PROCEEDINGS OF SIMAI 2016
THE XIII BIANNUAL CONGRESS OF SIMAI
13-16 SEPTEMBER 2016
MILAN, ITALY

Editors: L. Bonaventura, L. Formaggia, E. Miglio, N. Parolini, A. Scotti and C. Vergara

SOCIETA [TALIANA DI MATEMATICA
APPLICATA E INDUSTRIALE



SCIENTIFIC COMMITTEE

Nicola Bellomo, Politecnico di Torino

Tacopo Borsi, 12T3, Firenze

Giovanni Borzi, EnginSoft s.p.a., Padova
Ottavio Crivaro, MOXOFF s.p.a., Milano
Elena De Angelis, Politecnico di Torino

Luca Formaggia, MOX, Politecnico di Milano
Giorgio Fotia, CRS4 s.r.l., Pula

Roberto Natalini, IAC-CNR, Roma

Giovanni Russo, Universita di Catania

ORGANIZING COMMITTEE

Luca Bonaventura, Politecnico di Milano
Luca Formaggia, Politecnico di Milano
Edie Miglio, Politecnico di Milano
Nicola Parolini, Politecnico di Milano
Anna Scotti, Politecnico di Milano
Christian Vergara, Politecnico di Milano

Conference logo design by Anna Scotti. Typographic composition made in IXTEX by Mattia Penati.

Logos and SIMAT trademark are property of Societa Italiana di Matematica Applicata ed Industriale,
Via dei Taurini 19, 00185 Roma, Italy. Authors retain copyright over their work, which is distributed in
this volume under Creative Commons Attribution License.

I M H | ISBN 978-88-6493-035-0
SOCIETA ITr'iL\;\N-‘\ DI MATEMATICA ‘“ H ‘ ‘ ‘ ‘ ‘ ‘ H“ m
APPLICATA E INDUSTRIALE 9ll788 0350

864793

http://www.simai.eu



Preface

Since 1992, the Italian Society for Applied and Industrial Mathematics (SIMAI) holds
a biennial congress gathering contributions of researchers from academia and industry
working on industrial and applied mathematics problems.

This book collects the abstracts of the talks and plenary lectures given at the SIMAI
Congress 2016 that took place in Milano, Italy, from September 13 to September 16, 2016.
We are extremely satisfied that so many people have shown their interest in this meeting.
In addition to 6 invited plenary lectures, we had more than 360 contributions from Italy
and many other FEuropean countries, organized into 64 minisymposia. The contributions
contained in this book cover both theoretical aspects and practical applications of mathe-
matics and scientific computing. Topics include the analysis of evolution and dissipative
processes, stochastic modeling, numerical methodologies such as computational optimiza-
tion, advanced numerical methods for PDEs, conservation laws and inverse problems,
optimal control, model reduction and high-performance-computing, as well as statistical
methodologies for the treatment of complex data and signals.

A wide range of applications is covered from life science and biology to geophysics, from
image processing to petroleum engineering and quantitative finance.

We would like to thank all participants for their valuable contributions. In particular we
mention the fundamental contribution of the minisymposia organizers.

Special thanks are due to the invited speakers: P. Antonietti (Politecnico di Milano), A.
Buffa (IMATI-CNR), A. Pontremoli (Dallara Automobili), Wil Schilders (TU Eindhoven),
A. Quarteroni (EPFL), and G. Toscani (University of Pavia), for contributing to the
success of the conference with the high quality of their contributions.

We gratefully acknowledge the support of the industrial sponsors: Mathesia, MOXOFF,
Noesis and SpingerNature.

Finally we would like to thank the Politecnico di Milano for hosting the Congress and,
in particular, the Eventimate Team (Anna Rho and Laura Guarino) for the logistic
support in the organization of the conference and Luca Lo Curto for the technical support.
Moreover we thank and all volunteers (mainly post-doc and PhD students) for their help
during the meeting.

We believe that the wide range of applications and the scientific quality of the contributions
collected in this book represent the best evidence of the important role that the industrial
and applied mathematics can play in our society.

We believe that this book gives an up-to-date description of the state of the art of the
research in industrial and applied mathematics in Italy.

Milano, Italy The Organizing Committee
September 2016
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Functional Kriging Uncertainty Assessment

Rosaria Ignaccolo

Universita degli Studi di Torino
Lungo Dora Siena 100A, 10153 - Torino Italy
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Maria Franco-Villoria
Universita degli Studi di Torino
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Geostatistical techniques for functional data were introduced by Goulard and Voltz
(1993) [4], but have only been developed recently. Several papers consider ordinary and
universal kriging models to predict a curve at an unmonitored site under the assumption
of a constant or longitude and latitude dependent mean (see e.g. [2, 3, 8, 1, 7]) or kriging
with external drift [5], where scalar and functional exogenous variables are introduced.
However, uncertainty evaluation of a predicted curve remains an open issue. Given the
difficulty to derive sampling distributions for functional data, prediction band derivation
can be approached using resampling methods. To evaluate uncertainty of a predicted
curve, we adapt two semi-parametric bootstrap approach for spatially correlated data
proposed by [10] and [6] to the functional data case. The approach is illustrated by means
of a simulation study.

1 Functional Kriging with External Drift (FKED)

Let T, = {Y(t);t € T} be a functional random variable observed at location s € D C R¢,
whose realization is a function of t € T', T" compact subset of R. Assume that we observe
a sample of curves Ty, for s; € D, i =1,...,n, that take values in a separable Hilbert
space of square integrable functions. The set { Y, s € D} constitutes a functional random
field or a spatial functional process [2], that can be non-stationary and whose elements
are supposed to follow the model Ty, = s + €;,. The term pu, is interpreted as a drift
describing a spatial trend while €, represents a residual random field that is zero-mean,
second-order stationary and isotropic. At the generic site s;, i = 1,...,n, and at point t,
the model can be rewritten as a functional concurrent linear model Y, (t) = ps, (t) + €, ()

with the drift
ps (1) = a(t) + %) Cpi+ Y By(t) Xga(t) (1)

where a(t) is a functional intercept, C,; and X, ; are the p'* and ¢'" scalar and functional
covariates at site s; with coefficients v,(t) and (,(t) and e, (t) represents the residual
spatial functional process {¢s(t),t € T, s € D} at site s;. Once the Functional Regression
Model (1) has been fitted by means of a GAM representation (for details see [5]), the
functional residuals e, (t) = Y, (t) — fis,(t) can be used to predict the residual curve at
a new site so via ordinary kriging for functional data [3], according to which é,(t) =

Work supported by “Futuro in Ricerca” 2012 Grant (project no. RBFR12URQJ) provided MIUR.
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Yo Aies, (1), with A; € R. Prediction at the new site sq is obtained by adding up, as
in the classical regression kriging, the two terms, i.e. Y (t) = [is,(t) + és,(t), where

fiso(t) = &(t) + 22, () Cpo + D, B,(t)X,0(t) depends on the covariate values C, and
X,0(+) at the site sg.

2 Uncertainty evaluation

To evaluate the uncertainty of a predicted curve f/;o () at a new site sg, we consider two
semi-parametric bootstrap approaches for spatially correlated data proposed by [10] and
[6] and extend them to the functional context. Suppose that Y;, (t) — Yy, (t) follows the
distribution F,,, a 1—a prediction interval for Y, () can be built as (Y, (£) —q1_a /2, Y, (t)—
Ga/2), With g, the a"-quantile of the unknown distribution F,,. The idea is to construct B
bootstrap replicates {Y;"(‘f, Y*J B , and approximate F}, by F;: , the empirical distribution

of {}A/;;J — Y7}, The bootstrapplng algorithm can be summarized as follows:
1. Estimate and remove the drift following Model (1) to obtain e, (t) = Y, (t) — fis, (t).

2. Estimate the functional residuals covariance matrix > through the estimated trace-
semivariogram:

. 2
o(h) = Q\N JEXN: / e, (t) — e, (1)) dt

where N(h) = {(si,sj) : ||si — s;]| = h}. A parametric model (e.g. Matérn) can
be fitted to the points (hy, 0(hy)), g =1,...,G, as in classical geostatistics. Using
Cholesky decomposition, > = LLT and the functional residuals can be transformed:

Caxar = (C(51), -+ C(80)) = Lk (Yaxcar — fincar) -

3. Generate B bootstrap samples with size n+ 1, &1 = (C*(s1), - -+, C*(80), (" (Snt1))
from C(s1), .-, C(s0).

N T A
4. Create the augmented covariance matrix A = E) ?’4 , where ¢, = {C(s; — s0) }1q,
C' is the estimated covariance function and 62 = C (0) is the estimated sill. Use

Cholesky decomposition so that A = RRT and transform the bootstrap samples
i1 a8
<€*<81)7 s 76*(311)7 6*(80))/ = R(Tl+1)><(n+1)<(*n+1)><M'
5. The final bootstrap sample is determined as Y(t) = fi,,(t) + €} (t), i = 1,....n
wnd Y3 () = n(8)+ €0

Y935 | are then fed into the FKED method to obtain B
prediction curves Y;’f)] and the dlfferences {YS*J Yy B >, are considered. The prediction

The bootstrap samples {Y;7, ..
interval for Y;, (¢) can be written as (Y, (¢) — @ oy2s Y, (t) qy/2): With ¢, the a-percentile

of F;, that can be obtained ordering the curves. There is no gold standard for ordering
functional data. Here we consider two ordering techniques based on band depth and L2
distance. Band depth [9] can be defined for any set of k curves (here k = 2). The sample
band depth (BD) of y(t) can be calculated as the proportion of bands delimited by two
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Figure 1: Original data (black dots), FKED predicted curve (solid red line), 95% prediction
band (pink) based on L? distance (pink) and on MBD (blue) for n = 50, ¢ = (.25,
¢ =15,

o 1in N
el | Koo

Figure 2: Band width (depth) for n = 25 (left), n = 50 (middle) and n = 90 (right).

curves containing the whole curve y(t) [9]; here we use the modified band depth (MBD),
that takes into account whether a portion of the curve is in the band (for details see [9]).
The lower/upper limits of a (depth based) 95% prediction band are obtained by taking the
pointwise (w.r.t. ¢) minimum/maximum of the 95% deepest curves (in the case of band
depth) or of the 95% curves closest to the zero curve (in the case of using L? distance)

3 Simulation study

We aim to analyse the impact that trend complexity, spatial structure (via the covariance
function parameters of the functional residual random field) and ordering technique have
on the performance of the bootstrapping method when increasing the number of sites.
Data were simulated using cubic B-splines on a spatial irregular grid (n locations) on
D =10,2] x [0,3] and curve domain 7" = [0, 1]. The residual functional random field was
built as es(t) = 2}0:1 &;(s)B;(t), where Bj(t) is the j basis function evaluated at t € 7.
The spatially correlated spline coefficients {£;(s),s € D} were generated for each j in
1,...,10 using the same exponential covariance function with range and scale parameters
¢ € (0.5,1,1.5) and o2 € (0.25,0.50,0.75) respectively, resulting in 9 different scenarios.
The drift was obtained as my(t) = a(t) + B1(t)lon + Pa(t)lat, where lon and lat are the
spatial coordinates, a(t) is a functional intercept and 31 (t), f2(t) are functional coefficients
that can be expressed in terms of B-spline basis (whose coefficients can be chosen to
determine the complexity of the drift). Finally, simulated observations were built as

VI () = my(t) 4 es(t) + E(1)
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where £(t) = {&,(t),..., &, (t)} ~ N,(0,0.09) is a vector of random errors for each fixed
t € [0,1]. For each simulation scenario, we generated functional data at n = 25,50
and 90 nested locations. Additionally data were generated at 10 more sites used as
validation stations. The FKED model (Section 1) was applied to each simulated data set
to predict curves at the 10 validation sites. For each validation station B = 500 predictions
were obtained following Section 2 and 95% prediction bands were produced using both
distance and MBD. An example can be seen in Figure 1. To evaluate the performance
of the proposal, we consider two different indicators: the width of the resulting 95%
prediction interval and the proportion of the simulated curve within the interval. Figure 2
summarizes (depth) band width for all sample sizes and simulation scenarios. As one
would expect, band width decreases with increasing sample size. Moreover, band width
increases with increasing o2 and decreases slightly with increasing ¢ for a fixed value of
o%. The depth-based band is practically always wider than the distance-based one. In
terms of coverage (figure not shown here), the performance appears good and improves
with increasing sample size.

4 Discussion

We propose a semi-parametric bootstrap approach that allows the construction and
evaluation of simultaneous prediction bands - over 7' - for the functional kriging predictor
with a non-constant width. The simulation study shows that the proposed technique has
a good performance. We are currently investigating the effect of more complex drifts as
well as alternative ways of evaluating the performance of the proposal.
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