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University first-year students grades are naturally correlated with the scores obtained at placement
tests. Often this characteristic leads the university grades in the first exams to be asymmetrically
distributed. Motivated by the analysis of grades of the basic Statistics examination of first-year
students, we discuss informative priors for the shape parameter of the skew-normal model, a class of
distribution which account for several degree of asymmetry. Our proposed prior leads to closed-form
full-conditional posterior distributions, particularly useful in Markov Chain Montecarlo simulation.
A Gibbs sampling algorithm is discussed for the joint vector of parameters and the method is applied
to a real dataset from the School of Economics, University of Padua, Italy. Our analysis reveals that
the correlation between the placement test and the grades of first-year students leads to a measurable
positive skewness of the distribution of the university grades.

Keywords: Gibbs sampling; Informative prior; Skew-normal distribution; Unified skew-normal
distribution
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1. Introduction

The relationships between placement tests and students’ success in college has been
widely studied and discussed in the literature. Although there has been a strong debate
on which kind of tests better predict students’ future performance, particularly for the
SAT standardised tests [e.g., 16], it is clear that the results of such test is positively
correlated with the students’ performance. Indeed, both essay and multiple choice tests
have been shown to correlate with grades in college courses [12] and particularly when
the results of such preliminary tests are graded or have academic consequences such as
admission to the school or not [22].

In many countries, such as in Italy, university grades are numerical values, thus we can
assume that the results of placement tests and the grades of a specific first-year exam
are normally distributed and correlated. Consider the case in which the placement test
admits a student to the first year only if such student’s score is above a given threshold
denoting the mean of the distribution of the test score. From a probabilistic point of
view, we need to consider a selection mechanism which starts from bivariate normal
distribution with correlation δ. Then, the domain of one of the components is restricted
to be greater than its mean, and this component in marginalised out. This representation
has been already utilized, particularly in the context of psychometric tests [e.g., 4, 10].
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The above probabilistic construction is one of the many stochastic representations of
the so called skew-normal model introduced by Azzalini in [5]. A univariate skew-normal
random variable, say Y ∼ SN(ξ, ω, α), has probability density function

f(y; ξ, ω, α) =
2

ω
φ

(
y − ξ
ω

)
Φ

(
α
y − ξ
ω

)
, y ∈ R, (1)

where ξ, ω and α = δ/
√

1− δ2 are location, scale and shape parameters, respectively, δ
is the latent correlation of the original bivariate normal, and φ and Φ are, respectively,
the probability density function and the cumulative distribution function of a Gaussian
distribution. Clearly, if α = 0, we are back at the Gaussian distribution. The skew-
normal class of models has been widely generalised and extended by many authors such
as [6, 7, 9, 11, 17] among others. A commendable work of unification of some of the
proposals is made by [1], in which the unified skew-normal (SUN) class of distribution is
introduced.

Our motivating data refers to first-year undergraduate students for the program in
Economics at the University of Padua (Italy). We want to model the distribution of
these students’ grades in the first class of Statistics, one of the main mandatory first-year
courses. In order to be admitted to Economics, students are required to pass a preliminary
placement test. In this situation, representation (1) may be adopted. While estimating
the distribution of students’ grades, we can also estimate, as a byproduct, the latent
correlation between the unobserved placement test score and the grades in Statistics,
which can be used to evaluate the accuracy of the placement test to predict the students’
performance. We likely expect that this correlation is positive, and this is one of the extra
information we have. In this example, we also know the grades of previous years. Thus,
we may want to use the information that the distribution of Statistics grades is skewed
to the right or has a mean around a given value. The Bayesian approach of inference
easily allows us to include prior information in our analysis; within this framework, we
propose an informative prior for the skew-normal shape parameter.

As discussed in the recent monograph by Azzalini and Capitanio [8], the maximum
likelihood estimation of α poses some intrinsic problems. For example, in specific cases,
the likelihood function does not have a maximum in the interior of the parameter space.
The Bayesian approach has been shown to overcome these problems and some objective
Bayesian procedures have been proposed to estimate α [see e.g. 13, 21]. However, in many
circumstances, as in our case, prior information is available. With a subjective perspec-
tive, in [2] the authors propose a conjugate prior, given skew-normal likelihood with fixed
location and scale parameters. Despite the closed form of the posterior distribution, the
authors state that their class of distributions is not closed under sampling and they do
not discuss tools for posterior computation. We address this problem by discussing an
informative prior for the shape parameter of the skew-normal distribution, leading to
closed-form full-conditional posterior distribution.

In the next section, we discuss a prior for α, assuming ξ, ω to be fixed and focus-
ing on the univariate model (1). Prior elicitation and an extension to the multivariate
case are also extensively discussed. In Section 3 we exploit one of the possible stochastic
representations of the skew-normal model and discuss an easy sampling method, partic-
ularly useful in Markov Chain Monte Carlo (MCMC) approximation of the posterior.
The results are then extended to the case in which we assign an independent normal
inverse-gamma prior to ξ and ω. Section 4 compares the results of our prior with Jef-
freys’ non informative prior in a simulation experiment. In Section 5, we analyse the data
on grades in the first-year examination of Statistics by undergraduate students of the
School of Economics, University of Padua, Italy, in 2003. The paper ends with a final
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discussion.

2. Likelihood and prior specifications

Let us first assume that ξ, ω are known and, without loss of generality, that ξ = 0 and
ω = 1. The likelihood of model (1) for an iid sample y = (y1, . . . , yn) of size n is

L(α) =

n∏
i=1

2φ(yi)Φ(αyi).

We assume a priori that the parameter α is skew-normal distributed, i.e.,

α ∼ π(α), π(α) =
2

ψ0
φ

(
α− α0

ψ0

)
Φ

(
λ0
α− α0

ψ0

)
, (2)

where α0 and ψ0 are location and scale hyperparameters, respectively and λ0 is a shape
hyperparameter reflecting our beliefs on the direction of skewness. The posterior distri-
bution for α is

π(α; y) ∝ φ
(
α− α0

ψ0

)
Φ

(
λ0
α− α0

ψ0

) n∏
i=1

Φ(αyi)

∝ φ
(
α− α0

ψ0

)
Φn+1

([
yα0

0

]
+

[
y

λ0/ψ0

]
(α− α0); In+1

)
. (3)

The above equation, once normalised, belongs to the SUN class of distributions discussed
in [1] and, more precisely,

α|y ∼ SUN1,n+1(α0, γ, ψ0, 1,∆,Γ) (4)

where ∆ = [δi]i=1,...,n+1 is the vector of size n + 1 containing δi = ψ0zi(ψ
2
0z

2
i + 1)−1/2

with z = (ψ0y
T , λ0)T , γ = (∆1:nα0ψ

−1
0 , 0), is the vector of size n + 1 containing the

first n entries of ∆ and a zero, and Γ = I − D(∆)2 + ∆∆T , where D(V ) is a diagonal
matrix, the elements of which coincide with those of vector V . Algebraic details on how
to obtain such quantities are given in the Appendix. The posterior mean and variance
may be obtained from the cumulant generating function expression presented in [1]. Two
interesting practical cases are obtained by considering λ0 = 0 and α0 = 0.

When λ0 = 0 the prior distribution is normal and its parameters may be chosen to
center the prior on a particular guess for α. In this case, easy algebra leads to

E[α; y] = α0 + ζ1(α0/ψ01n; Γ̃)

Var[α; y] = ψ2
0 + ζ2(α0/ψ01n; Γ̃),

where 1n is a n × 1 vector of ones, ζk(x; Σ) is the kth derivative of log(2Φn(x; Σ)) with
x ∈ Rn, and the matrix Γ̃ is a positive semidefinite matrix with 1/δ2

i on the diagonal

and 1 in all off-diagonal elements obtained as Γ̃ = D(∆)−1ΓD(∆)−1.
Having α0 = 0, is equivalent to have rough prior information only on the skewness

side of the distribution of the data. Indeed, assuming positive or negative values for the
shape hyperparameter λ0, it puts more prior mass on the positive or negative semi-axis,
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Figure 1. Probabilities mass of the occurrence of negative values of α for different choices of λ0, with α0 = 0 and
ψ0 = 1.

respectively. The posterior mean and variance in the this case turn out to be

E[α; y] = ζ1(0n; Γ̃),

Var[α; y] = ψ2
0 + ζ2(0n; Γ̃),

where 0n is a n× 1 vector of zeros.
In both cases, the explicit expressions for the mean and variance of the posterior

distribution are tedious to calculate since they involve the calculation of Φn(x; Γ), an
n-dimensional integral numerically unstable even for moderate n. However the above
expressions have a nice interpretation, as in both cases, posterior mean and variance are
the sum of the prior expectation and variance and a data-driven quantity.

2.1 Prior elicitation

As we already introduced in Section 1, prior information are typically available when
analysing university grades. Thus, it is of substantial interest to discuss the elicitation
of the prior’s hyperparameters. For example, the sign of the skewness of the grades
distribution is expected to be positive before analysing data, and mild to moderate
knowledge on it can be easily incorporated by using (2) centred in zero, that is with
α0 = 0. Clearly, a positive value of λ0 leads to a skew prior assigning low probability
mass to negative values of α. To quantify the impact of choosing λ0 in hypothesizing the
direction of skewness in this context, we plot in Figure 1 the prior probability of negative
α, Pr(α ≤ 0), for different choices of positive λ0. It is evident that a very low prior mass
(less than 0.05) is assumed when λ0 ≥ 7. At the same time, the choice of ψ0 affects the
concentration of mass around zero or on the chosen half real line. For example, a large
ψ0 jointly with a high positive λ0 corresponds to a prior belief of positive skewness but
mild knowledge on the actual values of α.

Often stronger prior beliefs are available on the moments of the data generating distri-
bution. Known relations between the parameters of the model and the first four moments
allows one to incorporate these prior beliefs into the model. Azzalini [5] showed that, con-
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ditional on the parameters,

E[Y ] = ξ − ωbδ,

Var[Y ] = ω2{1− (bδ)2},

γ1[Y ] = ((4− π)/2)sign(α)
[
{E[Y ]}2/Var[Y ]

]3/2
,

γ2[Y ] = 2(π− 3)
[
{E[Y ]}2/Var[Y ]

]2
,

where b is equal to
√

2/π, with π being the mathematical constant, and γ1 and γ2 are the
third and the fourth standardised cumulants, representing the skewness and the kurtosis
of the distribution, respectively; from these expressions, given the first four standardised
cumulants, a single α can be obtained. Thus, one can elicit prior hyperparameters so
that the expected skewness of the data matches the prior belief. The uncertainty about
α varies according to the prior variance ψ0 which can be large or small for high and low
uncertainty respectively.

2.2 Multivariate extension

Let us suppose that the interest lies in estimating the joint distribution of all first-year
grades. To this end a natural extension of model (1) is the multivariate skew-normal
[see, e.g., 8]. A d-variate skew-normal random variable Y ∼ SNd(ξ,Ω, α) has probability
density function

f(y; ξ,Ω,α) = 2φd(y − ξ; Ω)Φ(αTω−1(y − ξ)), (5)

where ξ is a d-dimensional location parameter, Ω is a d×d positive semidefinite symmetric
matrix with diagonal elements ω2

1, . . . , ω
2
d, ω = diag(Ω), where diag(A) is the diagonal

matrix with the elements of the diagonal of A, and α = (α1, . . . , αd)
T is a d-dimensional

shape vector.
The generalisation of our approach in the multivariate context is straightforward. Con-

sider the multivariate likelihood arising from an iid sample y = (yT1 , . . . ,y
T
n )T of size n

from the d-variate skew-normal (5) with standardised marginals, correlation matrix Ω,
and vector of means zero, namely

L(α) =

n∏
i=1

2φd(yi; Ω)Φ(αTyi).

If we assume that the marginal distributions of the components of α are all skew
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normal as in (2), the posterior distribution is

π(α; y) ∝ φd
(
α−α0; Ψ

)
Φ
(
λD(ψ)−1(α−α0)

) n∏
i=1

Φ(αTyi)

∝ φd
(
α−α0; Ψ

)
Φ
(
λD(ψ)−1(α−α0)

)
Φn


α

Ty1
...

αTyn

 ; In


∝ φd

(
α−α0; Ψ

)
Φn+1

([
yTα

λD(ψ)−1(α−α0)

]
; In+1

)
. (6)

3. Posterior computation

In this section, we first introduce an efficient algorithm to simulate the full conditional
of α, given ξ and ω, then we specify prior distributions for the location and scale of the
skew-normal and propose an efficient Gibbs sampler for the joint vector of parameters.

3.1 A stochastic representation

In the following Lemma 3.1 we recall a result on a stochastic representation of the SUN
family, introduced in Section 2.1 of [1]. We then exploit this result and use it as an
efficient simulation algorithm for drawing observations from posterior distributions (4)
or (6).

Lemma 3.1 (Arellano-Valle and Azzalini, 2006) Let V0 ∼ LTNq(−γ; 0,Γ), V1 ∼
N(0,Ω) with V0 independent of V1 and the notation LTNd(τ ;µ,Σ) denotes a d-variate
normal distribution with mean µ and variance-covariance matrix Σ truncated at τ from
below. If

Y = ξ + ω(∆Γ−1V0 +
√

1−∆TΓ−1∆V1),

then Y ∼ SUN1,q(ξ, γ, ω, 1,∆,Γ).

Simulations from the model above can be easily done relying on efficient sampling
algorithms for multivariate truncated Gaussian distribution. Recent results in this di-
rection involves slice sampler [20] or Hamiltonian Monte Carlo [23] algorithms. From
our experience, the slice sampling algorithm is faster than the Hamiltonian Monte Carlo
approach and thus we use the former approach henceforth. The bottleneck of the convo-
lution of Lemma 3.1 is represented by the inverse of the n × n matrix Γ. To perform a
general matrix inversion, it is well-known that O(n3) operations are required. However,
given the particular expression for Γ, a closed form for its inverse is available. Using the
Sherman-Morrison formula [e.g., 19, p. 50], we can write

Γ−1 =
(
I −D(∆)2 + ∆∆T

)−1

= D(∆′)− 1

1 +
∑n

i=1 δ
2
i (1− δ2

i )
−1
D(∆′)∆∆TD(∆′)

= D(∆′)− 1

1 +
∑n

i=1 δ
2
i (1− δ2

i )
−1

∆̃,
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where ∆′ is the vector of size n with entries (1 − δ2
i )
−1 and ∆̃ is an n × n matrix with

elements δ̃ij = δiδj(1 − δ2
i )
−1(1 − δ2

j )
−1, for i, j = 1, . . . , n. Note that this expression is

not valid in general for the SUN model but it is a consequence of the prior specification.
This is the first time (to our knowledge) that such expression is discussed.

A particular case of Lemma 3.1 refers to skew-normal distribution. In this case we can
simulate a skew-normal random variable X ∼ SN(ξ, ω, λ) with its hierarchical represen-
tation in which, conditionally on X0, a realisation from a half normal distribution, X is
normal with mean ξ + ωδX0 and variance (1− δ2)ω2.

3.2 An efficient Gibbs sampler for the whole parameter vector

For inference on the complete vector of the parameters, we specify an independent normal
inverse gamma distribution for the location and scale parameter and the prior distribution
(2) for the shape parameter. Specifically, we let the prior distribution for the whole vector
of the parameters of model (1) be

π(ξ, ω, α) = N(ξ; ξ0, κω
2)× I-Ga(ω2; a, b)× π(α), (7)

where I-Ga(·; a, b) denotes the inverse gamma distribution with mean b/(a − 1) and
variance b2/{(a− 1)2(a− 2)}, π is the prior (2), with suitable hyperparameter vector.

A particular case of Lemma 3.1 suggests us to introduce independent standard normal
latent variables η1, . . . , ηn. Conditionally on such latent variables, we can consider the
generic i-th observation as being normally distributed with mean ξ+ωδ|ηi| and variance
(1 − δ2)ω2. Thanks to this interpretation we gain conjugacy for the location and scale
parameters. This last argument allows us to build an efficient Gibbs sampling algorithm
which iterates through the following steps:

• Update ηi from its full conditional posterior distribution

ηi ∼ TN0(δ(yi − ξ), ω2(1− δ2))

where δ is α/
√
α2 + 1 and TNτ (µ, σ2) is a mean µ variance σ2 normal truncated below

τ .
• Sample (ξ, ω) from

N
(
µ̂, κ̂ω2

)
I-Ga(a+ (n+ 1)/2, b+ b̂)

where

µ̂ =
κ
∑n

i=1(yi − δηi) + (1− δ2)ξ0

nκ+ (1− δ2)
,

κ̂ =
κ(1− δ2)

nκ+ (1− δ2)
,

b̂ =
1

2(1− δ2)

{
δ2

n∑
i=1

η2
i − 2δ

n∑
i=1

ηi(yi − ξ) +

n∑
i=1

(yi − ξ)2 +
1− δ2

κ
(ξ − ξ0)2

}

• Sample α from

α ∼ π(α|y∗)
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Figure 2. Marginal prior distribution with first (dashed line) and second (continuous line) prior elicitation for ξ
(a), ω2 (b) and α (c). First elicitation: α0 = 0, ψ0 = 7, λ0 = 20. Second elicitation: prior means of parameters

matching sample quantities calculated on a different dataset.

where y∗i = (yi − ξ)/ω for i = 1, . . . , n, and π(α|y), is the posterior (4).

4. Simulation

To assess the performance of the proposed model, we analyzed simulated data in which
the true values of the parameters were known. The data were chosen to have behavior
similar to that of the real dataset analyzed in Section 5. More precisely, we simulate a
sample of size n = 50 from a SN(22, 3, 5). For three different choices of prior information,
we run our proposed Gibbs sampler and, after a burn-in of 2000 iterations, we collect
10,000 MCMC samples.

Given the selection mechanism described in the introduction, we expect a positive cor-
relation between the results of placement tests and the Statistics examinations, and thus
expect skewness to the right. Hence, as a first analysis we choose as prior a skew-normal
distribution with location parameter α0 = 0, scale parameter ψ0 = 7, and shape param-
eter λ0 = 20. We expect that the average grade for the examination will around 20–21.
With the already mentioned relations between the central moments and the parameters
of the skew-normal distribution, this information can be described by a normal-inverse-
gamma prior for the skew-normal location and scale parameters with hyperparameters
ξ0 = 21, κ = 0.25, a = 50, and b = 250. With these choices, we assign a prior probability
of about 95% for values of the location parameter between 19 and 24 and about 90% to
variance between 3 and 6.

As a second analysis, we mimic the real data situation in which data on the previous
year’s examinations are known. Hence, we generate a different random sample of the
same size and from the same distribution as the original sample, by presuming that
it describes a previous year’s examination results and compute the three first central
moments of such a sample. As discussed in Section 2.1 we elicit prior hyperparameters in
order to match our expectations to the previous year sample quantities. Figure 2 shows
the marginal priors for the three parameters.

Convergence and mixing are diagnosed by monitoring the traceplots of the three pa-
rameters; mixing is adequate in each case and the Geweke’s diagnostics suggest very
rapid convergence.

To compare our results with a non-informative approach within the Bayesian frame-
work, we use Jeffreys’ prior for the parameters by setting the prior probability of (ξ, ω) as
proportional to 1/ω and using the prior obtained by Liseo and Loperfido [21] for the shape
parameters. As pointed out by the above authors, this prior for the location and scale
parameters given α is the conditional reference prior. To compute posterior summaries,
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Table 1. Posterior means and 95% credible intervals for the simulated sample. First elicitation: α0 = 0, ψ0 = 7,

λ0 = 20. Second elicitation: prior means of parameters matching sample quantities calculated on an independent
sample (see Section 2.1).

Prior ξ ω α

First elicitation 22.059 (21.727, 22.440) 2.249 (1.965, 2.589) 5.131 (1.936, 12.389)
Second elicitation 22.106 (21.765, 22.447) 2.465 (1.917, 3.195) 3.329 (1.976, 4.901)
Jeffreys prior 21.912 (21.450, 22.766) 2.588 (1.869, 3.359) 25.694 (1.318, 168.063)

we implement a blocked Gibbs sampler with sub-steps composed of Metropolis-Hastings.
In this case, the burn-in is longer than for the informative proposals, and we discard the
first 5, 000 iterations but still collect 10, 000 MCMC samples. Convergence and mixing
are diagnosed by monitoring the traceplots of the three parameters.

Table 1 reports the posterior means and 95% credible intervals of the parameters. Sub-
stantial improvements relative to the non informative approach can be appreciated both
in terms of point estimate and in terms of credible intervals. Under the non-informative
prior credible intervals are wider than the relative intervals with our informative priors.

5. Density estimation of university grades

We analyzed data on grades on first-year undergraduate students in Economics at the
University of Padua (Italy). Available data refer to 79 students who took the examination
for the basic exam of “Statistics” at the first session of July 2003. Of these students, 54
also took the “Business organisation” exam at the same session. In order to be enrolled
in the program in Economics, students need to pass a placement test at the beginning of
the academic year, which give to each of them a numerical evaluation. The test consists in
simple questions of basic math, logic and problem solving. The distribution of the scores
of the placement test is typically symmetric, with a small number of very good and very
low scores, so that it can be supposed to be Gaussian. We also assume that the grades of
the Statistics exam, without any selection mechanism, are normally distributed. Thus,
the skew distribution for the results of these exams is a reasonable assumption.

5.1 Univariate skew-normal

We first perform a univariate analysis considering only the results of the “Statistics”
exam only.

We start by assuming that the correlation between the results of the placement test
and the Statistics examination is positive. Thus, we choose α0 = 0, ψ0 = 7, and λ0 = 20,
which is equivalent to putting less than 0.02 prior mass below zero, i.e. we strongly
believe that α parameter is positive. This choice leads to a prior expectation for α of
5.58. We choose the hyperparameters for normal-inverse gamma ξ0 = 18, κ = 0.01,
a = 1, and b = 5, which lead to an expectation for ω of 1.58. These choices for prior
parameters correspond to assuming that a priori data have first, second and third central
standardised moments of 19.24, 0.98, and 0.88, respectively.

As a second analysis, we also consider the data on the past year examination, so that
we can use a normally distributed prior putting λ0 = 0. We elicit prior hyperparameters
in order to match prior expectations to the previous year sample quantities. The sample
mean, variance and skewness of the past year’s examinations are 22.68, 13.72 and 0.35,
respectively, which correspond to location, scale and shape parameters of 9.81, 18.82 and

9
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Figure 3. Marginal prior distribution with first (dashed line) and second (continuous line) prior elicitation for ξ
(a), ω2 (b) and α (c). First elicitation: α0 = 0, ψ0 = 7, λ0 = 20. Second elicitation: prior means of parameters

matching sample quantities calculated on previous year sample.

1.67, respectively. We then center our prior to have means matching those quantities, i.e.
ξ0 = 9.81, κ = 0.25, a = 1, b = 18.82, ψ0 = 1, and α0 = 1.67.

The resulting prior distributions are somehow different. In Figure 3, the marginal priors
for the three parameters are plotted for both the distributions. The third panel of the
figure shows that the marginal prior for α is more concentrated around its mode assuming
the second elicitation of the prior rather than the first one. The first two panels show
that the two inverse-gamma distributions are centred on very different values, leading
to marginal priors for the location parameters, that is a three-parameter t distribution,
with different prior variability.

We run our Gibbs sampler for 12,000 iterations, discarding the first 2,000 as burn-in
in both cases. The parameters values are monitored to gauge rates of apparent conver-
gence and mixing. The traceplots of the parameters show excellent mixing and rapid
convergence. Results are shown in Table 2 and Figure 4.

Both the final posterior densities have modes around 21 and similar variability and
skewness although the prior for the parameters were different. The posterior distribution
obtained from the first prior elicitation has slightly larger posterior variability than that
obtained using the second elicitation, as shown by the width of the credible intervals for
the parameters. The use of the previous year’s data to elicit hyperparameters is clearly
more informative than simply assume positive skewness.

Given the already discussed selection mechanism it is of interest to discuss the relation
between the placement test and the grade in Statistics. Using the relation δ = α/

√
α2 + 1,

we can produce point and interval estimates of the correlation coefficient δ between the
placement test and the grade in Statistics, a quantity that is more interpretable. This
can be simply achieved applying the transformation to the MCMC sample of α, which
behaves as a sample from the conditional posterior of δ. The posterior mean of δ under
the first elicitation is 0.91 with 95% credible interval equal to (0.57, 0.98) and, under
the second elicitation is 0.92 with 95% credible interval equal to (0.77, 0.97). In both
cases, the correlation is estimated positive and very high, with again the second, more
informative, elicitation leading to a narrower credible interval. This high value suggests
that the placement test is a good way to select the best students, at least for what
concerns their performance in the Statistics exam.
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Table 2. Posterior means and 95% credible bands for university grade dataset: First elicitation: α0 = 0, ψ0 = 7,

λ0 = 20. Second elicitation: prior means of parameters matching sample quantities calculated on previous year
sample (see Section 2.1).

Prior ξ ω α

First elicitation 18.817 (17.886, 20.229) 4.163 (3.094, 5.767) 2.361 (0.693, 4.556)
Second elicitation 18.495 (17.688, 19.426) 4.176 (3.125, 5.728) 2.508 (1.224, 4.042)
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Figure 4. Posterior mean density (black lines) and 95% credible bands (dotted lines) for the first (a) and second
(b) specification of the prior.

5.2 Multivariate skew-normal

We now perform a bivariate analysis considering jointly the results of the “Statistics” and
“Business Organization” exams. The set of students that passed both “Statistics” and
“Business Organization” is a subset of that analysed in Section 5.1 of dimension n = 54.
Here, for the marginal prior specification of both variables, we elicit hyperparameters in
order to match prior expectations to the previous year sample quantities. For “Statistics”
the choices reflect the ones of Section 5.1, while for “Business Organization” the sample
mean, variance and skewness of the past year’s examinations are 23.64, 10.35, and −0.023
respectively, which correspond to location, scale and shape parameters of 27.52, 11.05,
and −0.49, respectively. Note that the skewness for the grade of “Business Organization”,
in the previous year, is very close to zero, suggesting an absence of correlation of this
outcome with the preliminary placement test. Therefore, our prior specification for model
(5) consists in

ξ ∼ N
((

9.81
27.52

)
,

(
4 0
0 4

))
,

Ω = ω2

(
1 ρ
ρ 1

)
, ρ ∼ U(−1, 1), ω2 ∼ I-Ga(ω2; 1, 15)

α ∼ N
((

1.67
−0.49

)
,

(
4 0
0 4

))
,
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where a noninformative uniform prior density is assumed for the correlation between the
results of the two exams.

We calculate the posterior distribution via straightforward MCMC algorithm. We run
the algorithm for 12,000 iterations, discarding the first 2,000 as burn-in. The parameters
values are monitored to gauge rates of apparent convergence and mixing. The traceplots
of the parameters show good mixing and fast convergence. The posterior means of the
parameters (and their 95% credible intervals) are 20.17 (19.01, 21.52), 26.68 (25.15,
27.75), 1.48 (.53, 2.77),−1.56 (−2.71,−0.52),−0.04 (−0.36, 0.31), 13.76 (10.24, 18.16) for
ξ1, ξ2, α1, α2, ρ, and ω2, respectively. Using the posterior mean parameters we obtain the
contours plot reported in Figure 5. The two exams have different mean evaluation (with
“Statistics” having a lower mark) with non crossing credible intervals. The posterior mean
of the skewness parameter for “Statistics” is positive, yet lower than that obtained in
Section 5.1. This is not inconsistent since we are using here almost half of the data used in
the previous section. An interesting evidence is related to the second skewness parameter,
which posterior mean is negative with the 95% credible intervals not containing zero. This
suggests that the results of “Business Organization” is likely to be negatively correlated
to the preliminary placement test. The reason may lies in the fact that the mathematical
and logical skills tested in the preliminary placement test, are related to “Statistics” but
not strongly related to the content of “Business Organization”. This is also evident from
the posterior mean of ρ, the correlation parameter between “Statistics” and “Business
Organization”, which credible interval is almost symmetric around zero.
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Figure 5. Contour plot of the estimated bivariate skew-normal density with paramters the estimated posterior
mean parameters. Dots represent the original data points.
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6. Discussion

The selection mechanisms of many university courses, may lead to have skew distri-
butions of university grades. When grades are numerically evaluated, the skew-normal
seems an appropriate model to describe the distribution of the grades. Since university
placement tests are positively correlated with the students’ results, the expected skew-
ness is also expected to be positive. Given the above, an informative prior distribution
for the shape parameter of skew-normal distribution has been discussed. The induced
posterior is in closed form and belongs to the SUN family of distributions. We described
an efficient, easy, and reliable sampling algorithm related to a stochastic representation
of the skew-normal model which uses recent advances in sampling from multivariate
truncated Gaussian distribution. A Gibbs sampling algorithm for the joint vector of the
parameters has also been introduced. The application to first-year undergraduate stu-
dents grades in Statistics of the Economic program of the University of Padua, shows
that, as expected, the more information are embedded into the prior distribution, the
more precise the final estimates are. This suggests to use informative priors when prior
information are available.

A possible extension consists in assuming that the distribution of the grades is an
extended skew-normal (ESN), a model firstly introduced in the pioneering paper of Az-
zalini [5] and subsequently extensively studied in [3, 14, 15]. The latter generalises the
skew-normal in assuming that the latent normal component is restricted to be greater
than a general value and not necessarily to its mean. This generalisation can be success-
fully applied in the contexts at hand when the selection threshold is not constrained to
be equal to the mean of the distribution of the placement test.
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Appendix

To explain the relations between equations (3) and (4), let first introduce the density of
Z, where Z ∼ SUNm,d(ξ, γ, ω,Ω,∆,Γ), which is

f(Z; ξ, γ, ω,Ω,∆,Γ) = φd (z − ξ;ωΩω)
Φm(γ + ∆Ω−1ω−1(z − ξ); Γ−∆Ω−1∆T )

Φm(γ; Γ)
, (8)

where Φd(·; Σ) is the cumulative distribution function of a d-variate Gaussian distribution
with variance covariance matrix Σ, Ω, Γ, and Ω∗ = ((Γ,∆)T , (∆T ,Ω)T ) are correlations
matrices, and ω is a d× d diagonal matrix.

In order to match (3) with the above SUN parametrization, we set

ξ ← α0

ω ← ψ0

Under these assumptions, with d = 1 and m = n+ 1, equations (8) can be written as

φd

(
α− α0

ψ0

)
Φn+1

(
diag{δ−1

i }γ +
α− α0

ψ0
1n+1; diag{δ−2

i }(Γ−∆∆T )

)
/Φn+1(γ; Γ),

where 1d is a vector of size d of ones. With similar steps, we also rewrite the n+1-variate

14



February 16, 2016 Journal of Applied Statistics skew-rev2

cdf of equation (3) as

Φn+1

([
yα0

0

]
+

[
y

λ0ψ
−1
0

]
(α− α0); In+1

)
=

Φn+1

(
α0ψ

−1
0

[
1n
0

]
+
α− α0

ψ0
1n+1; diag{z−2

i }
)
,

where zi = yiψ0 for i = 1, . . . , n, zn+1 = λ0. Then, in order to obtain the parameters
involved in SUN density we need to elicit Γ and ∆, so that (Γ − ∆∆T )diag{δ−2

i } =

ψ−2
0 diag{z−2

i } and γ so that diag{δ−1
i }γ = α0ψ

−1
0 (1Tn , 0).

Since diag{1/δi}∆∆Tdiag{1/δi} is a n+ 1× n+ 1 matrix of ones, and

diag{1/δi}Γdiag{1/δi} =

[
Γij
δiδj

]
i,j=1,...,n+1

,

we require γij = δiδj for the off-diagonal elements of Γ. Hence, recalling that Γ must be
a correlation matrix, we have for each i = 1, . . . , n+ 1, z−2

i = (1− δ2
i )/δ

2
i , which leads to

define

δi ←
ψ0zi√
ψ2

0z
2
i + 1

, ∆ = [δi]i=1,...,n+1,

Γ← I −D(∆)2 + ∆∆T ,

γi ← δiα0ψ
−1
0 , for i = 1, . . . , n, γn+1 ← 0,

where D(∆) is again the diagonal matrix which diagonal elements coincide with those of
∆.
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