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Statement of Translational Relevance 
This work reports the effective antitumor activity of patient-derived cytokine-induced killer (CIK) cells 

against autologous chemo-resistant melanoma Cancer Stem Cells (CSCs).  

CSCs are clinical relevant targets, associated with disease relapse. We demonstrate that chemotherapy 

kills indeed proliferating melanoma cells but spares tumorigenic CSCs, in vitro and in vivo. The MHC-

independent immunotherapy with CIK cells was proved successful in this challenging framework.  

Consistent findings were obtained in selected cases of BRAF mutated melanoma treated with small 

molecule BRAFi. Our data, generated within an autologous system, support the exploration of CIK cells in 

clinical trials. Cost effectiveness, safety profile and ability to overcome tumor MHC-downregulation are 

favorable issues to be considered in clinical perspective. CIK cells may be integrated at different levels in 

the composite therapeutic scenario of metastatic melanoma, offering an additional weapon to control tumor 

spread and promote its eradication.  
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ABSTRACT 
Purpose  

The MHC-unrestricted activity of cytokine-induced killer (CIK) cells against chemo-surviving melanoma 

cancer stem cells (mCSCs) was explored, as CSCs are considered responsible for chemo-resistance and 

relapses.  

Experimental design  

Putative mCSCs were visualized by engineering patient-derived melanoma cells (MCs) with a lentiviral-

vector encoding eGFP under expression control by stemness gene promoter oct4. Their stemness potential 

was confirmed in vivo by limiting dilution assays. 

We explored the sensitivity of eGFP+mCSCs to chemotherapy (CHT), BRAF inhibitor (BRAFi) or CIK cells, 

as single agents or in sequence, in vitro. First, we treated MCs in vitro with fotemustine or dabrafenib 

(BRAF mutated cases); then surviving MCs, enriched in mCSCs, were challenged with autologous CIK 

cells.  

CIK cell activity against chemoresistant mCSCs was confirmed vivo in two distinct immunodeficient murine 

models.  

Results 

We visualized eGFP+mCSCs (14±2.1%) in 11 MCs.  The tumorigenic precursor rate in vivo was higher 

within eGFP-positive MCs (1/42) compared with the eGFP-negative counterpart (1/4870).  

In vitro mCSCs were relatively resistant to CHT and BRAFi, but killed by CIK cells (n=11, 8/11 autologous), 

with specific lysis ranging from 95% (E/T 40:1) to 20% (E/T 1:3). In vivo infusion of autologous CIK cells 

into mice bearing xenografts from 3 distinct melanoma demonstrated significant tumor responses involving 

CHT-spared eGFP+mCSCs (p=0.001). Sequential CHT-immunotherapy treatment retained antitumor 

activity (n=12, p=0.001) reducing mCSC rates (p=0.01). 

Conclusions 

These findings are the first demonstration that immunotherapy with CIK cells is active against autologous 

mCSCs surviving chemotherapy or BRAFi. An experimental platform for mCSC study and rationale for CIK 

cells in melanoma clinical study is provided. 
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INTRODUCTION 
 

Malignant melanoma is the most aggressive form of skin cancer. While localized tumors are curable with 

surgery, treatment possibilities for metastatic melanoma have long been limited due to its minimal response 

to conventional anticancer treatments (1). Recently, molecular targeted therapy and immunotherapy have 

greatly advanced metastatic melanoma treatment by employing respectively small molecules inhibiting 

mutated forms of b-raf (2-4) and immune checkpoint inhibitors ipilimumab (5), nivolumab (6,7), and 

pembrolizumab (8) to achieve such remarkable clinical trial results that they are now first-line options in 

international treatment guidelines (9-11). Despite these treatments a consistent portion of patients relapse 

or does not achieve disease control. In addition to checkpoint inhibitors, adoptive immunotherapy also 

appears highly promising, and after decades of preclinical relegation, is starting to find its way into clinical 

applications (12,13). While the two approaches may be complementary, tumors containing relatively few 

immunogenic mutations, or those with a “non-inflamed” tumor microenvironment, continue to represent an 

important immunotherapy challenge. Specifically, in some non-responsive or relapsing patient subsets, or 

when attempting to hit tumor-sustaining targets like cancer stem cells (CSCs), adoptive infusion of ex vivo 

expanded antitumor immune effectors is worth consideration.  

Crucial to new therapeutic strategy planning is CSC analysis and targeting because this cell subpopulation 

is a key factor in chemotherapeutic agent and radiation therapy resistances,  contributes to post-treatment 

relapse, and is involved in tumor metastasis (14-21). The fact that conventional chemotherapies 

preferentially target actively-cycling cells, as opposed to CSCs, may implicate these observed treatment 

failures. Thus, exploration of novel therapeutic strategies to target CSCs with immunotherapy holds great 

potential (21-27).  

Among the various adoptive immunotherapy approaches we focused on an MHC-independent strategy 

based on cytokine-induced killer (CIK) cells (28-32), which are ex vivo expanded T-NK lymphocytes with 

MHC-independent antitumor activity (33-38). The principal mechanism of tumor killing is recognition of 

stress-inducible tumor-restricted molecules (e.g., MIC A/B; ULBPs 1-5) by the NKG2D receptor (35,36,39). 

Preclinical studies of intense CIK cell activity against several tumors have been reported, as has recent 

evidence of their successful re-direction with chimeric-antigen receptors (CAR) (40-42). Moreover, initial 

clinical trials demonstrated their safety profile, supporting their potential against solid tumors (37,38,43,44). 

We previously reported preclinical CIK cell activity against autologous melanoma and initial in vitro data 

against putative mCSCs. (31). MHC-independent immunotherapeutic approaches may present advantages 

over antigen-specific adaptive immune responses against CSCs. Indeed, effectors like CIK cells, or even 

natural killer and γδ T cells, are unaffected by tumor-defensive downregulation of HLA molecules, and their 

activating targets (e.g., MIC A/B; ULBPs) are associated and expressed in undifferentiated tumor cells 

(22,31,32) (45-47). 

This investigation builds on our previous findings. It explores the preclinical activity of CIK cells against 

autologous melanoma, focusing on mCSCs that may survive conventional chemo or molecular targeted 

therapies. To visualize putative CSCs, we used a strategy previously validated in our lab that relies on a 
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lentiviral vector encoding the enhanced Green Fluorescent Protein (eGFP) under expression control of the 

human oct4 promoter (LV.Oct4.eGFP). The underlying idea is to reveal CSCs exploiting their selective 

ability to activate a well-characterized stemness promoter (31,32,48,49). Our central hypothesis is that 

chemotherapy kills proliferating tumor cells, and thereby reduces the tumor burden, but spares CSCs that 

support disease relapse. We simulated this scenario in an autologous preclinical model, both in vitro and in 

vivo, and then assessed the efficacy of immunotherapy with CIK cells.    

 

MATERIALS AND METHODS 
Establishment of patient-derived melanoma cell cultures 

Human melanoma tissues were obtained from 11 surgical specimens (lymphnodal or cutaneous 

metastasis); patients with advanced stage melanoma provided consent under institutional review board 

approved protocols. Human melanoma tissues were cut into 3-mm3 pieces and processed for cell isolation. 

Tumor tissue was processed and melanoma cells were cultured as previously described (31).  

 

Characterization of patient-derived melanoma cell cultures 

Cell aliquots from patient-derived melanoma cell cultures were stained with FITC, PE, PE–Cyanin 7 (PC7), 

or APC-conjugated mouse monoclonal antibodies (mAbs) against extracellular and intracytoplasmic human 

antigens [anti-CD271-PE, anti-Oct4-PE, anti-Sox-2-APC, and anti-Nanog-PerCP-Cy5.5 (Becton Dickinson 

BD Biosciences Italy, Pharmingen); anti-MCSP-APC (Miltenyi Biotec Srl, Calderara di Reno, BO, Italy), 

anti-VEGFR1-APC and anti-ABCG2-PE (R&D Systems, Space Import Export); anti-MITF (Abcam, Prodotti 

Gianni Srl, Milan, Italy)], anti-HLA-ABC-FITC and anti-PD-L1-PE (BD Biosciences  Pharmingen); CIK-target 

antigens [anti-MIC A/B (BD Biosciences  Pharmingen);, anti-ULBPs, anti-CD112, and anti-CD155 (R&D 

System, Space Import Export, Milan, Italy)]. Intracellular expression of OCT4 and MITF was detected after 

fixation/permeabilization by the Cyoperm/Cytofix kit per manufacturer's instructions (BD 

Biosciences Pharmingen). To detect Mitf, we used a secondary goat antimouse PE-labeled mAb (Abcam, 

Prodotti Gianni Srl, Milan, Italy). Labeled cells were read on FACS Cyan (Cyan ADP, Beckman Coulter 

s.r.l., Cassina De' Pecchi – Milan, Italy) and analyzed using Summit Software. Gate criteria were set to 

isotype controls. 

 
CIK culture, expansion and characterization  

Human peripheral blood samples were obtained from subjects with histologically-confirmed advanced stage 

melanoma at the Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia (FPO) - IRCCS. All 

individuals provided their informed consent. 

Cultures were started with Peripheral Blood Mononuclear Cells (PBMCs) collected from 8/11 mMel 

patients, surgically treated and performed as previously described (31,32). Briefly, PBMCs, isolated by 

density gradient (Lymphosep, Aurogene s.r.l., Roma, Italy) centrifugation were cultured at a cell density of 

1.5 × 106 ml−1 in RPMI (Gibco BRL Life Technologies Italia Monza Italy), supplemented with 10% fetal 

bovine serum (FBS) (Sigma) and with timed additions of 1000 U ml−1 IFN-γ at day 0 (Miltenyi Biotec Srl, 



 
 

6 
 

Calderara di Reno, BO, Italy), 50 ng ml−1 anti-CD3 at day+1 antibody (Miltenyi Biotec Srl, Calderara di 

Reno, BO, Italy), and 300 U ml−1 recombinant human interleukin IL-2 (from day +1, refreshed every 3-4 

days until the end of the expansion) (Miltenyi Biotec Srl, Calderara di Reno, BO, Italy).  

Phenotypic analysis of CIK cells was performed weekly, using the following fluorescein isothiocyanate 

(FITC), phycoerythrin (PE), or allophycocyanin (APC)-conjugated mouse monoclonal antibodies (mAbs): 

CD3–FITC, CD8–PE, CD56–APC and CD314–APC (aka anti-NKG2D) (mAbs) (all from Miltenyi Biotec Srl, 

Calderara di Reno, BO, Italy) and anti-DNAM-1 (Becton Dickinson BD Biosciences Italy, Pharmingen). 

Labeled cells were read on FACS Cyan (Cyan ADP, Beckman Coulter s.r.l., Cassina De' Pecchi – Milan, 

Italy) and analyzed using Summit Software. Gate criteria were set to isotype controls. 

 

hOct4.eGFP Lentiviral Vector generation  

VSV-G pseudotyped third-generation LVs were produced by transient four-plasmid co-transfection into 

293T cells (50,51). Transfer vector pRRL.sin.PPT.hPGK.EGFP.Wpre (LV.PGK.EGFP), kindly provided by 

Dr. Elisa Vigna (Gene Transfer and Therapy, IRCCS Candiolo, Turin, Italy), has been described 

elsewhere.  

The phOCT4.EGFP1 vector (49) was kindly provided by Dr. Wei Cui (IRDB, Imperial College, London). The 

pRRL.sin.PPT.hOct4.eGFP.Wpre (LV-Oct4.eGFP) was obtained by replacing expression cassette 

hPGK.eGFP in LV-PGK.eGFP with hOct4-eGFP1 cleaved from the phOct4-eGFP1 vector through insertion 

into the SalI and XhoI restriction enzyme sites. Physical titers for lentiviral vector stocks were determined 

based on p24 antigen content (HIV-1 p24 ELISA kit; PerkinElmer, Milan, Italy).  

 
Patient-derived Melanoma Cell Transduction 

For each LV transduction, patient-derived melanoma cells were cultured in fresh KODMEM-F12 with 10% 

FBS. Virus-conditioned medium was added at a dose of 400ng P24/100,000 cells. After 16h, cells were 

washed twice and grown for a minimum of 10 days to reach steady state eGFP expression and to rule out 

pseudo-transduction prior to flow-cytometry analysis (31).  As a transduction efficiency control, the same 

melanoma primary cells were transduced with LV.PGK.eGFP. 

 

In vitro assessment of CSC sensitivity to fotemustine or dabrafenib 

LV.Oct4.eGFP transduced melanoma cells were seeded into 6-well plates (120,000-180,000 cells/well). 

After overnight incubation, cells were treated with the IC50 dose of fotemustine (FM, Muphoran® 

ItalFarmaco, Milan, Italy) or dabrafenib (BRAFi, Sequoia Research Products, Pangbourne, UK) for 72 

hours. LV.Oct4.eGFP transduced melanoma cells treated with an equal volume of drug diluent were utilized 

as the control. At the end of treatment, cells were harvested and counted. The cell viability was determined 

with Trypan Blue 0.1% exclusion dye and an automated cell counter Countess (Invitrogen) according to the 

manufacturer’s instructions. The percentage of eGFP+ cells was determined by flow cytometry (Cyan ADP, 

Beckman Coulter s.r.l., Cassina De' Pecchi – Milan, Italy). The eGFP positivity was calculated on viable cell 

fraction, detected by DAPI permeability exclusion assay.  Treatment effects were measured by conducting 
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four to six independent experiments, each of which included six replicates. The eGFP increment, 

expressed as fold increase, was separately calculated for each experiment to compare FM- or BRAFi-

treated samples with their internal untreated control. 

 
In vitro cytotoxicity assay with CIK cells against melanoma 

CIK tumor-killing ability was assessed against 11 LV.Oct4.eGFP transduced patient-derived melanoma 

cells. Effector cells were assayed against autologous tumor targets when possible (8/11). In the absence of 

autologous PBMCs (3/11), CIK cells were generated from other melanoma patients and employed as 

allogenic effectors. All melanoma cell cultures were assayed with allogeneic CIK cells as controls. Their 

immune-mediated killing was analyzed assessing target cell viability by flow cytometry (Cyan ADP 

Beckman Coulter s.r.l., Cassina De' Pecchi – Milan, Italy) by DAPI permeability. CIK cells were co-cultured 

with targets (either autologous or allogenic LV.Oct4.eGFP transduced melanoma cells) previously treated 

for 72 hours with fotemustine or dabrafenib (IC50 dose) or an equal diluent volume as a control. Essays 

were conducted at progressively decreasing effector/target (E/T) ratios, 40:1, 20:1, 10:1, 5:1, 3:1, 1:1, 2:1, 

and 1:3 for 72 hours in 200 µL of medium with IL2 at a concentration of 300 U/mL at 37°C 5% CO2. A 

confirmatory  method was tested in parallel to determine the number of viable, metabolically-active, target 

cells in culture, based on the quantitation of ATP present (CellTiter-Glo® Luminescent Cell Viability Assay, 

Promega Italia s.r.l, Milan, Italy).  

Tumor cells, in the absence of CIK cells, were used as a control to assess spontaneous mortality. The 

percentage of tumor-specific lysis for each effector/target ratio was calculated as (Experimental-

spontaneous Mortality/100-Spontaneous Mortality) x 100. The curve also allowed us to calculate the half-

maximal inhibitory concentration (IC50) value for each melanoma culture. 

 

In vivo activity assay against mCSCs 

Six-week-old Non-Obese Diabetic/LtSz-scid/scid (NOD/SCID) (Charles River, Calco, Italy) female mice 

were subcutaneously injected with 5x105 LV.Oct4.eGFP transduced patient-derived melanoma cells 

(mMel7 n=34, mMel11 n=40), cultured in equal volumes of sterile PBS1X and BD Matrigel™ Basement 

Membrane Matrix (Becton Dickinson BD Biosciences Italy). Treatments started when tumors became 

palpable. Mice from CIK-immunotherapy group (mMel7 n=10; mMel11 n=12) received 4 intravenous 

infusions (1x107mouse every 3-4 days) of mature CIK cells (re-suspended in 200 ul of 1X PBS) without 

systemic administration of IL2. Mice from chemotherapy-group (n=34) received 2 intraperitoneal injections 

of fotemustine (600 ug/mouse days 1;15), while mice injected with PBS alone (n=18) represented untreated 

controls.  

An early part of the experiment (group A: CIK-immunotherapy n=10, chemotherapy n=10, PBS n=8) was 

terminated and analyzed after 2 weeks (day+15) to assess the antitumor activity (Ki67 proliferative index) 

and residual rate of eGFP+mCSCs. A second branch (group B) of the experiment proceeded beyond 

day+15 to explore the effect of chemo-immunotherapy combination. Mice (n=12) from the initial 

chemotherapy cohort (treated with Fotemustine on days 1;15) started intravenous infusions with CIK cells 



 
 

8 
 

(1x107/mouse every 4-5 days from a minimum of 2 weeks to a maximum of 10 weeks); remaining mice 

from all the initial cohorts (CIK-immunotherapy n=12, Chemotherapy n=12, PBS n=10)  worked as control 

and continued to be infused with PBS alone up to the end of the experiment. In all cases the experiment 

was terminated and animals euthanized when tumor size reached 2 cm in its main diameter, unacceptable 

toxicity occurred or CIK infusions ended, whoever occurred first. 

Tumor growth was monitored weekly with calipers and volume calculated according to the formula: V = 4/3 

× π × (l/2)2 × (L/2), where L is the length and l the width diameter of the tumor. The recovered tumors were 

aliquoted. A first aliquot was fixed overnight in 4% paraformaldehyde, then dehydrated, paraffin-embedded, 

and sectioned (5 μm) and finally stained with Hematoxylin and Eosin (H&E) (Bio.Optica). To assess the 

antitumor activity, tumor sections were stained for Immunohistochemistry assay with Ki67 antibody (Dako-

Agilent Technologies Italia S.p.A, Milan, Italy) (32). To assess CIK cell infiltrate, Immunohistochemistry 

assay was performed with human anti-CD3 antibodies (Novocastra, Leica Biosystem) and assessed by a 

pathologist. A second aliquot was processed by mechanical and enzymatic dissociation using the Tumor 

Dissociation kit, human and the gentleMACS. Dissociator, according to the manufacturer’s instructions. 

Monocellular suspensions obtained after dissociation were filtered using 70 um CellStrainer and the 

percentage of eGFP+ cells was determined by flow cytometry (Cyan ADP, Beckman Coulter s.r.l., Cassina 

De' Pecchi – Milan, Italy) and analyzed using Summit Software. 

 

Patient-Derived Xenografts (PDXs)  

Six-week-old Non-Obese Diabetic/LtSz-scid/scid (NOD/SCID) (Charles River, Italy) female mice were 

subcutaneously injected with an 8 mm3-tumor fragment from patient-derived melanoma biopsies (mMel2 

and mMel3). Starting one week after tumor implantation, mice (n=14) received 8 weekly intravenous 

infusions of 1x107 mature autologous CIK cells in 1X PBS (200 ul total volume injected) without systemic 

administration of IL2.  Mice (n=13) injected with PBS alone were used as the untreated control. Tumor 

growth was monitored weekly as described above. Animals were euthanized at experiment end or when 

tumor size reached 2 cm in its main diameter. The recovered tumors were fixed overnight in 4% 

paraformaldehyde, dehydrated, paraffin-embedded, sectioned (5 μm), and finally stained for 

Immunohistochemistry assay with Ki67 antibody (Dako Italia Spa). In a selected experiment, the recovered 

tumors were mechanically and subsequently enzymatically dissociated (Collagenase Type I, Invitrogen) for 

3 hours. Monocellular suspensions obtained after dissociation were filtered using 70 um CellStrainer 

(Becton Dickinson BD Biosciences Italy) and LV.Oct4.eGFP transduced as previously described. The 

percentage of eGFP+ cells was determined by flow cytometry (Cyan ADP Beckman Coulter s.r.l., Cassina 

De' Pecchi – Milan, Italy) 3 days after transduction and analyzed using Summit Software. 

 
Statistical analysis 

Statistical analysis was performed using software GraphPad Prism 6. A descriptive statistical analysis of 

CIK and melanoma cell median or mean values was used as appropriate. The relative increase of 

eGFP+mCSC in melanoma samples, treated either in vitro or in vivo with FM, BRAFi or CIK cells, were 
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compared with controls by unpaired t test. Comparison of Ki67 proliferative index between melanoma 

samples, treated in vivo with either FM or CIK cells, were compared with controls by unpaired t test. 

The mixed model analysis of variance (ANOVA) was employed to assess CIK cytotoxic activity curves in 

vitro. Statistical significance has been expressed as P value, and all values less than 0.05 were considered 

statistically significant. The CSC frequency was calculated with L-Calc T software program (Stem Cell 

Technologies Company, Voden Medical Instruments spa, Peschiera Borromeo, Milan, Italy), which uses 

Poisson statistics and the method of maximum likelihood.  

 
RESULTS  
Putative melanoma cancer stem cells (mCSCs) survive chemotherapy in vitro. 
Melanoma cell cultures and visualization of putative mCSCs 

We established 11 melanoma cell cultures from metastatic tissue biopsied from 11 patients with advanced 

stage melanoma (Supplementary Table S1). Braf mutational analysis revealed that 5/11 of the patient-

derived cell cultures were braf-mutated (4 V600E: mMel3, mMel7, mMel11, mMel15, 1 V600K: mMel2).  

Each culture was assessed for expression of the main melanoma surface antigens: Melanoma-associated 

Chondroitin Sulfate Proteoglycan (MCSP), Nervous Growth Factor Receptor (NGFR, aka CD271), and 

Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) (Table 1). All tumors retained membrane 

expression of HLA class I molecules (>99% HLA-ABC+) (data not shown).  

We visualized putative mCSCs by a gene transfer strategy (27,28) based on stable transduction of patient-

derived melanoma cells with a lentiviral vector encoding eGFP under the control of the oct4 gene promoter 

regulatory element (LV.Oct4.eGFP) (Supplementary Figure S1A-D, Supplementary Table S2). Using this 

approach, the average rate of eGFP+mCSC within the 11 cultures was 12 ± 2.1% (Table 1). As parallel 

control, we confirmed that melanoma cells  could be transduced efficiently (>95%) when the strong 

ubiquitous promoter (Phospho Glycerato Kinase, PGK, regulatory element) was utilized in place of the Oct4 

promoter to control eGFP expression (Supplementary Figure S1E, S1F, Supplementary Table S2). 

Furthermore, the integration of LV.Oct4.eGFP was confirmed by PCR in both eGFP+ and eGFP- melanoma 

cell subsets (Supplementary Figure S1G).  

Each melanoma culture was assessed for expression of the principal ligands recognized by CIK cell 

receptors NKG2D (MIC A/B, ULBP1, ULBP2-5-6, and ULBP3) and DNAM-1 (CD112 and CD155). As Table 

1 indicates, MIC A/B and ULBP2-5-6 were expressed in all melanomas. Although sample values generally 

varied highly, MIC A/B and ULBP2-5-6 were comparable in eGFP+mCSC and eGFP- melanoma cells 

(Figure 1A and 1B). The expression of ULBP1, ULBP 3, CD112, and CD155 was negligible (data not 

shown). Also the expression of Programmed death-ligand 1 (PD-L1) was negligible (Table 1). 

Additional molecules reported in the literature as mCSC phenotype-associated were also evaluated. OCT4, 

NANOG, SOX2, ATP Binding Cassette G2 (ABCG2), and aldehyde dehydrogenase (ALDH) were each 

detected in all samples at expressions averaging 14 ± 1.3%, 12 ± 1.7%, 18± 2.1%, 6±1.3%, and 10±1.9%, 

respectively (Table 2). Melanoma cells negative for MITF expression averaged 16 ± 4.4% (Table 2).  
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Tumorigenicity of putative mCSCs 

To assess the tumorigenic potential of putative eGFP+mCSCs, we subcutaneously transplanted NOD/SCID 

mice with scalar dilutions (from 10 to 1x104) of eGFP+ and eGFP- melanoma cells separated by 

Fluorescence-Activated Cell Sorting. Nine weeks after transplant, palpable tumors were evident in 4/6 mice 

injected with the highest dose of eGFP+ cells compared with 1/6 in mice transplanted with the 

corresponding eGFP- cell dose. Limiting dilution analysis performed with L-Calc software indicated that the 

average frequency of tumorigenic melanoma cells, 12 weeks post-transplant, was 1/42 for eGFP+ 

melanoma cells and 1/4,870 for eGFP- melanoma cells (Figure 1C).  

 

Sensitivity of putative mCSCs to chemotherapy or molecular targeted therapy in vitro 

We explored putative mCSC sensitivity to chemotherapy treatment. Each of the 11 melanoma cell cultures 

was treated in vitro for 72 hours with a culture-specific dose (IC50) of fotemustine (FM) to attain a 50% 

melanoma kill. FM sensitivity differed among the melanomas, such that IC50 ranged between 10 and 50 

ug/ml (Figure 1D). Activity against mCSCs was calculated by the rate of eGFP positivity among viable cells 

at treatment end. The rate of viable eGFP+mCSCs significantly increased after chemotherapy (mean fold 

increase 1.61 ± 0.04) as compared to the untreated controls (n=62 p<0.0001), which confirmed their 

reduced sensitivity to conventional chemotherapy (Figure 1D). Comparable results were obtained treating 

braf-mutated melanomas (n=5) with BRAFi dabrafenib (culture-specific IC50 dose, ranging between 0.08 

and 5 uM). Even in this case, the reduced sensitivity of mCSCs was assumed by their increased rate (1.5 ± 

0.11 fold, n=20 p<0.0001) following treatment with BRAFi dabrafenib (Figure 1E). 

 
Immunotherapy with CIK cells against mCSC that survived chemo- or targeted therapy in vitro. 
 

Generation of CIK cells from patients 

CIK cell activity against the mCSCs that survived FM or BRAFi was assessed in vitro. CIK cells were 

generate from 8 of our 11 patients (described above), as PBMCs were unavailable for three patients in the 

study cohort. Within three to four weeks, cells from fresh or cryopreserved PBMCs were successfully 

expanded ex vivo, per a standard protocol with timed additions of IFN-gamma, Ab-anti-CD3, and IL2 (29-

32). The median expansion of CIK cells was 29-fold (range 16 to 125-fold).  

The mature CIK cell subset co-expressing CD3 and CD56 molecules (CD3+CD56+) was detected at a rate 

of 39% (range: 25-58%), and 77% (69-89%) of CD3+ cells concurrently expressed CD8+ (Supplementary 

Figure S2A). Our results were comparable to previously published data (28, 29).   

Pure Natural Killer (CD3-CD56+) cell presence was negligible (< 5%, data not shown). The median 

membrane expression of NKG2D and DNAM-1 receptors was 84% (range: 69-89%) and 97% (range: 89-

100%), respectively (Supplementary Figure S2A).  
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In vitro killing of mCSCs surviving chemo- or targeted therapy by CIK cells 

CIK cells efficiently killed melanoma cells that survived chemotherapy and were enriched in putative 

eGFP+mCSCs in vitro. Mean tumor-specific killing values were determined at decreasing effector/target 

(E/T) ratios. They resulted as 95 ± 2% (40/1), 85 ± 3% (20/1), 68 ± 4% (10/1), 54 ± 4% (5/1), 40 ± 4% (3:1), 

29 ± 5% (1:1), 22 ± 4% (1/2), and 19 ± 3% (1/3), which agreed with results obtained against untreated 

controls (Figure 2A).  

CIK cells were autologous-matched to melanoma targets in 8/11 cases; the three remaining melanomas 

were targeted with CIK cells from allogeneic patients only.  

Comparable results were obtained when CIK cells were challenged against melanoma cells that survived 

BRAFi dabrafenib (Figure 2C).  

 

Our findings confirmed that the killing activity of CIK cells involved eGFP+mCSCs. Immunotherapy killing by 

CIK cells resulted in no relative increase of eGFP+mCSCs in the viable cell population (p=0.87); instead, 

they were enriched after treatments with chemo or targeted therapy of the same melanoma (p<0.0001). 

The activity of CIK cells against eGFP+mCSCs is summarized in Figures 2B and 2D. 

In selected experiments (n=5) we confirmed that the expression levels of NKG2D ligands (MIC A/B, 

ULBP2-5-6) and PDL-1 were comparable in eGFP+mCSCs before and after treatments (Supplementary 

Figure S3A-C).  

We compared the killing ability of autologous CIK cells with that of allogenic CIK cells against identical 

melanoma targets. The killing curves of autologous and allogeneic CIK cells trended similarly; the specific 

values for melanoma killing by autologous and allogenic CIK cells are reported in Supplementary Figure 

S2B.  

 

Immunotherapy activity of CIK cells against mCSCs in vivo 

To verify that putative mCSCs can survive chemotherapy, yet retain sensitivity to immunotherapy with CIK 

cells, we replicated our in vitro findings in vivo. The experiments utilized NOD/SCID mice bearing tumors 

generated by subcutaneously-implanted LV.Oct4.eGFP-engineered melanoma cells from two different 

patients (mMel7 and mMel11). We explored the activity of chemotherapy and immunotherapy with CIK 

cells, alone and in sequence.  

The experimental design is detailed in Figure 3A.  

For group A, infusion of autologous CIK cells for two weeks (n=6; 1x107 every 4 days) and chemotherapy 

(n=6; 600 ug/mouse, days 1;15) yielded significant tumor (mMel11) response, indicated by significant 

decrease of Ki67 proliferation index (p<0.0001, Figure 3B). 

Chemotherapy spared eGFP+mCSCs that were instead killed by immunotherapy. The rate of residual 

viable eGFP+mCSCs, compared to untreated controls (n=6) was in fact significantly increased by 

fotemustine (p=0.0005) but not by CIK cells (p=0.3250, Figures 3C).  

Like results were obtained with intravenous infusion of allogenic CIK cells for two weeks (1x107 every 5 

days) (mMel7, Supplementary Figure S4A and B). 
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In addition, we assessed the effect of sequential treatment with chemotherapy and immunotherapy (group 

B, Figure 3A). In two separate experiments, CIK cells were infused intravenously (1x107 every 4 days) 

following initial treatment with FM (600µg, day 1;15). Our results indicated that CIK cells (n=12) not only 

retained significant antitumor activity (p<0.0001), but that they also involved putative eGFP+mCSCs. The 

rate of viable eGFP+mCSCs assessed in residual tumors explanted at the end of the experiments was 

comparable to untreated controls (n=10); on the contrary, a significant increment was observed and also 

maintained over time in mice treated with chemotherapy alone (n=12, p<0.05) (Figure 3D and E; 

Supplementary Figure S4C and D).  

The ability of CIK cells to localize and infiltrate tumor sites was confirmed by immunohistochemistry 

detection of CD3+ cells (Supplementary Figure 5A-C). 

Finally, CIK cell activity against putative mCSCs was confirmed in PDX models that were generated by 

direct subcutaneous implantation of fresh tumor samples from two patients in NOD/SCID mice (see Figure 

4A and Materials and Methods). Autologous CIK cell infusion for eight weeks (1x107 every 7 days) exerted 

significant antitumor activity (n=14) as compared to untreated controls (n=13) (Figure 4B). The antitumor 

activity was shown to also involve putative mCSCs, as evidenced by no observed significant enrichment of 

viable eGFP+mCSCs in residual tumors (p=0.3) (Figure 4C).  
 
DISCUSSION 
This work represents the first report of the immunotherapy activity with CIK cells against autologous 

chemo-surviving mCSCs in vitro and in vivo.  

Previously, we provided proof of concept that CIK cells could kill autologous melanoma in vitro, including a 

subset of cells with stemness features (31,32). Here, we build on those findings and demonstrate that 

putative mCSCs are, indeed, relatively resistant to conventional CHT, yet sensitive to MHC-independent 

immune attack by autologous CIK cells. Furthermore, our observations in vivo confirmed the activity 

potential of CIK cells against mCSCs in a sequential treatment strategy. In selected cases of melanoma 

harboring BRAF mutations we confirmed a similar effect in vitro with BRAFi dabrafenib instead than 

chemotherapy. The ability to target mCSCs gives new rationale for considering CIK cells among adoptive 

immunotherapy approaches against melanoma. Currently, checkpoint inhibitors dominate center stage in 

melanoma immunotherapy. However, adoptive immunotherapy may also have an important role for 

prospective applications in dedicated settings, such as for the proportion of patients who fail to respond to 

upfront treatment with either anti-CTLA4 or anti-PD1 antibodies, or who experience relapses after initial 

response (52,53). Similar scenarios may include relapses following molecular targeted therapy in patients 

with BRAF-mutated melanoma. 

Expansion and reinfusion of tumor-infiltrating lymphocytes (TIL) or genetically redirected T cells have 

already demonstrated great potential and provided proof of clinical activity (54). Their activity induces or 

forces an adaptive immune response targeting precise HLA-restricted tumor-associated antigens (TAA). 

CIK cells represent an alternate approach that exploits the killing mechanisms of the innate immune system 

(e.g., natural killer cells or γδ T lymphocytes). Such an approach may be advantageous against not 
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infrequent mechanisms of melanoma immune escape, such as abnormalities or downregulation of HLA 

molecules that impair strategies based on TAA-specific lymphocytes or the effector phase of checkpoint 

inhibitors. Furthermore, such tumor-defense mechanisms may be more pronounced in quiescent mCSCs 

that might not share or properly present TAAs (55). Treatment with CIK cells might be offered to virtually all 

patients, without restriction based on HLA-haplotype. Clinical application of adoptive immunotherapy, 

however, is highly limited by logistic issues regarding cell preparation and production costs balanced 

against safe manufacturing procedures (GMP). The intense ex-vivo expansibility of CIK cells and their cost-

effectiveness can be shown to compare favorably with other approaches based on TAA-specific or 

genetically redirected lymphocytes. Based on our data, we tried to calculate the theoretical dose of CIK 

cells (per Kg) each patient would have received. If we assume 50 ml of peripheral blood (day 0) is collected 

initially, then the final average cumulative dose of mature CIK cells per patient would have been clinical 

relevant (2.3x108 CIK cells/kg, sem ±0.53).  

Support for the possibility of positive synergism between adoptive immunotherapy and checkpoint inhibitor 

antibodies in melanoma comes from preclinical evidence (56) that may also have a rationale with CIK cells. 

Patients would double-benefit from the MHC-unrestricted approach plus stimulation of antitumor adaptive 

immune response. CIK cells, as T-activated lymphocytes, do express PD-1 molecules but the functional 

role and potential benefit of modulation with checkpoint inhibitors remains undefined, despite its suggestion 

in selected settings (57).  

CHT for the treatment of metastatic melanoma is less common due to the availability of more effective 

therapeutic approaches. Nevertheless, CHT may still be considered for patients relapsing after 

immunotherapy or molecular targeted treatments. In our model, the point of using FM was to functionally 

characterize and define the “clinical relevance” of putative mCSCs that might survive such treatment. 

Furthermore, we found consistent results even in the case of BRAF-mutated melanoma treated in vitro with 

BRAFi. Our findings support the concept that mCSCs may be, at least partially, resistant also to molecular 

targeted approaches. On these bases, there may be rationale to explore synergisms with immunotherapy 

strategies that demonstrated activity against mCSCs.  

In recent years, various CSC markers have been reported in several cancer types; however, no conclusive 

consensus exists. Our strategy was designed specifically to visualize a subset of melanoma cells capable 

of activating oct4, the main stem-related gene endowed with peculiar intrinsic biologic features. CSCs can 

be defined by their relative dormancy or by their ability to form spheres or to initiate tumors in vivo. Our 

previous study showed that putative eGFP+mCSCs displayed a slow-growing phenotype compared to their 

eGFP- counterparts, and we demonstrated that only putative eGFP+mCSCs were able to generate 

spheroids (31). However, for conclusive evidence, the reliability of any CSC marker, even OCT4, should be 

tested experimentally via the in vivo tumor-initiating assay that is currently considered the most reliable 

standard test for CSC analysis. In the present study we demonstrated that eGFP+mCSCs possess higher 

tumorigenic potential in vivo compared to their eGFP- counterparts, resulting in potentially enriched cells 

endowed with stemness features.  
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We are aware that our system may have limits and cannot ensure that all mCSCs are detected. 

Nevertheless we aimed to demonstrate that the eGFP+mCSCs, even if not all of them are visualized, may 

survive conventional treatments but are killed by CIK cells. 

Such a melanoma cell subset is less sensitive to conventional CHT compared to other melanoma cells, at 

least enough to be considered a relevant target from a clinical perspective.  

We set up two distinct in vivo models, the first with melanoma cell cultures and the second with PDX. We 

observed consistent findings of chemo- and immune-sensitivity in mCSCs. When working with patient-

derived samples, the possibility for experimental replicates is limited. Nevertheless, the results obtained in 

all our models were consistent with in vitro findings. We acknowledge that our experimental design and 

related endpoints were conceived to assess the effect of treatments on mCSCs. Even with these 

considerations, mice treated with sequential chemo-immunotherapy showed a trend of improved survival 

compared with controls (Supplementary Figure S6). Overall the therapeutic meaningfulness of our findings 

may be indirectly derived by the clinical relevance attributed to CSCs.        

Our work demonstrates that immunotherapy with CIK cells is active against a “relevant” target like 

melanoma cells surviving chemo or molecular targeted therapy and enriched in mCSCs. Adoptive 

immunotherapy approaches with CIK cells could be developed and integrated with ongoing treatment 

strategies for selected subsets of melanoma patients.  
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FIGURE LEGENDS 
Figure 1. Putative mCSCs express ligands for CIK cells, are tumorigenic and relatively resistant to 
chemotherapy.  
Putative mCSCs were visualized as eGFP+ following lentiviral transduction with the lentiviral CSC-detector 

(LV.Oct4.eGFP). (A-B) Mean (±sem) membrane expression of MIC A/B (n=17) and ULBP2-5-6 (n=16) were 

comparable between eGFP+mCSCs and eGFP- melanoma cells before and after in vitro treatment with fotemustine 

(FM).  MIC A/B expression in eGFP+mCSCs and eGFP- cells before (50.1 ± 10.4% and 51.4 ± 10.9, respectively) and 

after FM treatment (48.0 ± 9.3% and 45.8 ± 10.2, respectively); (B) ULBP2-5-6 expression in eGFP+mCSCs and 

eGFP- cells before (82.6 ± 5% and 82.9 ± 4, respectively) and after FM treatment (85.5 ± 3% and 86 ± 3, respectively). 

(C) Tumorigenic cell frequency evaluation by LDA. Summary of tumor volume (y-axis) in mice subcutaneously 

inoculated with decreasing doses of eGFP+ or eGFP- melanoma cells (x-axis) in LDAs as described in Materials and 

Methods. Each symbol represents a mouse. Tumorigenic cell frequency in eGFP+ fraction was 1:42 (Lower 

Frequency: 1 in 103; Upper Frequency: 1 in 17; X2 (Pearson): 2,226, p-value: 0,5269); tumorigenic cell frequency in 

eGFP- fraction was 1:4,870 (Lower Frequency: 1 in 12.467; Upper Frequency: 1 in 1.902; X2 (Pearson): 1,233, p-

value: 0,7452). 

Viable eGFP+mCSCs enrichment after CHT (D) or Targeted Therapy (E). LV.Oct4.eGFP transduced melanoma 

cells were treated with the IC50 dose of FM or BRAFi for 72 h. The eGFP enrichment for each melanoma culture 

(n=11 e n=5), expressed as fold increase, was calculated for each experiment separately to compare FM or BRAFi 

treated samples with their internal untreated control. In all cases, viable eGFP+ cells resulted significantly enriched 

after CHT (p≤0.0004) and after BRAFi (p≤0.0018 except for mMel7, p=0.6781).  

 

Figure 2: Killing activity of chemo or targeted therapy surviving mCSCs by patient-derived CIK cells. (A and 
C) Patient-derived CIK cells efficiently killed in vitro melanoma targets that survived 72 h treatment with fotemustine 

(FM+CIK) (n=11) or with dabrafenib (BRAFi+CIK) (n=5); results were comparable to those observed in melanomas 

treated with CIK immunotherapy alone. Tumor killing was performed after co-culturing mature CIK cells with 

melanoma targets for 72 h to and evaluated by both flow cytometry assay and by CellTiter-Glo® Luminescent Cell 

Viability Assay. Mean values of tumor specific killing are reported at decreasing CIK:Melanoma ratios. (B and D) The 

activity against mCSCs was explored by tracking the rate of viable eGFP+mCSCs among surviving melanoma targets 

at the IC50 (E/T between 10:1 and 2:1) point of the killing curve. eGFP+mCSCs were spared by chemotherapy (n=11) 

or targeted therapy (n=5), but efficiently killed by patient-derived CIK cells. 

 

Figure 3. In vivo activity of CIK cells against autologous mCSCs. 
(A) Experimental design: NOD/SCID mice (n=40) were subcutaneously inoculated with melanoma cells (from patient 

mMel11) engineered with the CSC-detector (LV.Oct4.eGFP). Mice with palpable tumors were divided into three 

treatment cohorts. CIK-immunotherapy cohort (n=12) received 4 intravenous infusions, each with 1x107 autologous 

mature CIK cells, chemotherapy cohort (n=18) was treated with 2 intraperitoneal injections (days 1;15) of FM (600 

ug/mouse). Mice injected (n=10) with PBS alone were used as the untreated control. (B) An early part of the 

experiment (Group A) was terminated and tumors analyzed at day +15; both chemotherapy (n=6) and CIK cells (n=6) 

exerted significant antitumor activity, assessed by reduction of tumor Ki67 proliferative index compared to the controls 

(n=6) (p<0.0001). (C) The rate of residual viable eGFP+mCSCs was significantly increased by chemotherapy 

(p=0.0005) but not by immunotherapy with CIK cells. (D) A second branch of the experiment (Group B) proceeded 
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beyond day+15 to explore the effect of the chemo-immunotherapy combination. Mice (n=6) from initial chemotherapy 

cohort (treated with fotemustine on days 1;15) started intravenous infusions with CIK cells. Remaining mice from all 

initial cohorts [CIK-immunotherapy (n=6), chemotherapy (n=6), and PBS cohorts (n=4)] acted as controls and 

continued to be infused with PBS alone. The sequential chemo-immunotherapy treatment resulted in significant 

antitumor activity (reduction of tumor Ki67 proliferative index compared to untreated controls (p<0.0001). (E) Activity 

against mCSCs was indirectly assumed as the rate of residual viable eGFP+mCSCs, after sequential chemo-

immunotherapy, resulted significantly decreased compared to mice treated with fotemustine only (p=0.0229). All the 

results were expressed as mean±sem and analyzed by the unpaired t-test. 

 

Figure 4. In vivo activity of autologous CIK cells in PDX models. 
(A) Experimental design: NOD/SCID mice were subcutaneously implanted with a tumor fragment (8 mm3) from 

patient-derived melanoma biopsy (mMel2, n=20; mMel3 n=7). (B) Intravenous immunotherapy treatment (107 CIK 

cells/mouse, weekly for 8 total infusions) started 1 week after tumor implantation (n=14) and resulted in significant 

antitumor activity (assessed by Ki67 tumor proliferative index) compared to controls (p<0.0001). (C) Activity against 

mCSCs was indirectly assumed as the rate of residual viable eGFP+mCSCs after immunotherapy treatment, assessed 

in explanted tumors at experiment end, was comparable with untreated controls (p=0.3071). All the results were 

expressed by mean±sem and analyzed by the unpaired t-test. 
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Table 1: Immunophenotype of melanoma cell cultures 
 

n. Melanoma ab eGFP a MCSP a MIC A/B a ULBP2,5,6 a NGFR a VEGFR1 a PD-L1 

mMel1 21 65 34 63 74 89 2 

mMel2 8 71 15 41 58 95 0 

mMel3 2 81 90 98 93 98 0 

mMel7 17 78 21 65 39 89 2 

mMel11 24 95 2 44 67 94 0 

mMel12 16 94 86 60 14 89 6 

mMel13 14 80 2 40 9 95 9 

mMel14 13 79 10 59 93 95 2 

mMel15 4 92 2 58 58 97 1 

mMel16 11 33 6 52 10 85 6 

mMel17 5 70 0 15 52 58 2 

Average 12 76 24 54 52 89 3 

sem 2.1 5.2 10.0 6.2 9.2 3.4 0,9 

 

 
a  Value expressed as percentage of viable positive cells 
b eGFP analyzed on viable cells  ≥10 days after transduction with LV.Oct4.eGFP vector  
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Table 2: Immunophenotype of melanoma cell cultures: stemness markers 
 

n. Melanoma  aOCT4   aSOX-2  aNANOG bALDH high aMITF minus  bABCG2

mMel1 11 16 22 9 16 12 

mMel2 14 22 3 9 17 12 

mMel3 15 18 11 29 17 12 

mMel7 22 19 16 9 10 3 

mMel11 9 14 18 10 6 2 

mMel12 18 18 15 11 11 8 

mMel13 15 21 9 10 15 6 

mMel14 14 29 12 6 6 2 

mMel15 9 0 7 6 8 1 

mMel16 19 20 8 7 58 2 

mMel17 11 20 7 9 12 7 

            

Average 14 18 12 10 16 6 

SEM 1 2 2 2 4 1 

 
a Value is expressed as percentage of positive cells 
b Value is expressed as percentage of viable positive cells 
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