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Abstract: We extend classic characterisations of posterior distributions
under Dirichlet process and gamma random measures priors to a dynamic
framework. We consider the problem of learning, from indirect observations,
two families of time-dependent processes of interest in Bayesian nonpara-
metrics: the first is a dependent Dirichlet process driven by a Fleming–Viot
model, and the data are random samples from the process state at discrete
times; the second is a collection of dependent gamma random measures
driven by a Dawson–Watanabe model, and the data are collected accord-
ing to a Poisson point process with intensity given by the process state
at discrete times. Both driving processes are diffusions taking values in
the space of discrete measures whose support varies with time, and are
stationary and reversible with respect to Dirichlet and gamma priors re-
spectively. A common methodology is developed to obtain in closed form
the time-marginal posteriors given past and present data. These are shown
to belong to classes of finite mixtures of Dirichlet processes and gamma
random measures for the two models respectively, yielding conjugacy of
these classes to the type of data we consider. We provide explicit results
on the parameters of the mixture components and on the mixing weights,
which are time-varying and drive the mixtures towards the respective priors
in absence of further data. Explicit algorithms are provided to recursively
compute the parameters of the mixtures. Our results are based on the pro-
jective properties of the signals and on certain duality properties of their
projections.
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1. Introduction

1.1. Motivation and main contributions

An active area of research in Bayesian nonparametrics is the construction and
the statistical learning of so-called dependent processes. These aim at accommo-
dating weaker forms of dependence than exchangeability among the data, such
as partial exchangeability in the sense of de Finetti. The task is then to let the
infinite-dimensional parameter, represented by a random measure, depend on a
covariate, so that the generated data are exchangeable only conditional on the
same covariate value, but not overall exchangeable. This approach was inspired
by MacEachern (1999, 2000) and has received considerable attention since.
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In the context of this article, the most relevant strand of this literature
attempts to build time evolution into standard random measures for semi-
parametric time-series analysis, combining the merits of flexible exchangeable
modelling afforded by random measures with those of mainstream generalised
linear and time series modelling. For the case of Dirichlet processes, the ref-
erence model in Bayesian nonparametrics introduced by Ferguson (1973), the
time evolution has often been built into the process by exploiting its celebrated
stick-breaking representation (Sethuraman, 1994). For example, Dunson (2006)
models the dependent process as an autoregression with Dirichlet distributed
innovations, Caron et al. (2008) models the noise in a dynamic linear model
with a Dirichlet process mixture, Caron et al. (2007) develops a time-varying
Dirichlet mixture with reweighing and movement of atoms in the stick-breaking
representation, Rodriguez and ter Horst (2008) induces the dependence in time
only via the atoms in the stick-breaking representation, by making them into
an heteroskedastic random walk. See also Caron and Teh (2012); Caron et al.
(2016); Griffin and Steel (2006); Gutierrez et al. (2016); Mena and Ruggiero
(2016). The stick-breaking representation of the Dirichlet process has demon-
strated its versatility for constructing dependent processes, but makes it hard
to derive any analytical information on the posterior structure of the quantities
involved. Parallel to these developments, random measures have been combined
with hidden Markov time series models, either for allowing the size of the la-
tent space to evolve in time using transitions based on a hierarchy of Dirich-
let processes, e.g. Beal et al. (2002); Van Gael et al. (2008); Stepleton et al.
(2009); Zhang et al. (2014), or for building flexible emission distributions that
link the latent states to data, e.g. Yau et al. (2011); Gassiat and Rousseau
(2016).

From a probabilistic perspective, there is a fairly canonical way to build sta-
tionary processes with marginal distributions specified as random measures us-
ing stochastic differential equations. This more principled approach to building
time series with given marginals has been well explored, both probabilistically
and statistically, for finite-dimensional marginal distributions, either using pro-
cesses with discontinuous sample paths, as in Barndorff-Nielsen and Shephard
(2001) or Griffin (2011), or using diffusions, as we undertake here. The relevance
of measure-valued diffusions in Bayesian nonparametrics has been pioneered in
Walker et al. (2007), whose construction naturally allows for separate control of
the marginal distributions and the memory of the process.

The statistical models we investigate in this article, introduced in Section
2, can be seen as instances of what we call hidden Markov measures, since the
models are formulated as hidden Markov models where the latent, unobserved
signal is a measure-valued infinite-dimensional Markov process. The signal in the
first model is the Fleming–Viot (FV) process, denoted {Xt, t ≥ 0} on some state
space Y (also called type space in population genetics), which admits the law
of a Dirichlet process on Y as marginal distribution. At times tn, conditionally
on Xtn = x, observations are drawn independently from x, i.e.,

Ytn,i | x
iid∼ x, i = 1, . . . ,mtn , Ytn,i ∈ Y . (1.1)
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Hence, this statistical model is a dynamic extension of the classic Bayesian non-
parametric model for unknown distributions of Ferguson (1973) and Antoniak
(1974). The signal in the second model is the Dawson–Watanabe (DW) process,
denoted {Zt, t ≥ 0} and also defined on Y , that admits the law of a gamma ran-
dom measure as marginal distribution. At times tn, conditionally on Ztn = z,
the observations are a Poisson process Ytn on Y with random intensity z, i.e.,
for any collection of disjoint sets A1, . . . , AK ∈ Y and K ∈ N,

Ytn(Ai)|z ind∼ Po(z(Ai)).

Hence, this is a time-evolving Cox process and can be seen as a dynamic exten-
sion of the classic Bayesian nonparametric model for Poisson point processes of
Lo (1982).

The Dirichlet and the gamma random measures, used as Bayesian nonpara-
metric priors, have conjugacy properties to observation models of the type
described above, which have been exploited both for developing theory and
for building simulation algorithms for posterior and predictive inference. These
properties, reviewed in Sections 2.1.1 and 2.2.1, have propelled the use of these
models into mainstream statistics, and have been used directly in simpler models
or to build updating equations within Markov chain Monte Carlo and variational
Bayes computational algorithms in hierarchical models.

In this article, for the first time, we show that the dynamic versions of these
Dirichlet and gamma models also enjoy certain conjugacy properties. First, we
formulate such models as hidden Markov models where the latent signal is a
measure-valued diffusion and the observations arise at discrete times according
to the mechanisms described above. We then obtain that the filtering distribu-
tions, that is the laws of the signal at each observation time conditionally on
all data up to that time, are finite mixtures of Dirichlet and gamma random
measures respectively. We provide a concrete posterior characterisation of these
marginal distributions and explicit algorithms for the recursive computation of
the parameters of these mixtures. Our results show that these families of finite
mixtures are closed with respect to the Bayesian learning in this dynamic frame-
work, and thus provide an extension of the classic posterior characterisations of
Antoniak (1974) and Lo (1982) to time-evolving settings.

The techniques we use to establish the new conjugacy results are detailed in
Section 4, and build upon three aspects: the characterisations of Dirichlet and
gamma random measures through their projections; certain results on measure-
valued diffusions related to their time-reversal; and some very recent develop-
ments in Papaspiliopoulos and Ruggiero (2014) that relate optimal filtering for
finite-dimensional hidden Markov models with the notion of duality for Markov
processes, reviewed in Section 4.1. Figure 1 schematises, from a high level per-
spective, the strategy for obtaining our results. In a nutshell, the essence of
our theoretical results is that the operations of projection and propagation of
measures commute. More specifically, we first exploit the characterisation of
the Dirichlet and gamma random measures via their finite-dimensional distri-
butions, which are Dirichlet and independent gamma distributions respectively.
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Fig 1. Scheme of the general argument for obtaining the filtering distribution of hidden
Markov models with FV and DW signals, proved in Theorems 3.1 and 3.2. In this figure
Xt is the latent measure-valued signal. Given data Y1:n, the future distribution of the sig-
nal L(Xtn+k | Y1:n) at time tn+k is determined by taking its finite-dimensional projection
L(Xtn (A1, . . . , AK) | Y1:n) onto an arbitrary partition (A1, . . . , AK), evaluating the rela-
tive propagation L(Xtn+k (A1, . . . , AK) | Y1:n) at time tn+k, and by exploiting the projective
characterisation of the filtering distributions.

Then we exploit the fact that the dynamics of these finite-dimensional distri-
butions induced by the measure-valued signals are the Wright–Fisher (WF) dif-
fusion and a multivariate Cox–Ingersoll–Ross (CIR) diffusion. Then, we extend
the results in Papaspiliopoulos and Ruggiero (2014) to show that filtering these
finite-dimensional signals on the basis of observations generated as described
above results in mixtures of Dirichlet and independent gamma distributions.
Finally, we use again the characterisations of Dirichlet and gamma measures via
their finite-dimensional distributions to obtain the main results in this paper,
that the filtering distributions in the Fleming–Viot model evolves in the fam-
ily of finite mixtures of Dirichlet processes and those in the Dawson–Watanabe
model in the family of finite mixtures of gamma random measures, under the
observation models considered. The validity of this argument is formally proved
in Theorems 3.1 and 3.2. The resulting recursive procedures for Fleming–Viot
and Dawson–Watanabe signals that describe how to compute the parameters
of the mixtures at each observation time are given in Propositions 3.1 and 3.2,
and the associated pseudo codes are outlined in Algorithms 1 and 2.

The paper is organised as follows. Section 1.2 briefly introduces some ba-
sic concepts on hidden Markov models. Section 1.3 provides a simple illus-
tration of the underlying structures implied by previous results on filtering
one-dimensional WF and CIR processes. These will be the reference examples
throughout the paper and provide relevant intuition on our main results in terms
of special cases, since the WF and CIR model are the one-dimensional projec-
tions of the infinite-dimensional families we consider here. Section 2 describes
the two families of dependent random measures which are the object of this con-
tribution, the Fleming–Viot and the Dawson–Watanabe diffusions, from a non
technical viewpoint. Connections of the dynamic models with their marginal or
static sub-cases given by Dirichlet and gamma random measures, well known
in Bayesian nonparametrics, are emphasised. Section 3 exposes and discusses
the main results on the conjugacy properties of the two above families, given
observation models as described earlier, together with the implied algorithms
for recursive computation. All the technical details related to the strategy for
proving the main results and to the duality structures associated to the signals
are deferred to Section 4.
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Fig 2. Hidden Markov model represented as a graphical model.

1.2. Hidden Markov models

Since our time-dependent Bayesian nonparametric models are formulated as
hidden Markov models, we introduce here some basic related notions. A hidden
Markov model (HMM) is a double sequence {(Xtn , Yn), n ≥ 0} where Xtn is
an unobserved Markov chain, called latent signal, and Yn := Ytn are condition-
ally independent observations given the signal. Figure 2 provides a graphical
representation of an HMM. We will assume here that the signal is the discrete
time sampling of a continuous time Markov process Xt with transition ker-
nel Pt(x, dx

′). The signal parametrises the law of the observations L(Yn|Xtn),
called emission distribution. When this law admits density, this will be denoted
by fx(y).

Filtering optimally an HMM requires the sequential exact evaluation of the
so-called filtering distributions L(Xtn |Y0:n), i.e., the laws of the signal at dif-
ferent times given past and present observations, where Y0:n = (Y1, . . . , Yn).
Denote νn := L(Xtn |Y0:n) and let ν be the prior distribution for Xt0 . The exact
or optimal filter is the solution of the recursion

ν0 = φYt0
(ν) , νn = φYtn

(ψtn−tn−1(νn−1)), n ∈ N. (1.2)

This involves the following two operators acting on measures: the update oper-
ator, which in case a density exists takes the form

φy(ν)(dx) =
fx(y)ν(dx)

pν(y)
, pν(y) =

∫
X
fx(y)ν(dx) , (1.3)

and the prediction operator

ψt(ν)(dx
′) =

∫
X
ν(dx)Pt(x, dx

′). (1.4)

The update operation amounts to an application of Bayes’ Theorem to the
currently available distribution conditional on the incoming data. The prediction
operator propagates forward the current law of the signal of time t according to
the transition kernel of the underlying continuous-time latent process. The above
recursion (1.2) then alternates updates given the incoming data and predictions
of the latent signal as follows:

L(Xt0)
update−→ L(Xt0 | Y0)

prediction−→ L(Xt1 | Y0)
update−→ L(Xt1 | Y0, Y1)

prediction−→ · · ·
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If Xt0 has prior ν = L(Xt0), then ν0 = L(Xt0 |Y0) is the posterior conditional on
the data observed at time t0; ν1 is the law of the signal at time t1 obtained by
propagating ν0 of a t1− t0 interval and conditioning on the data Y0, Y1 observed
at time t0 and t1; and so on.

1.3. Illustration for CIR and WF signals

In order to appreciate the ideas behind the main theoretical results and the Algo-
rithms we develop in this article, we provide some intuition on the corresponding
results for one-dimensional hidden Markov models based on Cox–Ingersoll–Ross
(CIR) and Wright–Fisher (WF) signals. These are the one-dimensional projec-
tions of the DW and FV processes respectively, so informally we could say that
a CIR process stands to a DW process as a gamma distribution stands to a
gamma random measure, and a one-dimensional WF stands to a FV process
as a Beta distribution stands to a Dirichlet process. The results illustrated in
this section follow from Papaspiliopoulos and Ruggiero (2014) and are based
on the interplay between computable filtering and duality of Markov processes,
summarised later in Section 4.1. The developments in this article rely on these
results, which are extended to the infinite-dimensional case. Here we highlight
the mechanisms underlying the explicit filters with the aid of figures, and post-
pone the mathematical details to Section 4.

First, let the signal be a one-dimensional Wright–Fisher diffusion on [0,1],
with stationary distribution π = Beta(α, β) (see Section 2.1.2), which is also
taken as the prior ν for the signal at time 0. The signal can be interpreted as the
evolving frequency of type-1 individuals in a population of two types whose indi-
viduals generate offspring of the same type of the parent, which may be subject
to mutation. The observations are assumed to be Bernoulli with success prob-
ability given by the signal state. Upon observation of yt0 = (yt0,1, . . . , yt0,m),
assuming it gives m1 type-1 and m2 type-2 individuals with m = m1 + m2,
the prior ν = π is updated as usual via Bayes’ theorem to ν0 = φyt0

(ν) =
Beta(α+m1, β +m2). Here φy is the update operator (1.3). A forward propa-
gation of these distribution of time t by means of the prediction operator (1.4)
yields the finite mixture of Beta distributions

ψt(ν0) =
∑

(0,0)≤(i,j)≤(m1,m2)

p(m1,m2),(i,j)(t)Beta(α+ i, β + j),

whose mixing weights depend on t (see Lemma 4.1 below for their precise def-
inition). The propagation of Beta(α + m1, β + m2) at time t0 + t thus yields
a mixture of Beta’s with (m1 + 1)(m2 + 1) components. The Beta parameters
range from i = m1, j = m2, which represent the full information provided by
the collected data, to i = j = 0, which represent the null information on the
data so that the associated component coincides with the prior. It is useful to
identify the indices of the mixture with the nodes of a graph, as in Figure 3-(b),
where the red node represent the component with full information, and the yel-
low nodes the other components, including the prior identified by the origin.
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Fig 3. The death process on the lattice modulates the evolution of the mixture weights in the
filtering distributions of models with CIR (left) and WF (right) signals. Nodes on the graph
identify mixture components in the filtering distribution. The mixture weights are assigned
according to the probability that the death process starting from the (red) node which encodes
the current full information (here y = 3 for the CIR and (m1,m2) = (2, 1) for the WF) is in
a lower node after time t.

The time-varying mixing weights are the transition probabilities of an associated
(dual) 2-dimensional death process, which can be thought of as jumping to lower
nodes in the graph of Figure 3-(b) at a specified rate in continuous time. The
effect on the mixture of these weights is that as time increases, the probability
mass is shifted from components with parameters close to the full information
(α + m1, β + m2), to components which bear less to none information on the
data. The mass shift reflects the progressive obsolescence of the data collected
at t0 as evaluated by signal law at time t0 + t as t increases, and in absence of
further data the mixture converges to the prior/stationary distribution π.

Note that it is not obvious that (1.4) yields a finite mixture when Pt is the
transition operator of a WF process, since Pt has an infinite series expansion
(see Section 2.1.2). This has been proved rather directly in Chaleyat-Maurel and
Genon-Catalot (2009) or by combining results on optimal filtering with some
duality properties of this model (see Papaspiliopoulos and Ruggiero (2014) or
Section 4 here).

Consider now the model where the signal is a one-dimensional CIR diffusion
on R+, with gamma stationary distribution (and prior at t0 = 0) given by
π = Ga(α, β) (see Section 2.2.2). The observations are Poisson with intensity
given by the current state of the signal. If the first data are collected at time
t1 > t0, the forward propagation of the signal distribution to time t1 yields the
same distribution by stationarity. Upon observation at time t1 of m ≥ 1 Poisson
data points with total count y, the prior ν = π is updated via Bayes’ theorem
to

ν0 = Ga(α+ y, β +m) (1.5)

yielding a jump in the measure-valued process; see Figure 4-(a). A forward
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Fig 4. Temporal evolution of the filtering distribution (solid black in right panels and marginal
rightmost section of left panels) under the CIR model: (a) until the first data collection the
propagation preserves the prior/stationary distribution (red dotted in right panels); at the first
data collection, the prior is updated to the posterior (blue dotted in right panels) via Bayes’
Theorem, determining a jump in the filtering process (left panel); (b) the forward propagation
of the filtering distribution behaves as a finite mixture of Gamma densities (weighted compo-
nents dashed coloured in right panel); (c) in absence of further data, the time-varying mixing
weights shift mass towards the prior component, and the filtering distribution converges to
the stationary law.

propagation of ν0 yields the finite mixture of gamma distributions

ψt(ν0) =
∑

0≤i≤y

py,i(t)Ga(α+ i, β + St), (1.6)
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Fig 5. Evolution of the mixture weights which drive the mixture distribution in Fig. 4. At
the jump time 100 (the origin here), the mixture component with full posterior information
(blue dotted in Fig. 4) has weight equal to 1 (cyan curve), and the other components have
zero weight. As the filtering distribution is propagated forward, the weights evolve as transi-
tion probabilities of an associated death process. The mixture component equal to the prior
distribution (red dotted in Fig. 4), which carries no information on the data, has weight (blue
curve) that is 0 at the jump time when the posterior update occurs, and eventually goes back
to 1 in absence of further incoming observations, in turn determining the convergence of the
mixture to the prior in Fig. 4.

whose mixing weights also depend on t (see Lemma 4.2 below for their precise
definition). At time t1 + t, the filtering distribution is a (y + 1)-components
mixture with the first gamma parameter ranging from full (i = y) to null (i =
0) information with respect to the collected data (Figure 4-(b)). The time-
dependent mixture weights are the transition probabilities of a certain associated
(dual) one-dimensional death process, which can be thought of as jumping to
lower nodes in the graph of Figure 3-(a) at a specified rate in continuous time.
Similarly to the WF model, the mixing weights shift mass from components
whose first parameter is close to the full information, i.e. (α + y, β + St), to
components which bear less to none information (α, β+St). The time evolution
of the mixing weights is depicted in Figure 5, where the cyan and blue lines
are the weights of the components with full and no information on the data
respectively. As a result of the impact of these weights on the mixture, the
latter converges, in absence of further data, to the prior/stationary distribution
π as t increases, as shown in Figure 4-(c). Unlike the WF case, in this model
there is a second parameter controlled by a deterministic (dual) process St on
R+ which subordinates the transitions of the death process; see Lemma 4.2.
Roughly speaking, the death process on the graph controls the obsolescence of
the observation counts y, whereas the deterministic process St controls that of
the sample size m. At the update time t1 we have S0 = m as in (1.5), but St is a
deterministic, continuous and decreasing process, and in absence of further data
St converges to 0 as t → ∞, to restore the prior parameter β in the limit of (1.6).
See Lemma 4.2 in the Appendix for the formal result for the one-dimensional
CIR diffusion.
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Fig 6. Evolution of the filtering distribution (a) and of the deterministic component of the
dual process (b) that modulates the sample size parameter in the mixture components, in the
case of multiple data collection at time 100, 200, 300.

When more data samples are collected at different times, the update and
propagation operations are alternated, resulting in jump processes for both the
filtering distribution and the deterministic dual St (Figure 6).

1.4. Preliminary notation

Although most of the notation is better introduced in the appropriate places,
we collect here that which is used uniformly over the paper, to avoid recalling
these objects several times throughout the text. In all subsequent sections, Y
will denote a locally compact Polish space which represents the observations
space, M (Y) is the associated space of finite Borel measures on Y and M1(Y)
its subspace of probability measures. A typical element α ∈ M (Y) will be such
that

α = θP0, θ > 0, P0 ∈ M1(Y), (1.7)

where θ = α(Y) is the total mass of α, and P0 is sometimes called centering or
baseline distribution. We will assume here that P0 has no atoms. Furthermore,
for α as above, Πα will denote the law on M1(Y) of a Dirichlet process, and Γβ

α

that on M (Y) of a gamma random measure, with β > 0. These will be recalled
formally in Sections 2.1.1 and 2.2.1.

We will denote by Xt the Fleming–Viot process and by Zt the Dawson–
Watanabe process, to be interpreted as {Xt, t ≥ 0} and {Zt, t ≥ 0} when written
without argument. Hence Xt and Zt take values in the space of continuous
functions from [0,∞) to M1(Y) and M (Y) respectively. We will write Xt(A)
and Zt(A) for their respective one dimensional projections onto the Borel set
A ⊂ Y , whereas discrete measures x(·) ∈ M1(Y) and z(·) ∈ M (Y) will denote
the marginal states of Xt and Zt. We adopt boldface notation to denote vectors,
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with the following conventions:

x = (x1, . . . , xK) ∈ R
K
+ , m = (m1, . . . ,mK) ∈ Z

K
+ ,

xm = xm1
1 · · ·xmK

K , |x| =
∑K

i=1
xi,

where the dimension 2 ≤ K ≤ ∞ will be clear from the context unless speci-
fied. Accordingly, the Wright–Fisher model, closely related to projections of the
Fleming–Viot process onto partitions, will be denoted Xt. We denote by 0 the
vector of zeros and by ei the vector whose only non zero entry is a 1 at the
ith coordinate. Let also “<” define a partial ordering on Z

K
+ , so that m < n

if mj ≤ nj for all j ≥ 1 and mj < nj for some j ≥ 1. Finally, we will use the
compact notation y1:m for vectors of observations y1, . . . , ym.

2. Hidden Markov measures

2.1. Fleming–Viot signals

2.1.1. The static model: Dirichlet processes and mixtures thereof

The Dirichlet process on a state space Y , introduced by Ferguson (1973) (see
Ghosal (2010) for a recent review), is a discrete random probability measure
x ∈ M1(Y). The process admits the series representation

x(·) =
∞∑
i=1

WiδYi(·), Wi =
Qi∑
j≥1 Qj

, Yi
iid∼ P0, (2.1)

where (Yi)i≥1 and (Wi)i≥1 are independent and (Qi)i≥1 are the jumps of a
gamma process with mean measure θy−1e−ydy. We will denote by Πα the law
of x(·) in (2.1), with α as in (1.7).

Mixtures of Dirichlet processes were introduced in Antoniak (1974). We say
that x is a mixture of Dirichlet processes if

x | u ∼ Παu , u ∼ H,

where αu denotes the measure α conditionally on u, or equivalently

x ∼
∫
U
ΠαudH(u). (2.2)

With a slight abuse of terminology we will also refer to the right hand side of
the last expression as a mixture of Dirichlet processes.

The Dirichlet process and mixtures thereof have two fundamental properties
that are of great interest in statistical learning (Antoniak, 1974):

• Conjugacy : let x be as in (2.2). Conditionally onm observations yi | x iid∼ x,
we have

x | y1:m ∼
∫
U
Παu+

∑m
i=1 δyi

dHy1:m(u),
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where Hy1:m is the conditional distribution of u given y1:m. Hence a poste-
rior mixture of Dirichlet processes is still a mixture of Dirichlet processes
with updated parameters.

• Projection: let x be as in (2.2). For any measurable partition A1, . . . , AK

of Y , we have

(x(A1), . . . , x(AK)) ∼
∫
U
παu

dH(u),

where αu = (αu(A1), . . . , αu(AK)) and πα denotes the Dirichlet distribu-
tion with parameter α.

Letting H be concentrated on a single point of U recovers the respective

properties of the Dirichlet process as special case, i.e. x ∼ Πα and yi|x iid∼ x
imply respectively that x|y1:m ∼ Πα+

∑m
i=1 δyi

and (x(A1), . . . , x(AK)) ∼ πα,
where α = (α(A1), . . . , α(AK)).

2.1.2. The Fleming–Viot process

Fleming–Viot (FV) processes are a large family of diffusions taking values in
the subspace of M1(Y) given by purely atomic probability measures. Hence they
describe evolving discrete distributions whose support also varies with time and
whose frequencies are each a diffusion on [0, 1]. Two states apart in time of a
FV process are depicted in Figure 7. See Ethier and Kurtz (1993) and Dawson
(1993) for exhaustive reviews. Here we restrict the attention to a subclass known
as the (labelled) infinitely many neutral alleles model with parent independent
mutation, henceforth for simplicity called the FV process, which has the law of
a Dirichlet process as stationary measure (Ethier and Kurtz, 1993, Section 9.2).

One of the most intuitive ways to understand a FV process is to consider its
transition function, found in Ethier and Griffiths (1993). This is given by

Pt(x, dx
′) =

∞∑
m=0

dm(t)

∫
Ym

Πα+
∑m

i=1 δyi
(dx′)xm(dy1, . . . , dym) (2.3)

where xm denotes the m-fold product measure x × · · · × x and Πα+
∑m

i=1 δyi
is

a posterior Dirichlet process as defined in the previous section. The expression
(2.3) has a nice interpretation from the Bayesian learning viewpoint. Given the
current state of the process x, with probability dm(t) anm-sized sample from x is
taken, and the arrival state is sampled from the posterior law Πα+

∑m
i=1 δyi

. Here
dm(t) is the probability that an N-valued death process which starts at infinity at
time 0 is in m at time t, if it jumps from m to m−1 at rate λm = 1

2m(θ+m−1).
See Tavaré (1984) for details. Hence a larger t implies sampling a lower amount
of information from x with higher probability, resulting in fewer atoms shared by
x and x′. The starting and arrival states thus have correlation which decreases
in t as controlled by dm(t). As t → 0, infinitely many samples are drawn from x,
so x′ will coincide with x and the trajectories are continuous in total variation
norm (Ethier and Kurtz, 1993). As t → ∞, the death process which governs
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Fig 7. Two states of a FV process on [0, 1] at successive times (solid discrete measures): (a)
the initial state has distribution Πα0 with α0 = θBeta(4, 2) (dotted); (b) after some time, the
process reaches the stationary state, which has distribution Πα with α = θBeta(2, 4) (dashed).

the probabilities dm(t) in (2.3) is eventually absorbed in 0, which implies that
Pt(x, dx

′) → Πα as t → ∞, so x′ is sampled from the prior Πα. Therefore this
FV is stationary with respect to Πα (in fact, it is also reversible). It follows
that, using terms familiar to the Bayesian literature, under this parametrisa-
tion the FV can be considered as a dependent Dirichlet process with continuous
sample paths. Constructions of Fleming–Viot and closely related processes us-
ing ideas from Bayesian nonparametrics have been proposed in Walker et al.
(2007); Favaro et al. (2009); Ruggiero and Walker (2009a,b). Different classes
of diffusive dependent Dirichlet processes or related constructions based on the
stick-breaking representation (Sethuraman, 1994) are proposed in Mena and
Ruggiero (2016); Mena et al. (2011).

Projecting a FV process Xt onto a measurable partition A1, . . . , AK of Y
yields a K-dimensional Wright–Fisher (WF) diffusion Xt, which is reversible
and stationary with respect to the Dirichlet distribution πα, for αi = θP0(Ai),
i = 1, . . . ,K. See Dawson (2010); Etheridge (2009). This property is the dynamic
counterpart of the projective property of Dirichlet processes discussed in Section
2.1.1. Consistently, the transition function of a WF process is obtained as a
specialisation of the FV case, yielding

Pt(x, dx
′) =

∞∑
m=0

dm(t)
∑

m∈Z
K
+ :|m|=m

(
m

m

)
xmπα+m(dx′) (2.4)

with analogous interpretation to (2.3). See Ethier and Griffiths (1993).
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For statistical modelling it is useful to introduce a further parameter σ that
controls the speed of the process. This can be done by defining the time change
Xτ(t) with τ(t) = σt. In such parameterisation, σ does not affect the stationary
distribution of the process, and can be used to model the dependence structure.

2.2. Dawson–Watanabe signals

2.2.1. The static model: Gamma random measures and mixtures thereof

Gamma random measures (Lo, 1982) can be thought of as the counterpart of
Dirichlet processes in the context of finite intensity measures. A gamma random
measure z ∈ M (Y) with shape parameter α as in (1.7) and rate parameter
β > 0, denoted z ∼ Γβ

α, admits representation

z(·) = β−1
∞∑
i=1

QiδYi(·), Yi
iid∼ P0, (2.5)

with (Qi)i≥1 as in (2.1).
Similarly to the definition of mixtures of Dirichlet processes (Section 2.1.1),

we say that z is a mixture of gamma random measures if z ∼
∫
U Γβ

αu
dH(u), and

with a slight abuse of terminology we will also refer to the right hand side of the
last expression as a mixture of gamma random measures. Analogous conjugacy
and projection properties to those seen for mixtures of Dirichlet processes hold
for mixtures of gamma random measures:

• Conjugacy : let N be a Poisson point process on Y with random intensity

measure z, i.e., conditionally on z,N(Ai)
ind∼ Po(z(Ai)) for any measurable

partition A1, . . . , AK of Y , K ∈ N. Let m := N(Y), and given m, let
y1, . . . , ym be a realisation of points of N , so that

yi | z,m iid∼ z/|z|, m | z ∼ Po(|z|) (2.6)

where |z| := z(Y) is the total mass of z. Then

z | y1:m ∼
∫
U
Γβ+1
αu+

∑m
i=1 δyi

dHy1:m(u), (2.7)

whereHy1:m is the conditional distribution of u given y1:m. Hence mixtures
of gamma random measures are conjugate with respect to Poisson point
process data.

• Projection: for any measurable partition A1, . . . , AK of Y , we have

(z(A1), . . . , z(AK)) ∼
∫
U

K∏
i=1

Ga(αu,i, β)dH(u),

where αu,i = αu(Ai), and Ga(α, β) denotes the gamma distribution with
shape α and rate β.
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Letting H be concentrated on a single point of U recovers the respective prop-
erties of gamma random measures as special case, i.e. z ∼ Γβ

α and yi as in (2.6)

imply z|y1:m ∼ Γβ+1
α+

∑m
i=1 δyi

, and the vector (z(A1), . . . , z(AK)) has independent

components z(Ai) with gamma distribution Ga(αi, β), αi = α(Ai).
Finally, it is well known that (2.1) and (2.5) satisfy the relation in distribution

x(·) d
=

z(·)
z(Y)

(2.8)

where x is independent of z(Y). This extends to the infinite dimensional case
the well known relationship between beta and gamma random variables. See
for example Daley and Vere-Jones (2008), Example 9.1(e). See also Konno and
Shiga (1988) for an extension of (2.8) to the dynamic case concerning FV and
DW processes, which requires a random time change.

2.2.2. The Dawson–Watanabe process

Dawson–Watanabe (DW) processes can be considered as dependent models for
gamma random measures, and are, roughly speaking, the gamma counterpart
of FV processes. More formally, they are branching measure-valued diffusions
taking values in the space of finite discrete measures. As in the FV case, they
describe evolving discrete measures whose support varies with time and whose
masses are each a positive diffusion, but relaxing the constraint of their masses
summing to one to that of summing to a finite quantity. See Dawson (1993) and
Li (2011) for reviews. Here we are interested in the special case of subcritical
branching with immigration, where subcriticality refers to the fact that in the
underlying branching population, which can be used to construct the process,
the mean number of offspring per individual is less than one. Specifically, we
will consider DW processes with transition function

Pt(z, dz
′) =

∞∑
m=0

d|z|,βm (t)

∫
Ym

Γ
β+S∗

t

α+
∑m

i=1 δyi
(dz′)(z/|z|)m(dy1, . . . , dym). (2.9)

where

d|z|,βm (t) = Po

(
m

∣∣∣ |z|β
eβt/2 − 1

)
and S∗

t :=
β

eβt/2 − 1
.

See Ethier and Griffiths (1993b). The interpretation of (2.9) is similar to that
of (2.3): conditional on the current state given by the measure z, m iid samples
are drawn from the normalised measure z/|z| and the arrival state z′ is sampled

from Γ
β+S∗

t

α+
∑m

i=1 δyi
. Here the main structural difference with respect to (2.3),

apart from the different distributions involved, is that since in general S∗
t is

not an integer quantity, the interpretation as sampling the arrival state z′ from
a posterior gamma law is not formally correct; cf. (2.7). The sample size m

is chosen with probability d
|z|,β
m (t), which is the probability that an N-valued

death process which starts at infinity at time 0 is in m at time t, if it jumps



3468 O. Papaspiliopoulos et al.

from m to m− 1 at rate (mβ/2)(1− eβt/2)−1. See Ethier and Griffiths (1993b)
for details. So z and z′ will share fewer atoms the farther they are apart in
time. The DW process with the above transition is known to be stationary and
reversible with respect to the law Γβ

α of a gamma random measure; cf. (2.5).
See Shiga (1990); Ethier and Griffiths (1993b). The Dawson–Watanabe process
has been recently considered as a basis to build time-dependent gamma process
priors with Markovian evolution in Caron and Teh (2012) and Spanò and Lijoi
(2016).

The DW process satisfies a projective property similar to that seen in Sec-
tion 2.1.2 for the FV process. Let Zt have transition (2.9). Given a measurable
partition A1, . . . , AK of Y , the vector (Zt(A1), . . . , Zt(AK)) has independent
components zt,i = Zt(Ai) each driven by a Cox–Ingersoll–Ross (CIR) diffu-
sion (Cox et al., 1985). These are also subcritical continuous-state branching
processes with immigration, reversible and ergodic with respect to a Ga(αi, β)
distribution, with transition function

Pt(zi, dz
′
i) =

∞∑
mi=0

Po

(
mi

∣∣∣ ziβ

eβt/2 − 1

)
Ga

(
dz′

∣∣∣αi +mi, β + S∗
t

)
. (2.10)

As for FV and WF processes, a further parameter σ that controls the speed
of the process can be introduced without affecting the stationary distribution.
This can be done by defining an appropriate time change that can be used to
model the dependence structure.

3. Conjugacy properties of time-evolving Dirichlet and gamma
random measures

3.1. Filtering Fleming–Viot signals

Let the latent signal Xt be a FV process with transition function (2.3). We
assume that, given the signal state, observations are drawn independently from
x, i.e. as in (1.1) with Xt = x. Since x is almost surely discrete (Blackwell,
1973), a sample y1:m = (y1, . . . , ym) from x will feature Km ≤ m ties among
the observations with positive probability. Denote by (y∗1 , . . . , y

∗
Km

) the distinct
values in y1:m and by m = (m1, . . . ,mKm) the associated multiplicities, so that
|m| = m. When an additional sample ym+1:m+n with multiplicities n becomes
available, we adopt the convention that n adds up to the multiplicities of the
types already recorded in y1:m, so that the total multiplicities count is

m+ n = (m1 + n1, . . . ,mKm + nKm , nKm+1, . . . , nKm+n). (3.1)

The following Lemma states in our notation the special case of the conjugacy
for mixtures of Dirichlet processes which is of interest here; see Section 2.1.1.
To this end, let

M = {m = (m1, . . . ,mK) ∈ Z
K
+ , K ∈ N} (3.2)
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be the space of multiplicities of K types, with partial ordering defined as in
Section 1.4. Denote also by PUα(ym+1:m+n | y1:m) the joint distribution of
ym+1:m+n given y1:m when the random measure x is marginalised out, which is
determined by the Blackwell–MacQueen Pólya urn predictive scheme (Blackwell
and MacQueen, 1973)

Ym+i+1 | y1:m+i ∼
θP0 +

∑m+i
j=1 δyj

θ +m+ i
, i = 0, . . . , n− 1.

Lemma 3.1. Let M ⊂ M, α as in (1.7) and x be the mixture of Dirichlet
processes

x ∼
∑
m∈M

wmΠα+
∑Km

i=1 miδy∗
i

,

with
∑

m∈M wm = 1. Given an additional n-sized sample ym+1:m+n from x with
multiplicities n, the update operator (1.3) yields

φym+1:m+n

( ∑
m∈M

wmΠα+
∑Km

i=1 miδy∗
i

)
=

∑
m∈M

ŵmΠ
α+

∑Km+n
i=1 (mi+ni)δy∗

i

, (3.3)

where
ŵm ∝ wm PUα(ym+1:m+n | y1:m). (3.4)

Here “∝” denotes proportionality. The updated distribution is thus still a
mixture of Dirichlet processes with different multiplicities and possibly new

atoms in the parameter measures α+
∑Km+n

i=1 (mi + ni)δy∗
i
.

The following Theorem formalises our main result on FV processes, showing
that the family of finite mixtures of Dirichlet processes is conjugate with respect
to discretely sampled data as in (1.1) with Xt = x. For M as in (3.2), let

L(m) = {n ∈ M : 0 ≤ n ≤ m}, m ∈ M,

L(M) = {n ∈ M : 0 ≤ n ≤ m, m ∈ M}, M ⊂ M,
(3.5)

be the set of nonnegative vectors lower than or equal to m or to those in M
respectively, with “≤” defined as in Section (1.4). For example, in Figure 3, L(3)
and L((1, 2)) are both given by all yellow and red nodes in each case. Let also

p(i; m, |i|) =
(
|m|
|i|

)−1 ∏
j≥1

(
mj

ij

)
(3.6)

be the multivariate hypergeometric probability function, with parameters
(m, |i|), evaluated at i.

Theorem 3.1. Let ψt be the prediction operator (1.4) associated to a FV process
with transition operator (2.3). Then the prediction operator yields as t-time-
ahead propagation the finite mixture of Dirichlet processes

ψt

(
Πα+

∑Km
i=1 miδy∗

i

)
=

∑
n∈L(m)

pm,n(t)Πα+
∑Km

i=1 niδy∗
i

, (3.7)
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with L(m) as in (3.5) and where

pm,m−i(t) =

{
e−λ|m|t, i = 0
C|m|,|m|−|i|(t)p(i; m, |i|), 0 < i ≤ m,

(3.8)

with

C|m|,|m|−|i|(t) =

( |i|−1∏
h=0

λ|m|−h

)
(−1)|i|

|i|∑
k=0

e−λ|m|−kt∏
0≤h≤|i|,h �=k(λ|m|−k − λ|m|−h)

,

λn = n(θ + n− 1)/2 and p(i; m, |i|) as in (3.6).

The transition operator of the FV process thus maps a Dirichlet process at
time t0 into a finite mixture of Dirichlet processes at time t0 + t. The mixing
weights are the transition probabilities of a death process on the Km dimen-
sional lattice, with Km being as in (3.7) the number of distinct values observed
in previous data. The result is obtained by means of the argument described
in Figure 1, which is based on the property that the operations of propagating
and projecting the signal commute. By projecting the current distribution of
the signal onto an arbitrary measurable partition, yielding a mixture of Dirich-
let distributions, we can exploit the results for finite dimensional WF signals
to yield the associated propagation (Papaspiliopoulos and Ruggiero, 2014). The
propagation of the original signal is then obtained by means of the character-
isation of mixtures of Dirichlet processes via their projections. See Section 4.2
for a proof. In particular, the result shows that under these assumptions, the
prediction operation (1.4) with the transition function (2.3) reduces to a finite
sum.

Iterating the update and propagation operations provided by Lemma 3.1 and
Theorem 3.1 allows to perform sequential Bayesian inference on a hidden signal
of FV type by means of a finite computation. Here the finiteness refers to the
fact that the infinite dimensionality due to the transition function of the signal
is avoided analytically, without resorting to any stochastic truncation method
for (2.3), given, e.g., by Walker (2007); Papaspiliopoulos and Roberts (2008),
and the computation can be conducted in closed form.

The following Proposition formalises the recursive algorithm that sequentially
evaluates the marginal posterior laws L(Xtn |Y1:n) of a partially observed FV
process by alternating the update and propagation operations, and identifies
the family of distributions which is closed with respect to these operations.
Define the family of finite mixtures of Dirichlet processes

FΠ =

{ ∑
m∈M

wmΠα+
∑Km

i=1 miδy∗
i

: M ⊂ M, |M | < ∞, wm ≥ 0,
∑
m∈M

wm = 1

}
,

with M as in (3.2) and for a fixed α as in (1.7). Define also

t(y,m) = m+ n, m ∈ Z
K
+

so that t(y,m) is (3.1) if n are the multiplicities of y, and

t(y,M) = {n : n = t(y,m),m ∈ M}, M ⊂ M. (3.9)
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Proposition 3.1. Let Xt be a FV process with transition function (2.3) and
invariant law Πα defined as in Section 2.1.1, and suppose data are collected as
in (1.1) with Xt = x. Then FΠ is closed under the application of the update
and prediction operators (1.3) and (1.4). Specifically,

φym+1:m+n

( ∑
m∈M

wmΠα+
∑Km

i=1 miδy∗
i

)
=

∑
n∈t(ym+1:m+n,M)

ŵnΠα+
∑Km+n

i=1 niδy∗
i

,

(3.10)

with t(y,M) as in (3.9),

ŵn ∝ wm PUα(ym+1:m+n | y1:m) for n = t(y,m) ,
∑

n∈t(y,M)

ŵn = 1 ,

and

ψt

( ∑
m∈M

wmΠα+
∑Km

i=1 miδy∗
i

)
=

∑
n∈L(M)

p(M,n, t)Πα+
∑Km

i=1 niδy∗
i

, (3.11)

with
p(M,n, t) =

∑
m∈M,m≥n

wmpm,n(t) (3.12)

and pm,n(t) as in (3.8).

Note that the update operation (3.10) preserves the number of components in
the mixture, while the prediction operation (3.7) increases its number. The intu-
ition behind this point is analogous to the illustration in Section 1.3, where the
prior (node (0, 0)) is updated to the posterior (node (2, 1)) and propagated into
a mixture (coloured nodes), with the obvious difference that here the maximum
number of distinct values is unbounded and not fixed.

Algorithm 1 describes in pseudo-code the implementation of the filter for FV
processes.

3.2. Filtering Dawson–Watanabe signals

Let now the signal Zt follow a DW process with transition function (2.9), with
invariant measure given by the law Γβ

α of a gamma random measure; see (2.5).
We assume that, given the signal state, observations are drawn from a Poisson
point process with intensity z, i.e., as in (2.6) with Zt = z. Analogously to the
FV case, since z is almost surely discrete, a sample y1:m = (y1, . . . , ym) from
(2.6) will feature Km ≤ m ties among the observations with positive probability.
To this end, we adopt the same notation as in Section 3.1.

The following Lemma states in our notation the special case of the conjugacy
for mixtures of gamma random measures which is of interest here; see Section
2.2.1.
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Algorithm 1: Filtering algorithm for FV signals

Data: ytj = (ytj ,1, . . . , ytj ,mtj
) at times tj , j = 0, . . . , J , as in (1.1)

Set prior parameters α = θP0, θ > 0, P0 ∈ M1(Y)
Initialise

y ← ∅, y∗ = ∅, m ← 0, m ← 0, M ← {0}, Km ← 0, w0 ← 1

For j = 0, . . . , J
Compute data summaries

read data ytj
m ← m+ card(ytj )
y∗ ← distinct values in y∗ ∩ ytj
Km ← card(y∗)

Update operation
for m ∈ M

n ← t(ytj ,m)
wn ← wm PUα(ytj | y)

M ← t(ytj ,M)

for m ∈ M
wm ← wm/

∑
�∈M w�

Xtj | y,ytj ∼
∑

m∈M wmΠ
α+

∑Km
i=1 miδy∗

i

Propagation operation
for n ∈ L(M)

wn ← p(M,n, tj+1 − tj) as in (3.12)

M ← L(M)
Xtj+1 | y,ytj ∼

∑
m∈M wmΠ

α+
∑Km

i=1 miδy∗
i

y ← y ∪ ytj

Lemma 3.2. Let M be as in (3.2), M ⊂ M, α as in (1.7) and z be the mixture
of gamma random measures

z ∼
∑
m∈M

wmΓβ+1

α+
∑Km

i=1 miδy∗
i

,

with
∑

m∈M wm = 1. Given an additional n-sized sample ym+1:m+n from z as
in (2.6) with multiplicities n, the update operator (1.3) yields

φym:m+n

( ∑
m∈M

wmΓβ+1

α+
∑Km

i=1 miδy∗
i

)
=

∑
m∈M

ŵmΓβ+2

α+
∑Km+n

i=1 (mi+ni)δy∗
i

, (3.13)

with ŵm as in (3.4).

The updated distribution is thus still a mixture of gamma random measures
with updated parameters and the same number of components.

The following Theorem formalises our main result on DW processes, showing
that the family of finite mixtures of gamma random measures is conjugate with
respect to data as in (2.6) with Zt = z.
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Theorem 3.2. Let ψt be the prediction operator (1.4) associated to a DW pro-
cess with transition operator (2.9). Let also L(M) be as in (3.5). Then the pre-
diction operator yields as t-time-ahead propagation the finite mixture of gamma
random measures

ψt

(
Γβ+s

α+
∑Km

i=1 miδy∗
i

)
=

∑
n∈L(m)

p̃m,n(t)Γ
β+St

α+
∑Km

i=1 niδy∗
i

, (3.14)

where
p̃m,n(t) = Bin(|m| − |n|; |m|, p(t))p(n; m, |n|), (3.15)

and

p(t) = St/S0, St =
βS0

(β + S0)eβt/2 − S0
, S0 = s. (3.16)

with p(n; m, |n|) as in (3.6) and Bin(|m| − |n|; |m|, p(t)) denoting a Binomial
pmf with parameters (|m|, p(t)) evaluated at |m| − |n|.

The transition operator of the DW process thus maps a gamma random mea-
sure into a finite mixture of gamma random measures. The time-varying mixing
weights factorise into the binomial transition probabilities of a one-dimensional
death process starting at the total size of previous data |m| and into a hyperge-
ometric pmf. The intuition is that the death process regulates how many levels
down the Km dimensional lattice are taken, and the hypergeometric probabil-
ity chooses which admissible path down the graph is chosen given the arrival
level. In Figure 3 we would have Km = 2 distinct values with multiplicites
m = (2, 1) and total size |m| = 3. Then, e.g., p̃(2,1),(1,1)(t), is given by the
probability Bin(1; 3, p(t)) that the death process jumps down one level from 3
in time t (Figure 3-(a)), times the probability p((1, 1); (2, 1), 2), conditional on
going down one level, of reaching (1, 1) from (2, 1) instead of (2, 0), i.e. of re-
moving one item from the pair and not the singleton observation. The Binomial
transition of the one-dimensional death process is subordinated to a determinis-
tic process St which modulates the sample size continuously in (3.14), starts at
the value S0 = s (cf. the left hand side of (3.14)) and converges to 0 as t → ∞.

The result is obtained by means of a similar argument to that used for The-
orem (3.1), jointly with the relation (2.8) (which here suffices to be applied at
the margin of the process). In particular, we exploit the fact that the projec-
tion of a DW process onto an arbitrary partition of the space yields a vector
of independent CIR processes. See Section 4.3 for a proof. Analogously to the
FV case, the result shows that under the present assumptions, the prediction
operation (1.4) with the transition function (2.9) reduces to a finite sum.

The following Proposition formalises the recursive algorithm that evaluates
the marginal posterior laws L(Xtn |Y1:n) of a partially observed DW process,
allowing to perform sequential Bayesian inference on a hidden signal of DW
type by means of a finite computation and within the family of finite mixtures
of gamma random measures. Define such family as

FΓ =

{ ∑
m∈M

wmΓβ+s

α+
∑Km

i=1 miδy∗
i

:
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s > 0, M ⊂ M, |M | < ∞, wm ≥ 0,
∑
m∈M

wm = 1

}
,

with M as in (3.2).

Proposition 3.2. Let Zt be a DW process with transition function (2.9) and
invariant law Γβ

α defined as in Section 2.2.1, and suppose data are collected as
in (2.6) with Zt = z. Then FΓ is closed under the application of the update and
prediction operators (1.3) and (1.4). Specifically,

φym+1:m+n

( ∑
m∈M

wmΓβ+s

α+
∑Km

i=1 miδy∗
i

)
=

∑
n∈t(ym+1:m+n,M)

ŵnΓ
β+s+1

α+
∑Km+n

i=1 niδy∗
i

,

(3.17)
with t(y,M) as in (3.9), ŵn as in Proposition 3.1, and

ψt

( ∑
m∈M

wmΓβ+s

α+
∑Km

i=1 miδy∗
i

)
=

∑
n∈L(M)

p(M,n, t)Γβ+St

α+
∑Km

i=1 niδy∗
i

. (3.18)

with
p(M,n, t) =

∑
m∈M,m≥n

wmp̃m,n(t) (3.19)

and p̃m,n(t) as in (3.15) and St as in (3.16).

Algorithm 2 describes in pseudo-code the implementation of the filter for DW
processes.

4. Theory for computable filtering of FV and DW signals

4.1. Computable filtering and duality

A filter is said to be computable if the sequence of filtering distributions (the
marginal laws of the signal given past and current data) can be characterised by
a set of parameters whose computation is achieved at a cost that grows at most
polynomially with the number of observations. See, e.g., Chaleyat-Maurel and
Genon-Catalot (2006). Special cases of this framework are finite dimensional
filters for which the computational cost is linear in the number of observations,
the Kalman filter for linear Gaussian HMMs being the reference model in this
setting.

Let X denote the state space of the HMM. Papaspiliopoulos and Ruggiero
(2014) showed that the existence of a computable filter can be established if the
following structures are embedded in the model:

Conjugacy : there exists a function h(x,m, θ) ≥ 0, where x ∈ X , m ∈ Z
K
+ for

some K ∈ N, and θ ∈ R
l for some l ∈ N, and functions t1(y,m) and

t2(y, θ) such that
∫
h(x,m, θ)π(dx) = 1, for all m and θ, and

φy(h(x,m, θ)π(dx)) = h(x, t1(y,m), t2(y, θ))π(dx).
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Algorithm 2: Filtering algorithm for DW signals

Data: (mtj ,ytj ) = (mtj , ytj ,1, . . . , ytj ,mtj
) at times tj , j = 0, . . . , J , as in (2.6)

Set prior parameters α = θP0, θ > 0, P0 ∈ M1(Y), β > 0
Initialise

y ← ∅, y∗ = ∅, m ← 0, m ← 0, M ← {0}, Km ← 0, w0 ← 1, s = 0

For j = 0, . . . , J
Compute data summaries

read data ytj
m ← m+ card(ytj )
y∗ ← distinct values in y∗ ∩ ytj
Km ← card(y∗)

Update operation
for m ∈ M

n ← t(ytj ,m)
wn ← wm PUα(ytj | y)

M ← t(ytj ,M)

for m ∈ M
wm ← wm/

∑
�∈M w�

Xtj | y,ytj ∼
∑

m∈M wmΓβ+s

α+
∑Km

i=1 miδy∗
i

Propagation operation
for n ∈ L(M)

wn ← p(M,n, tj+1 − tj) as in (3.19)

M ← L(M)
s′ ← Stj+1−tj as in (3.16), S0 = s

Xtj+1 | y,ytj ∼
∑

m∈M wmΓβ+s′

α+
∑Km

i=1 miδy∗
i

s ← s′

y ← y ∪ ytj

Here h(x,m, θ)π(dx) identifies a parametric family of distributions which
is closed under Bayesian updating with respect to the observation model.
Two types of parameters are considered, a multi-index m and a vector of
real-valued parameters θ. The update operator φy maps the distribution
h(x,m, θ)π(dx), conditional on the new observation y, into a density of
the same family with updated parameters t1(y,m) and t2(y, θ). Typically
π(dx) is the prior and h(x,m, θ) is the Radon–Nikodym derivative of the
posterior with respect to the prior, when the model is dominated. See, e.g.,
(4.6) below for an example of such h when π is the Dirichlet distibution.

Duality : there exists a two-component Markov process (Mt,Θt) with state-
space Z

K
+ × R

l and infinitesimal generator

(Ag)(m, θ) =λ(|m|)ρ(θ)
K∑
i=1

mi[g(m−ei, θ)−g(m, θ)]+

l∑
i=1

ri(θ)
∂g(m, θ)

∂θ

acting on bounded functions, such that (Mt,Θt) is dual to Xt with respect
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to the function h, i.e., it satisfies

E
x[h(Xt,m, θ)] = E

(m,θ)[h(x,Mt,Θt)], (4.1)

for all x ∈ X ,m ∈ Z
K
+ , θ ∈ R

l, t ≥ 0. Here Mt is a death process on Z
K
+ ,

i.e. a non-increasing pure-jump continuous time Markov process, which
jumps from m to m− ei at rate λ(|m|)miρ(θ) and is eventually absorbed
at the origin; Θt is a deterministic process assumed to evolve autonomously
according to a system of ordinary differential equations r(Θt) = dΘt/dt for
some initial condition Θ0 = θ0 and a suitable function r : Rl → R

l, whose
ith coordinate is denoted by ri in the generator A above and modulates
the death rates of Mt through ρ(θ). The expectations on the left and
right hand sides are taken with respect to the law of Xt and (Mt,Θt)
respectively, conditional on the respective starting points.

The duality condition (4.1) hides a specific distributional relationship be-
tween the signal process Xt, which can be thought of as the forward process,
and the dual process (Mt,Θt), which can be thought of as unveiling some fea-
tures of the time reversal structure of Xt. Informally, the death process can be
considered as the time reversal of collecting data points if they come at random
times, and the deterministic process, in the CIR example (see Section 1.3), can
be considered as a continuous reversal of the sample size process, which instead
increases by steps. For example, in the well known duality relation between the
WF diffusion and the block counting process of Kingman’s coalescent, the lat-
ter describes the number of surviving non mutant lines of descent in the tree
backwards in time which tracks the ancestors of a sample of individuals in the
current population. See Griffiths and Spanò (2010). See also Jansen and Kurt
(2014) for a review of duality structures for Markov processes.

Note that a local sufficient condition for (4.1), usually easier to check, is

(Ah(·,m, θ))(x) = (Ah(x, ·, ·))(m, θ), (4.2)

for all ∀x ∈ X ,m ∈ Z
K
+ , θ ∈ R

l, where A is as above and A denotes the
infinitesimal generator of the signal Xt.

Under the above conditions, Proposition 2.3 of Papaspiliopoulos and Ruggiero
(2014) shows that given the family of distributions

F =
{
h(x,m, θ)π(dx), m ∈ Z

K
+ , θ ∈ R

l
}
,

if ν ∈ F , then the filtering distribution νn which satisfies (1.2) is a finite mixture
of distributions in F with parameters that can be computed recursively. This in
turn implies that the family of finite mixtures of elements of F is closed under
the iteration of update and prediction operations.

The interpretation is along the lines of the illustration of Section 1.3. Here
π, the stationary measure of the forward process, plays the role of the prior
distribution and is represented by the origin of ZK

+ (see Figure 3), which encodes
the lack of information on the data generating distribution. Given a sample from
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the conjugate observation model, a single component posterior distribution is
identified by a node different from the origin in Z

K
+ . The propagation operator

then gives positive mass at all nodes which lie beneath the current nodes with
positive mass. By iteration of these operations, the filtering distribution evolves
within the family of finite mixtures of elements of F .

4.2. Computable filtering for Fleming–Viot processes

In the present and the following Section we adopt the same notation used in
Section 3. We start by formally stating the precise form for the transition prob-
abilities of the death processes involved in the FV filtering. Here the key point
to observe is that since the number of distinct types observed in the discrete
samples from a FV process is Km ≤ m, we only need to consider a generic
death processes on Z

Km
+ and not on Z

∞
+ . For FV processes, the deterministic

component Θt is constant: here we set Θt = 1 for every t and we omit θ from
the arguments of the duality function h.

The following Lemma will provide the building block for the proof of Theorem
3.1. In particular, it shows that the transition probabilities of the dual death
process are of the form required as coefficients in the expansion (3.8).

Lemma 4.1. Let Mt ⊂ Z
∞
+ be a death process that starts from M0 = m0 ∈ M,

M as in (3.2), and jumps from m to m − ei at rate mi(θ + m − 1)/2, with
generator

θ + |m| − 1

2

∑
i≥1

mih(x,m− ei)−
|m|(θ + |m| − 1)

2
h(x,m).

Then the transition probabilities for Mt are

pm,m−i(t) =

{
e−λ|m|t, i = 0,
C|m|,|m|−|i|(t)p(i; m, |i|), 0 < i ≤ m,

(4.3)

where

C|m|,|m|−|i|(t) =

( |i|−1∏
h=0

λ|m|−h

)
(−1)|i|

|i|∑
k=0

e−λ|m|−kt∏
0≤h≤|i|,h �=k(λ|m|−k − λ|m|−h)

,

λn = n(θ + n− 1)/2 and p(i; m, |i|) as in (3.6), and 0 otherwise.

Proof. Since |m0| < ∞, for any such m0 the proof is analogous to that of
Proposition 2.1 in Papaspiliopoulos and Ruggiero (2014).

The following Proof of the conjugacy for mixtures of Dirichlet processes is
due to Antoniak (1974) and outlined here for the ease of the reader.

Proof of Lemma 3.1. The distribution x is a mixture of Dirichlet processes with
mixing measure H(·) =

∑
m∈M wmδm(·) on M and transition measure

αm(·) = α(·) +
Km∑
j=1

mjδy∗
j
(·) = α(·) +

m∑
i=1

δyi(·),
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where y1:m is the full sample. See Section 2.1.1. Lemma 1 and Corollary 3.2’ in
Antoniak (1974) now imply that

x | m,ym+1:m+n ∼ Παm(·)+
∑n

i=m+1 δyi (·) = Πα(·)+
∑n

i=1 δyi

and H(m | ym+1:m+n) ∝ wm PUα(ym+1:m+n | y1:m).

As preparatory for the main result on FV processes, we derive here in detail
the propagation step for WF processes, which is due to Papaspiliopoulos and
Ruggiero (2014). Let

AKf(x) =
1

2

K∑
i,j=1

xi(δij − xj)
∂2f(x)

∂xi∂xj
+

1

2

K∑
i=1

(αi − θxi)
∂f(x)

∂xi
(4.4)

be the infinitesimal generator of a K-dimensional WF diffusion, with αi > 0 and∑
i αi = θ. Here δij denotes Kronecker delta and AK acts on C2(ΔK) functions,

with

ΔK =
{
x ∈ [0, 1]K :

∑K

i=1
xi = 1

}
.

Proposition 4.1. Let Xt be a WF diffusion with generator (4.4) and Dirichlet
invariant measure on (4.5) denoted πα. Then, for any m ∈ Z

∞
+ such that |m| <

∞,

ψt

(
πα+m

)
=

∑
0≤i≤m

pm,m−i(t)πα+m−i, (4.5)

with pm,m−i(t) as in (4.1).

Proof. Define

h(x,m) =
Γ(θ + |m|)

Γ(θ)

K∏
i=1

Γ(αi)

Γ(αi +mi)
xm, (4.6)

which is in the domain of AK . A direct computation shows that

AKh(x,m)

=

K∑
i=1

(
αimi

2
+

(
mi

2

))
Γ(θ + |m|)

Γ(θ)

K∏
j=1

Γ(αj)

Γ(αj +mj)
xm−ei

−
K∑
i=1

(
θmi

2
+

(
mi

2

)
+

1

2
mi

∑
j �=i

mj

)
Γ(θ + |m|)

Γ(θ)

K∏
j=1

Γ(αj)

Γ(αj +mj)
xm

=
θ + |m| − 1

2

K∑
i=1

mih(x,m− ei)−
|m|(θ + |m| − 1)

2
h(x,m).

Hence, by (4.2), the death process Mt on Z
K
+ , which jumps from m to m − ei

at rate mi(θ + |m| − 1)/2, is dual to the WF diffusion with generator AK with
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respect to (4.6). From the definition (1.4) of the prediction operator now we
have

ψt

(
πα+m

)
(dx′) =

∫
X
h(x,m)πα(dx)Pt(x, dx

′)

=

∫
X
h(x,m)πα(dx

′)Pt(x
′, dx)

=πα(dx
′)Ex′

[h(Xt,m)]

=πα(dx
′)Em[h(x′,Mt)]

=πα(dx
′)

∑
0≤i≤m

pm,m−i(t)h(x
′,m− i)

=
∑

0≤i≤m

pm,m−i(t)πα+m−i(dx
′)

where the second equality holds in virtue of the reversibility of Xt with respect
to πα, the fourth by the duality (4.1) established above together with (4.3) and
the fifth from Lemma 4.1.

The following proves the propagation step for FV processes by making use
of the previous result and by exploiting the strategy outlined in Figure 1.

Proof of Theorem 3.1. Fix an arbitrary partition (A1, . . . , AK) of Y with K
classes, and denote by m̃ the multiplicities resulting from binning y1:m into the
corresponding cells. Then

Πα+
∑Km

i=1 miδy∗
i

(A1, . . . , AK) ∼ πα+m̃, (4.7)

where Πα+
∑Km

i=1 miδy∗
i

(A1, . . . , AK) denotes the law Πα+
∑Km

i=1 miδy∗
i

(·) evaluated
on (A1, . . . , AK). Since the projection onto the same partition of the FV process
is a K-dimensional WF process (see Section 2.1.2), from Proposition 4.1 we have

ψt

(
Πα+

∑Km
i=1 miδy∗

i

(A1, . . . , AK)
)
= ψt(πα+m̃) =

∑
n∈L(m̃)

pm̃,n(t)πα+n.

Furthermore, since a Dirichlet process is characterised by its finite-dimensional
projections, now it suffices to show that∑

n∈L(m)

pm,n(t)Πα+
∑Km

i=1 niδy∗
i

(A1, . . . , AK) =
∑

n∈L(m̃)

pm̃,n(t)πα+n

so that the operations of propagation and projection commute. Given (4.7),
we only need to show that the mixture weights are consistent with respect to
fragmentation and merging of classes, that is∑

i∈L(m): ĩ=n

pm,i(t) = pm̃,n(t),
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where ĩ denotes the projection of i onto (A1, . . . , AK). Using (3.8), the previous
in turn reduces to ∑

i∈L(m): ĩ=n

p(i; m,m− i) = p(n; m̃,m− n),

which holds by the marginalization properties of the multivariate hypergeomet-
ric distribution. Cf. Johnson et al. (1997), equation 39.3.

The last needed result to obtain the recursive representation of Proposition
3.1 reduces now to a simple sum rearrangement.

Proof of Proposition 3.1. The update operation (3.10) follows directly from
Lemma 3.1. The prediction operation (3.11) for elements of FΠ follows from
Theorem 3.1 together with the linearity of (1.4) and a rearrangement of the
sums, so that

ψt

( ∑
m∈M

wmΠα+
∑Km

i=1 miδy∗
i

)
=

∑
m∈M

wm

∑
n∈L(m)

pm,n(t)Πα+
∑Km

i=1 niδy∗
i

=
∑

n∈L(M)

( ∑
m∈M,m≥n

wmpm,n(t)

)
Πα+

∑Km
i=1 niδy∗

i

.

4.3. Computable filtering for Dawson–Watanabe processes

The following Lemma, used later, recalls the propagation step for one dimen-
sional CIR processes.

Lemma 4.2. Let Zi,t be a CIR process with generator (4.8) and invariant
distribution Ga(αi, β). Then

ψt

(
Ga(αi +m,β + s)

)
=

∑m

j=0
Bin(m− j; m, p(t))Ga(αi +m− j, β + St),

where

p(t) = St/S0, St =
βS0

(β + S0)eβt/2 − S0
, S0 = s.

Proof. It follows from Section 3.1 in Papaspiliopoulos and Ruggiero (2014) by
letting α = δ/2, β = γ/σ2 and St = Θt − β.

As preparatory for proving the main result on DW processes, assume the
signal Zt = (Z1,t, . . . , ZK,t) is a vector of independent CIR components Zi,t

each with generator

Bif(zi) =
1

2
(αi − βzi)f

′(zi) +
1

2
zif

′′(zi), (4.8)

acting on C2([0,∞)) functions which vanish at infinity. See Kawazu and Watan-
abe (1971). The next proposition identifies the dual process for Zt.



Conjugacy of Dirichlet and gamma dependent processes 3481

Theorem 4.1. Let Zi,t, i = 1, . . . ,K, be independent CIR processes each with
generator (4.8) parametrised by (αi, β), respectively. For α ∈ R

K
+ and θ = |α|,

define hC
αi

: R+ × Z+ × R+ as

hC
αi
(z,m, s) =

Γ(αi)

Γ(αi +m)

(
β + s

β

)αi

(β + s)mzme−sz.

Let also hW : RK
+ × Z

K
+ be as in (4.6) and define h : RK

+ × Z
K
+ × R+ as

h(z,m, s) = hC
θ (|z|, |m|, s)hW (x,m),

where x = z/|z|. Then the joint process {(Z1,t, . . . , ZK,t), t ≥ 0} is dual, in the
sense of (4.1), to the process {(Mt, St), t ≥ 0} ⊂ Z

K
+ × R+ with generator

Bg(m, s) =
1

2
|m|(β + s)

K∑
i=1

mi

|m| [g(m− ei, s)− g(m, s)]

− 1

2
s(β + s)

∂g(m, s)

∂s

(4.9)

with respect to h(z,m, s).

Proof. Throughout the proof, for ease of notation we will write hC
i instead of

hC
αi
. Note first that for all m ∈ Z

K
+ we have

K∏
i=1

hC
i (zi,mi, s) = hC

θ (|z|, |m|, s)hW (x,m), (4.10)

where xi = zi/|z|, which follows from direct computation by multiplying and

dividing by the correct ratios of gamma functions and by writing
∏K

i=1 z
mi
i =

|z|m
∏K

i=1 x
mi
i . We show the result for K = 2, from which the statement for

general K case follows easily. From the independence of the CIR processes, the
generator (Z1,t, Z2,t) applied to the left hand side of (4.10) is

(B1 + B2)h
C
1 h

C
2 =hC

2 B1h
C
1 + hC

1 B2h
C
2 . (4.11)

A direct computation shows that

Bih
C
i =

mi

2
(β + s)hC

i (zi,mi − 1, s) +
s

2
(αi +mi)h

C
i (zi,mi + 1, s)

− 1

2
(s(αi +mi) +mi(β + s))hC

i (zi,mi, s).

Substituting in the right hand side of (4.11) and collecting terms with the same
coefficients gives

β + s

2

[
m1h

C
1 (z1,m1 − 1, s)hC

2 (z2,m2, s) +m2h
C
1 (z1,m1, s)h

C
2 (z2,m2 − 1, s)

]
+

s

2

[
(α1 +m1)h

C
1 (z1,m1 + 1, s)hC

2 (z2,m2, s)
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+ (α2 +m2)h
C
1 (z1,m1, s)h

C
2 (z2,m2 + 1, s)

]
− 1

2
(s(α+m) +m(β + s))hC

1 (z1,m1, s)h
C
2 (z2,m2, s)

with α = α1 + α2 and m = m1 +m2. From (4.10) we now have

β + s

2
hC
θ (|z|,m− 1, s)

[
m1h

W (x,m− e1, s) +m2h
W (x,m− e2, s)

]
+

s

2
hC
θ (|z|,m+ 1, s)

[
(α1 +m1)h

W (x,m+ e1, s)

+ (α2 +m2)h
W (x,m+ e2, s)

]
− 1

2
(s(α+m) +m(β + s))hC

θ (|z|,m, s)hW (x,m, s).

Then

(B1+B2)h
C
1 h

C
2

=
β + s

2

[
m1h(z,m− e1, s) +m2h(z,m− e2, s)

]
+

s

2

[
(α1 +m1)h(z,m+ e1, s) + (α2 +m2)h(z,m+ e2, s)

]
− 1

2
(s(α+m) +m(β + s))h(z,m, s).

(4.12)

Noting now that

∂

∂s
h(z,m, s) =

α+m

β + s
h(z,m, s)− α1 +m1

β + s
h(z,m+ e1, s)

− α2 +m2

β + s
h(z,m+ e2, s),

an application of (4.9) on h(z,m, s) shows that (Bh(z, ·, ·))(m, s) equals the
right hand side of (4.12), so that (4.2) holds, giving the result.

The previous Theorem extends the gamma-type duality showed for one di-
mensional CIR processes in Papaspiliopoulos and Ruggiero (2014). Although
the components of Zt are independent, the result is not entirely trivial. Indeed
the one-dimensional CIR process is dual to a two-components process given by
a one-dimensional death process and a one-dimensional deterministic dual. The
previous result shows that K independent CIR processes have dual not given
by a K independent versions of the CIR dual, but by a death process on Z

K
+

modulated by a single deterministic process. Specifically, here the dual compo-
nent Mt is a K-dimensional death process on Z

K
+ which, conditionally on St,

jumps from m to m − ei at rate 2mi(β + St), and St ∈ R+ is a nonnegative
deterministic process driven by the logistic type differential equation

dSt

dt
= −1

2
St(β + St). (4.13)
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The next Proposition formalises the propagation step for multivariate CIR pro-
cesses. Denote by Ga(α, β) the product of gamma distributions

Ga(α1, β)× · · · ×Ga(αK , β),

with α = (α1, . . . , αK).

Proposition 4.2. Let {(Z1,t, . . . , ZK,t), t ≥ 0} be as in Theorem 4.1. Then

ψt

(
Ga(α+m, β + s)

)
= (4.14)

=

|m|∑
i=0

Bin(|m| − i; |m|, p(t))Ga(θ + |m| − i, β + St)

×
∑

0≤i≤m,|i|=i

p(i; m, i)πα+m−i,

where Bin(|m| − i; |m|, p(t)) and p(i; m, i) are as in (3.15).

Proof. From independence we have

ψt

(
Ga(α+m, β + s)

)
=

K∏
i=1

ψt

(
Ga(αi +mi, β + s)

)
.

Using Lemma 4.2 in the Appendix, the previous equals

K∏
i=1

mi∑
j=0

Bin(mi − j; mi, p(t))Ga(αi +mi − j, β + St)

=

m1∑
i1=0

Bin(m1 − i1; m1, p(t))Ga(α1 +m1 − i1, β + St)

× · · · ×
mK∑
iK=0

Bin(mK − iK ; mK , p(t))Ga(αK +mK − iK , β + St).

Using now the fact that a product of Binomials equals the product of a Binomial
and an hypergeometric distribution, we have

|m|∑
i=0

Bin(|m| − i; |m|, p(t))
∑

0≤i≤m,|i|=i

p(i; m, i)

K∏
j=1

Ga(αj +mj − ij , β + St)

which, using (2.8), yields (4.14). Furthermore, (3.16) is obtained by solving
(4.13) and by means of the following argument. The one dimensional death
process that drives |Mt| in Theorem 4.1, jumps from |m| to |m| − 1 at rate
|m|(β + St)/2, see (4.9). The probability that |Mt| remains in |m| in [0, t] if it
is in |m| at time 0, here denoted P (|m| | |m|, St), is then

P (|m| | |m|, St) = exp

{
− |m|

2

∫ t

0

(β + Su)du

}
=

(
β

(β + s)eβt/2 − s

)|m|
.
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The probability of a jump from |m| to |m| − 1 occurring in [0, t] is

P (|m| − 1 | |m|, St)

=

∫ t

0

exp

{
− |m|

2

∫ s

0

(β + Su)du

}
|m|
2

Ss

× exp

{
− |m| − 1

2

∫ t

s

(β + Su)du

}
ds

=
|m|
2

exp

{
− |m|

2

∫ t

0

(β + Su)du

}
×

∫ t

0

Ss exp

{(
|m|
2

− |m| − 1

2

)∫ t

s

(β + Su)du

}
ds

= |m| exp
{
− |m|

2

∫ t

0

(β + Su)du

}
×

(
1− exp

{(
|m|
2

− |m| − 1

2

)∫ t

0

(β + Su)du

})
= |m|

(
exp

{
− |m|

2

∫ t

0

(β + Su)du

}
− exp

{
− |m| − 1

2

∫ t

0

(β + Su)du

})
= |m|

(
β

(β + s)eβt/2 − s

)|m|−1 (
1− β

(β + s)eβt/2 − s

)
.

Iterating the argument leads to conclude that the death process jumps from |m|
to |m| − i in [0, t] with probability Bin(|m| − i | |m|, p(t)).

Note that when s ∈ N, Ga(αi+m,β+ s) is the posterior of a Ga(αi, β) prior
given s Poisson observations with total count m. Hence the dual component
Mi,t is interpreted as the sum of the observed values of type i, and St ⊂ R+

as a continuous version of the sample size. In particular, (4.14) shows that a
multivariate CIR propagates a vector of gamma distributions into a mixture
whose kernels factorise into a gamma and a Dirichlet distribution, and whose
mixing weights are driven by a one-dimensional death process with Binomial
transitions together with hypergeometric probabilities for allocating the masses.

The following Proof of the conjugacy for mixtures of gamma randommeasures
is due to Lo (1982) and outlined here for the ease of the reader.

Proof of Lemma 3.2. Since zm := (z | m) ∼ Γβ+s

α+
∑Km

i=1 miδy∗
i

, from (2.6) we have

ym+1, . . . , yn | z,m, n
iid∼ zm/|zm|, n | zm ∼ Po(|zm|).

Using (2.8) we have

Γβ+s

α+
∑Km

i=1 miδy∗
i

= Ga(θ + |m|, β + s)Πα+
∑Km

i=1 miδy∗
i

,
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that is |zm| and zm/|zm| are independent with Ga(θ + |m|, β + s) and
Πα+

∑Km
i=1 miδy∗

i

distribution respectively. Then we have

zm | ym+1:m+n ∼ Ga(θ + |n|, β + s+ 1)Π
α+

∑Km+n
i=1 niδy∗

i

= Γβ+s+1

α+
∑Km+n

i=1 niδy∗
i

where n are the multiplicities of the distinct values in y1:n. Finally, by the
independence of |zm| and zm/|zm|, the conditional distribution of the mixing
measure follows by the same argument used in Proposition 3.1.

We are now ready to prove the main result for DW processes.

Proof of Theorem 3.2. Fix a partition (A1, . . . , AK) of Y . Then by Proposition
4.2

ψt

(
Γβ+s

α+
∑Km

i=1 miδy∗
i

(A1, . . . , AK)
)

=

|m|∑
i=0

Bin(|m| − i; |m|, p(t))Ga(θ + |m| − i, β + St)

×
∑

0≤i≤m̃,|i|=i

p(i; m̃, i)πα+m̃−i,

where Γβ+s

α+
∑Km

i=1 miδy∗
i

(A1, . . . , AK) denotes Γβ+s

α+
∑Km

i=1 miδy∗
i

(·) evaluated on (A1,

. . . , AK) and m̃ are the multiplicities yielded by the projection of m onto
(A1, . . . , AK). Use now (2.8) and (3.15) to write the right hand side of (3.14) as∑

n∈L(m)

p̃m,n(t)Γ
β+St

α+
∑Km

i=1 niδy∗
i

=

|m|∑
i=0

Bin(|m| − i; |m|, p(t))Ga(θ + |m| − i, β + St)

×
∑

0≤n≤m,|n|=i

p(n; m, i)Πα+
∑Km

j=1 (mj−nj)δy∗
j

.

Since the inner sum is the only term which depends on multiplicities and since
Dirichlet processes are characterised by their finite-dimensional projections, we
are only left to show that∑

0≤n≤m,|n|=i

p(n; m, i)Πα+
∑Km

j=1 (mj−nj)δy∗
j

(A1, . . . , AK)

=
∑

0≤i≤m̃,|i|=i

p(i; m̃, i)πα+m̃−i

which, in view of (4.7), holds if∑
0≤n≤m:ñ=i

p(i; m, i) = p(i; m̃, i),
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where ñ denotes the projection of n onto (A1, , . . . , AK). This is the consistency
with respect to merging of classes of the multivariate hypergeometric distribu-
tion, and so the result now follows by the same argument at the end of the proof
of Theorem 3.1.

We conclude by proving the recursive representation of Proposition 3.1, whose
argument is analogous to the FV case.

Proof of Proposition 3.2. The update operation (3.17) follows directly from
Lemma 3.1. The prediction operation (3.11) for elements of FΠ follows from
Theorem 3.2 together with the linearity of (1.4) and a rearrangement of the
sums, so that

ψt

( ∑
m∈M

wmΓβ+s

α+
∑Km

i=1 miδy∗
i

)
=

∑
m∈M

wm

∑
n∈L(m)

pm,n(t)Γ
β+St

α+
∑Km

i=1 miδy∗
i

=
∑

n∈L(M)

( ∑
m∈M,m≥n

wmpm,n(t)

)
Γβ+St

α+
∑Km

i=1 miδy∗
i

.

As a final comment concerning the strategy followed for proving the propaga-
tion result in Theorems 3.1 and 3.2, one could be tempted to work directly with
the duals of the FV and DW processes (Dawson and Hochberg, 1982; Ethier
and Kurtz, 1993; Etheridge, 2000). However, this is not optimal, due to the
high degree of generality of such dual processes. The simplest path for deriving
the propagation step for the nonparametric signals appears to be resorting to
the corresponding parametric dual by means of projections and by exploiting
the filtering results for those cases.
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(2016). Generalized Pólya urn for time-varying Pitman–Yor processes. J.
Mach. Learn. Res., in press.

Caron, F. and Teh, Y. W. (2012). Bayesian nonparametric models for ranked
data. Neural Information Processing Systems (NIPS 2012), Lake Tahoe, USA,
2012.

Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1985). A theory of the term
structure of interest rates. Econometrica 53, 385–407. MR0785475

Chaleyat-Maurel, M. and Genon-Catalot, V. (2006). Computable
infinite-dimensional filters with applications to discretized diffusion processes.
Stoch. Proc. Appl. 116, 1447–1467. MR2260743

Chaleyat-Maurel, M. and Genon-Catalot, V. (2009). Filtering the
Wright–Fisher diffusion. ESAIM Probab. Stat. 13, 197–217. MR2518546

Daley, D. J. and Vere-Jones (2008). An introduction to the theory of point
processes, Vol. 2. Springer, New York.

Dawson, D. A. (1993). Measure-valued Markov processes. Ecole d’Eté de Prob-
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