implies that the Collins asymmetry does not depend on addi-
tional observed hadrons in the event. As an important result of the 
first step of this investigation the 2h sample can be used to study 
the mirror symmetry and to investigate the interplay between the 
Collins single-hadron asymmetry and the di-hadron asymmetry, as 
described in the following. All the results of the following work 
are obtained in the kinematical region x > 0.032, which is the one 
where the Collins and the di-hadron asymmetries are largest.

4. �φ dependence of the CL asymmetries of positive and 
negative hadrons

The azimuthal correlations between φ1 and φ2 in transversely 
polarized SIDIS had been investigated by measuring the asymme-
tries as a function of |�φ| [17], where �φ = φ1 − φ2. The final 
results as function of �φ are shown in Fig. 3. The two asymmetries 
look like even functions of �φ, are compatible with zero when �φ

tends to zero, and increase in magnitude as �φ increases. Very 
much as in Fig. 2 the mirror symmetry between positive and neg-
ative hadrons is a striking feature of the data. The overall picture 
agrees with the expectation from the 3P0 recursive string fragmen-
tation model of Refs. [19,20], which predicts a maximum value for 
�φ � π .
Fig. 3. (Color online.) The Asin �C1
CL1 (red circles) and the Asin �C2

CL2 (black triangles) vs. 
�φ. Superimposed are the fitting functions described in the text.

The framework to access the �φ dependence of CL asymme-
tries was proposed in Ref. [27]. After integration over x, Q 2, z1, z2, 
p2

T 1 and p2
T 2 the cross-section for the SIDIS process lN → l′h+h− X

can be written as

dσ h1h2

dφ1dφ2dφS
= σU + ST

[
σC1

(�pT 1 × �q) · �s′

|�pT 1 × �q| |�s′| + σC2
(�pT 2 × �q) · �s′

|�pT 2 × �q| |�s′|

]

= σU + ST [σC1 sin�C1 + σC2 sin�C2] , (1)

where the unpolarized σU and the polarized σC1 and σC2 structure 
functions (SFs) might depend on cos �φ. To access the azimuthal 
correlations of the polarized SFs Eq. (1) is rewritten in terms of φ1
and �φ, or alternatively in terms of φ2 and �φ:

dσ h1h2

dφ1d�φdφS
= σU + ST

[(
σC1 + σC2 cos�φ

)
sin�C1

− σC2 sin�φ cos�C1

]
,

dσ h1h2

dφ2d�φdφS
= σU + ST

[(
σC2 + σC1 cos�φ

)
sin�C2

+ σC1 sin�φ cos�C2

]
. (2)

With the change of variables above a new modulation, of the type 
cos�C1,2, appears in the cross section, which can then be rewrit-
ten in terms of the sine and cosine modulations of the Collins 
angle of either the positive or the negative hadron. The explicit 
expressions for the four asymmetries are:

Asin �C1
CL1 = 1

D N N

σC1 + σC2 cos�φ

σU
,

Acos �C1
CL1 = − 1

D N N

σC2 sin�φ

σU
,

Asin �C2
CL2 = 1

D N N

σC2 + σC1 cos�φ

σU
,

Acos �C2
CL2 = 1

D N N

σC1 sin�φ

σU
, (3)

where D N N is the mean transverse-spin-transfer coefficient, equal 
to 0.87 for these data. Fig. 4 shows the measured values of the new 
asymmetries A

cos �C1,2
CL1,2 . It is the first time that they are measured. 

They have almost equal values for positive and negative hadrons, 
seem to be odd functions of �φ, and average to zero when inte-
grating over �φ. Note that the data are in very good agreement 
with Eq. (3) if (σC1/σU ) = −(σC2/σU ) = const. 

The quantities σC1/σU and σC2/σU , which in principle can still 
be functions of �φ, can be obtained from the measured asymme-
tries using

σC1 = D N N

[
Asin �C1

CL1 + Acos �C1
CL1 cot�φ

]
,

σU
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Fig. 4. (Color online.) The Acos �C1
CL1 (red circles) and the Acos �C2

CL2 (black triangles) vs. 
�φ. Superimposed are the fitting functions described in the text.

Fig. 5. (Color online.) The measured values of the ratios σC1/σU and σC2/σU . The 
lines give the fitted mean values, −0.015 ± 0.004 for h1 and 0.022 ± 0.004 for h2.

Table 2
Fitted values of the a parameter for the two CL asymmetries for positive and nega-
tive hadrons.

Asin �C
CL Acos �C

CL

h1 0.014 ± 0.003 0.025 ± 0.005
h2 0.016 ± 0.003 0.017 ± 0.005

σC2

σU
= D N N

[
Asin �C2

CL2 − Acos �C2
CL2 cot�φ

]
. (4)

The values of the ratios σC1/σU and σC2/σU extracted from the 
measured asymmetries are given in Fig. 5. Within the statistical 
uncertainty they are constant, hinting at similar azimuthal correla-
tions in polarized and unpolarized SFs. Moreover, they are almost 
equal in absolute value and of opposite sign. Assuming (σC1/σU ) =
−(σC2/σU ) = const., the measured asymmetries can be fitted with 
the simple functions ±a(1 − cos�φ) in the case of the sine asym-
metries, and a sin �φ for the cosine asymmetries. The results of the 
fits for positive (negative) hadrons are the dashed red (dot-dashed 
black) curves shown in Figs. 3 and 4. The agreement with the mea-
surements is very good and the four values for the constants a are 
compatible, as can be seen in Table 2. 

As a conclusion of this second step of the investigation, the h1
and h2 CL asymmetries as functions of �φ agree with the expec-
tation from the 3P0 recursive string fragmentation model and with 
the calculations of the �φ dependence obtained in Ref. [27]. As 
in the one-hadron sample a mirror symmetry for the positive and 
negative hadron sine asymmetries is observed in the 2h sample, 
which is a consequence of the experimentally established relation 
σC1 = −σC2.

These results allow a quantitative relation between the h1 and 
h2 CL asymmetries and the di-hadron asymmetry to be derived, as 
described in the following.

5. Comparison of CL and di-hadron asymmetries

The third and last step of this investigation has been the for-
mal derivation of a connection between the CL and the di-hadron 
Fig. 6. (Color online.) A
sin �2h,S
CL2h vs. �φ and the corresponding fit (black full curve). 

The dashed red and dot-dashed black curves are the fits to Asin �C1
CL1 and Asin �C2

CL2
from Fig. 3.

asymmetries and the comparison with the experimental data. In 
the standard analysis, the �φ integrated di-hadron asymmetry 
is measured from the amplitude of the sine modulation of the 
angle �R S = φR + φS − π , where φR is the azimuthal angle of 
the relative hadron momentum �R = [

z2 �p1 − z1 �p2
]
/ [z1 + z2] =:

ξ2 �p1 − ξ1 �p2. In the present analysis, the azimuthal angle φ2h of 
the vector �R N = p̂T 1 − p̂T 2 is evaluated for each pair of oppositely 
charged hadrons, with the hat indicating unit vectors. As discussed 
in Ref. [15], the azimuthal angle φR is strongly correlated with 
φ2h = [φ1 + φ2 + π sgn(�φ)]/2, where sgn is the signum function. 
Also, introducing the angle �2h,S = φ2h +φS −π , which is a kind of 
mean of the Collins angle of the positive and negative hadrons af-
ter correcting for a π phase difference, it was shown [15] that the 
di-hadron asymmetry measured from the amplitude of sin �2h,S is 
essentially identical to the standard di-hadron asymmetry. In or-
der to establish a connection between the di-hadron asymmetry 
and the CL asymmetries �2h,S will be used rather than �R S in 
the following. Starting from the general expression for the cross 
section given in Eq. (1), changing variables from φ1 and φ2 to 
�φ and φ2h , and using the relations sin �2h,S = (R̂ N × q̂) · ŝ′ and 
cos�2h,S = − sgn(�φ)( P̂ N × q̂) · ŝ′ , where �P N = p̂T 1 + p̂T 2, Eq. (1)
can be rewritten as:

dσ h1h2

d�φ dφ2h dφS
= σU + ST

1

2

[(
σC1 − σC2

)
× √

2(1 − cos�φ) sin�2h,S

− sgn(�φ)
(
σC1 + σC2

)
× √

2(1 + cos�φ) cos�2h,S
]
, (5)

which simplifies to

dσ h1h2

dφ2hd�φdφS
= σU + ST · σC1 · √2(1 − cos�φ) · sin�2h,S (6)

using the experimental result σC2 = −σC1. This last cross-section 
implies a sine modulation with amplitude

A
sin �2h,S
CL2h = 1

D N N

σC1

σU
· √2(1 − cos�φ). (7)

At variance with the single hadron case, no A
cos �2h,S
CL2h asymmetry 

is present in Eq. (6) and the measured values are indeed compati-

ble with zero. In Fig. 6 the A
sin �2h,S
CL2h asymmetry is shown together 

with the curve −c
√

2(1 − cos�φ) with c = 0.017 ± 0.002 (black 
solid line) as obtained by the fit. The dashed red and dot-dashed 
black curves are the fitted curves a(1 − cos�φ) of Fig. 3. As can 
be seen the fit is good, and the value of c is compatible with the 
corresponding values of Table 2, in agreement with the fact that 
σCi/σU is the same for the three asymmetries. Evaluating the ratio 
of the integrals of the di-hadron amplitudes over the one-hadron 
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amplitudes one gets a value of 1.4 ± 0.2 which agrees with the 
value 4/π evaluated from Eqs. (7) and (3) and with our original 
observation that the di-hadron asymmetry is somewhat larger than 
the Collins asymmetry for positive hadrons.

6. Conclusions

We have shown that in SIDIS hadron-pair production the 
x-dependent Collins-like single hadron asymmetries of the positive 
and negative hadrons are compatible with the standard Collins 
asymmetries and are mirror symmetric. Also, the Collins-like 
asymmetries exhibit a ±a(1 − cos�φ) dependence on �φ, which 
we have derived from the general expression for the two-hadron 
cross-section and is a consequence of the experimentally verified 
similar �φ dependence of the unpolarized and polarized struc-
ture functions and the mirror symmetry of the polarized structure 
functions.

Most important, for the first time it has been shown that the 
amplitude of the di-hadron asymmetry as a function of �φ has 
a very simple relation to that of the single hadron asymmetries 
in the 2h sample, namely it can be written as −a

√
2(1 − cos�φ), 

where the constant a is the same as that which appears in the ex-
pressions for the Collins-like asymmetries. After integration on �φ, 
the di-hadron asymmetry is larger than the single hadron asym-
metries by a factor 4/π , in good agreement with the measured 
values.

In conclusion, we have shown that the integrated values of 
Collins asymmetries in the 1h sample are the same as the Collins-
like asymmetries of 2h sample which in turn are related with the 
integrated values of di-hadron asymmetry. This gives an indication 
that both the single hadron and di-hadron transverse-spin depen-
dent fragmentation functions are driven by the same elementary 
mechanism. As a consequence of this important conclusion we can 
add that the extraction of transversity distribution using the di-
hadron asymmetry in SIDIS does not represent an independent 
measurement with respect to the extractions which are based on 
the Collins asymmetry.
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