Ontology-Based Visualization of Characters’ Intentions

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/149824 since 2016-11-28T17:07:42Z

Publisher:
Springer International Publishing

Published version:
DOI:10.1007/978-3-319-12337-0_18

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is the author's final version of the contribution published as:

The publisher's version is available at:
http://link.springer.com/content/pdf/10.1007/978-3-319-12337-0_18

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/149824
Lecture Notes in Computer Science 8832

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
 Lancaster University, UK
Takeo Kanade
 Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
 University of Surrey, Guildford, UK
Jon M. Kleinberg
 Cornell University, Ithaca, NY, USA
Alfred Kobsa
 University of California, Irvine, CA, USA
Friedemann Mattern
 ETH Zurich, Switzerland
John C. Mitchell
 Stanford University, CA, USA
Moni Naor
 Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz
 University of Bern, Switzerland
C. Pandu Rangan
 Indian Institute of Technology, Madras, India
Bernhard Steffen
 TU Dortmund University, Germany
Demetri Terzopoulos
 University of California, Los Angeles, CA, USA
Doug Tygar
 University of California, Berkeley, CA, USA
Gerhard Weikum
 Max Planck Institute for Informatics, Saarbruecken, Germany
Interactive Storytelling

7th International Conference on Interactive Digital Storytelling, ICIDS 2014
Singapore, Singapore, November 3-6, 2014
Proceedings

Springer
Volume Editors

Alex Mitchell
National University of Singapore
Department of Communications and New Media
BLK AS6, #03-22, 11 Computing Drive, Singapore 117416, Singapore
E-mail: alexm@nus.edu.sg

Clara Fernández-Vara
New York University, NYU Game Center
2 Metrotech Center, Room 854, Brooklyn, NY 11201, USA
E-mail: clara.fernandez@nyu.edu

David Thue
Reykjavik University, School of Computer Science
Menntavegur 1, Nauthólsvík, 101 Reykjavík, Iceland
E-mail: davidthue@ru.is

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-12336-3 e-ISBN 978-3-319-12337-0
DOI 10.1007/978-3-319-12337-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014950796

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)
Preface

This volume contains the proceedings of ICIDS 2014: The 7th International Conference on Interactive Digital Storytelling. ICIDS is the premier venue for researchers, practitioners, and theorists to present recent results, share novel techniques and insights, and exchange ideas about this new storytelling medium. Interactive digital storytelling is an exciting area in which narrative, computer science, and art converge to create new expressive forms. The combination of narrative and computation has considerable untapped potential, ranging from artistic projects to interactive documentaries, from assistive technologies and intelligent agents to serious games, education, and entertainment. In 2014, ICIDS took place in Singapore at the National University of Singapore, marking the conference’s first venture to Asia.

This year the review process was extremely selective and many good papers could not be accepted for the final program. Altogether, we received 67 submissions (42 full papers, 20 short papers, and five demonstrations). Out of the 42 submitted full papers, the Program Committee selected only 12 submissions for presentation and publication as full papers, which corresponds to an acceptance rate of less than 29% for full papers. In addition, we accepted eight submissions as short papers, seven submissions as posters, and five submissions as demonstrations. In total, the ICIDS 2014 program featured contributions from 26 different institutions in 18 different countries worldwide.

The conference program also highlighted three invited speakers: Bruce Nesmith, Design Director, Bethesda Game Studios, and lead designer of Skyrim; Emily Short, narrative design consultant with a special interest in interactive dialogue, and author of over a dozen works of interactive fiction, including Galatea and Alabaster; and William Uricchio, Professor of Comparative Media Studies at MIT, and Principal Investigator of MIT’s Open Documentary Lab and the MIT Game Lab (formerly the Singapore-MIT GAMBIT Game Lab). The titles of their talks were:

- Bruce Nesmith:
 \textit{The Story of Radiant Story}
- Emily Short:
 \textit{Narrative and Simulation in Interactive Dialogue}
- William Uricchio:
 \textit{Old Dogs—New Tricks: Lessons from the Interactive Documentary}

In addition to paper and poster presentations, ICIDS 2014 featured five post-conference workshops: (1) An Introduction to Game Mastering: How to Use Tabletop Role-Playing Games to Collaboratively Produce and Create Stories, (2) Managing Informational Interactive Digital Storytelling Projects,
(3) Narrative Analysis of Interactive Digital Storytelling, (4) Future Perspectives for Interactive Digital Narrative, and (5) Story Modelling and Authoring.

In conjunction with the academic conference, an art exhibition was held at ArtScience Museum at Marina Bay Sands. The art exhibition featured a selection of 10 artworks selected from 39 submissions by an international jury.

We would like to express our sincere appreciation for the time and effort invested by our authors in preparing their submissions, the diligence of our Program Committee and art exhibition jurors in performing their reviews, the insight and inspiration offered by our invited speakers, and the thought and creativity provided by the organizers of our workshops. Special thanks are also due to our sponsors and supporting organizations, and to the ICIDS Steering Committee for granting us the opportunity to host ICIDS 2014. Thank you!

November 2014

Alex Mitchell
Clara Fernández-Vara
David Thue
Organization

General Chair
Alex Mitchell National University of Singapore

Program Chairs
Clara Fernández-Vara New York University
David Thue Reykjavík University

Art Exhibition Chair
Jing Chiang National University of Singapore

Program Committee
Ruth Aylett Heriot-Watt University, UK
Byung-Chull Bae Sungkyunkwan University, South Korea
Udi Ben-Arie Tel Aviv University, Israel
Brunhild Bushoff Sagasnet Munich, Germany
Rogelio E. Cardona-Rivera North Carolina State University, USA
Marc Cavazza Teesside University, UK
Ronan Champagnat L3i - Université de La Rochelle, France
Yum-Gyung Cheong IT University of Copenhagen, Denmark
Sharon Lynn Chu Texas A&M University, USA
Patrick John Coppock University of Modena and Reggio Emilia, Italy
Chris Crawford Storytron, USA
Gabriele Ferri Indiana University, USA
Michael Frantzis Goldsmiths College, UK
Pablo Gervás Universidad Complutense de Madrid, Spain
Andrew Gordon University of Southern California, USA
Mads Haahr Trinity College Dublin, Ireland
Ian Horswill Northwestern University, USA
Noam Knoller University of Amsterdam, The Netherlands
Hartmut Koenitz University of Georgia, USA
Petri Lankoski Södertörn University, Sweden
Sandy Louchart Heriot-Watt University, UK
Bradford Mott North Carolina State University, USA
Frank Nack University of Amsterdam, The Netherlands
VIII Organization

Mark Nelson Center for Computer Games Research, ITU, Denmark
Valentina Nisi MITI, University of Madeira, Portugal
Ian Oakley UNIST, Korea
Rafael Pérez y Pérez Universidad Autónoma Metropolitana, Mexico
Paolo Petta Austrian Research Institute for Artificial Intelligence, Austria
Stefan Rank Drexel University, USA
David Roberts North Carolina State University, USA
Remi Ronfard Inria, France
Adam Russell Falmouth University, UK
Marie-Laure Ryan University of Colorado, USA
Magy Seif El-Nasr Northeastern University, USA
Digdem Sezen Istanbul University, Turkey
Tonguc Ibrahim Sezen Istanbul Bilgi University, Turkey
Emily Short Interactive Fiction Writer, USA
Mei Si Rensselaer Polytechnic Institute, USA
Ulrike Spierling Hochschule RheinMain, Germany
Koaru Sumi Future University Hakodate, Japan
Nicolas Szilas University of Geneva, Switzerland
Mariët Theune University Twente, The Netherlands
Emmett Tomai University of Texas, Pan American, USA
Marian Ursu University of York, UK
Nelson Zagalo Universidade do Minho, Portugal
Jichen Zhu Drexel University, USA
Alessandro Zinna Université de Toulouse 2, France

Sponsoring Organizations

Department of Communications and New Media, National University of Singapore Keio-NUS CUTE Center, National University of Singapore

This conference was supported by the National Research Foundation, Prime Minister’s Office, Singapore under its International Research Centre @ Singapore Funding Initiative and administered by the Interactive & Digital Media Programme Office.

Supported by

ArtScience Museum at Marina Bay Sands
Table of Contents

Story Generation

Storytelling with Adjustable Narrator Styles and Sentiments
Boyang Li, Mohini Thakkar, Yijie Wang, and Mark O. Riedl
1

Combinatorial Dialogue Authoring
James Owen Ryan, Casey Barackman, Nicholas Kontje, Taylor Owen-Milner, Marilyn A. Walker, Michael Mateas, and Noah Wardrip-Fruin
13

Diegetization: An Approach for Narrative Scaffolding in Open-World Simulations for Training
Kevin Carpentier and Domitile Lourdeaux
25

Authoring

Authoring Personalized Interactive Museum Stories
Maria Vayanou, Akrivi Katifori, Manos Karvounis, Vassilis Kourtis, Marialena Kyriakidi, Maria Roussou, Manolis Tsangaris, Yannis Ioannidis, Olivier Balet, Thibaut Prados, Jens Keil, Timo Engelke, and Laia Pujol
37

An Authoring Tool for Movies in the Style of Heider and Simmel
Andrew S. Gordon and Melissa Roemmele
49

Exploring Performative Authoring as a Story Creation Approach for Children
Sharon Lynn Chu, Francis Quek, and Kumar Sridharamurthy
61

Interweaving Story Coherence and Player Creativity through Story-Making Games
Mirjam P. Eladhari, Philip L. Lopes, and Georgios N. Yannakakis
73

Remain Anonymous, Create Characters and Backup Stories: Online Tools Used in Internet Crime Narratives
Andreas Zingerle
81

Evaluation and Analysis

Objective Metrics for Interactive Narrative
Nicolas Szilas and Ioana Ilea
91
The PC3 Framework: A Formal Lens for Analyzing Interactive Narratives across Media Forms

Brian Magerko

- Page: 103

Storytelling Artifacts

Toke Krainert

- Page: 113

Theory

Toward a Hermeneutic Narratology of Interactive Digital Storytelling

Fanfan Chen

- Page: 125

Five Theses for Interactive Digital Narrative

Hartmut Koenitz

- Page: 134

Retrospectives

Interactive Cinema: Engagement and Interaction

Mirjam Vosmeer and Ben Schouten

- Page: 140

Fleeing the Operator: The User Experience and Participation in *Marble Hornets* (2009-2014)

Devin Hartley

- Page: 148

Mapping Trends in Interactive Non-fiction through the Lenses of Interactive Documentary

Arnau Gifreu-Castells

- Page: 156

User Experience

Narrative Cognition in Interactive Systems: Suspense-Surprise and the P300 ERP Component

Luis Emilio Bruni, Sarune Baceviciute, and Mohammed Arief

- Page: 164

Ontology–Based Visualization of Characters’ Intentions

Vincenzo Lombardo and Antonio Pizzo

- Page: 176

Interactive Storytelling in a Mixed Reality Environment: How Does Sound Design and Users’ Preknowledge of the Background Story Influence the User Experience?

Marija Nakevska, Mathias Funk, Jun Hu, Berry Eggen, and Matthias Rauterberg

- Page: 188

Structuring Location-Aware Interactive Narratives for Mobile Augmented Reality

Ulrike Spierling and Antonia Kampa

- Page: 196
Posters

Fictional Realities: Augmenting Location-Based Stories through Interaction with Pervasive Displays .. 204
Xiao Emila Yang and Martin Tomitsch

Comparison of Narrative Comprehension between Players and Spectators in a Story-Driven Game .. 208
Miki Nørgaard Anthony, Byung-Chull Bae, and Yun-Gyung Cheong

Moral Values in Narrative Characters: An Experiment in the Generation of Moral Emotions .. 212
Cristina Battaglino, Rossana Damiano, and Vincenzo Lombardo

Three Is a Magic Number: Virtual Cameras for Dynamic Triadic Game Dialogue .. 216
Bingjie Xue and Stefan Rank

AR as Digital Ekphrasis: The Example of Borsuk and Bouse’s between Page and Screen .. 220
Robert P. Fletcher

Appraisal of Emotions from Resources .. 224
Yathirajan Brammadesam Manavalan and Vadim Bulitko

A Little Goat Builds the World – An Interactive Children Story for Tablets .. 228
Kamil Kamysz and Marcin Wichrowski

Demonstrations

CHESS: Personalized Storytelling Experiences in Museums 232
Akrivi Katifori, Manos Karvounis, Vassilis Kourtis, Marialena Kyriakidi, Maria Roussou, Manolis Tsangaris, Maria Vayanou, Yannis Ioannidis, Olivier Balet, Thibaut Prados, Jens Keil, Timo Engelke, and Laia Pujol

Unfinished Business – A Transmedia Project 236
Ana Carolina Silveira von Hertwig

A Storytelling Game with Metaphor .. 238
Andreas Magnus Reckweg Kuni, Byung-Chull Bae, and Yun-Gyung Cheong

K-Sketch: Digital Storytelling with Animation Sketches 242
Richard C. Davis and Camellia Zakaria
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telling Stories via the Gameplay Reflecting a Player Character’s Inner States</td>
<td>246</td>
</tr>
<tr>
<td>Achim Wache, Byung-Chull Bae, Yun-Gyung Cheong, and Daniel Vella</td>
<td></td>
</tr>
<tr>
<td>Workshops</td>
<td></td>
</tr>
<tr>
<td>An Introduction to Game-Mastering: Telling Stories with Tabletop Role-Playing Games</td>
<td>250</td>
</tr>
<tr>
<td>Shao Han Tan</td>
<td></td>
</tr>
<tr>
<td>Managing Informational Interactive Digital Storytelling (IDS) Projects</td>
<td>252</td>
</tr>
<tr>
<td>Deborah Elizabeth Cohen</td>
<td></td>
</tr>
<tr>
<td>Narrative Analysis of Interactive Digital Storytelling</td>
<td>254</td>
</tr>
<tr>
<td>Colette Daiute</td>
<td></td>
</tr>
<tr>
<td>Future Perspectives for Interactive Digital Narrative</td>
<td>258</td>
</tr>
<tr>
<td>Hartmut Koenitz, Mads Haahr, Gabriele Ferri, Tonguc Ibrahim Sezen, and Digdem Sezen</td>
<td></td>
</tr>
<tr>
<td>Story Modeling and Authoring</td>
<td>262</td>
</tr>
<tr>
<td>Ulrike Spierling and Alex Mitchell</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>265</td>
</tr>
</tbody>
</table>
Ontology–Based Visualization of Characters’ Intentions

Vincenzo Lombardo¹ and Antonio Pizzo²

¹ CIRMA and Dipartimento di Informatica, Università di Torino
corso Svizzera 185, Torino, Italy
vincenzo.lombardo@unito.it

² CIRMA and Dipartimento di Studi Umanistici, Università di Torino
via Sant’Ottavio 20, Torino, Italy
antonio.pizzo@unito.it

Abstract. The visualization of the characters’ intentions in a drama is of great importance for scholars and professionals. The characters’ intentions provide the motivations for the actions performed in a drama, and support its interpretation. This paper presents an interactive ontology–driven tool for the visualization of a drama analysis based on the mapping between the characters’ actions and intentions, respectively. An automatic mapping establishes the correspondence between the actions, distributed on the linear timeline of the drama, and the intentions that motivate such actions, which form a forest of trees, one tree per character, spanning portions of the timeline. A tool provides a graphical representation of such correspondences and an immediate appraisal of the motivations of the actions in terms of tree projections. The system was tested on the analysis of a scene from Hamlet and has been employed in support of drama studies and didactics.

Keywords: Drama ontology, tree visualization, intelligent mapping.

1 Introduction

This paper presents a visual interface for improving the access to the drama content through a visualization of the content expressed in terms of the mapping between the characters’ intentions and the linear unfolding of the story incidents on a timeline. In particular, the characters’ intentions that motivate the incidents are represented by hierarchical plans arranged on trees, one tree per character; plans that commit to short–term goals are components (i.e., children in tree terminology) of plans that commit to longer–term goals.

The visualization of the characters’ intentions in a drama is of great importance for scholars and professionals, as the analysis of intentions is one of the most important differences between drama analysis and literary criticism. The system represents the drama elements in an ontological form and implements an automatic mapping between the characters’ intentions and actions, respectively, and then visualizes the relationship between the story incidents and the characters’ intentions in terms of tree projections. The system has been appraised in
the analysis of a scene from *Hamlet* and has been employed in support of the drama analysis.

2 Background and Related Work

The applicative scenarios of the visualization of characters’ intentions in a drama range from the media production industry, to the preservation of drama as intangible cultural heritage, to drama studies and teaching.

Though the visualization of story relations has been addressed by visual artists and amateurs to provide unique maps for orientation, especially in dramas that are difficult to grasp on behalf of the audience (see, e.g., the visualization of two Nolan’s films *Memento*\(^1\), 2000, and *Inception*\(^2\), 2010), on a more productive side, a number of visual interfaces are provided with software tools that have been developed to assist the creation and production of dramas. For example, the writing assistant Dramatica Pro\(^3\) visualizes the building blocks of a plot structure, with diagrams for plot progression and story points, that helps the writer in controlling and balancing the tension within the story development. Some works [14,13], propose the metadata annotation of dramatic heritage items, assuming an ontological approach (ontology called Drammar) to the representation of the drama elements, encoding the widely acknowledged relationship between the drama abstraction and one of the concrete shapes a drama can assume [19, p. xviii]. There exist other approaches that guide the annotation for the formal encoding of the drama elements. The Story Intention Graph [6] relies on the representation of the short–term characters’ intentions to build an interpretive layer of a narrative text. This approach is very similar to what we propose in this paper, though missing the long–term relationships of the characters’ intentions represented by the hierarchical nature of plans (see below), being oriented to the immediate interpretation of the actions. The Stories ontology\(^4\), developed in collaboration with the BBC for the application in news, the storylines of *Doctor Who* episodes, and historical facts, is an event–(instead of character–) based description of the timeline of story incidents, with no interpretive intents. In both cases, we do not know of a visualization tool for presentation and analysis purposes.

Within the specific domain of drama, we recall a so–called constructivist approach, which departs from the linguistic and literal forms to focus on the constitutive elements of drama. The analyses of Lavandier [12], Ryngaert [20], Hatcher [10], and Spencer [21] distill the dramatic elements that the playwright has to handle in order to produce a well formed play, relying on the well known vocabulary of dramatic elements, e.g. character, plot, action, deliberation, emotion, conflict [16].

\(^1\) http://visual.ly/memento-scene-timeline

\(^4\) http://www.contextus.net/stories
In this paper, we build on the Drammar approach: dramatic media are described by representing both the intentions of the characters and the timeline of story incident in a single formal representation. Here we use the word intentions to mean all the complex deliberative construct that guides the character’s actions in the drama. With the word timeline, we summarize the temporal deployment of the executed action that will be experienced by the audience. Later in the paper, we show how, to be formally represented, these two notions forth a number of different features in our ontology. The challenges posed by the visualization concern the display of a timeline, with a fixed order of the component of incidents, and the superimposition of a number of trees that represent the characters’ intentions. However, incidents and intentions should be aligned to reveal the structure of motivations that holds the plot.

3 Ontology Representation of Story Metadata

The notion of “story” is widely acknowledged to be a construction of an incident sequence that, abstracting from the mise–en–scène properties, is motivated by the cause–effect chain [18]; this chain results from a complex interplay among agents and events, well known in playwriting techniques [5]. In this section, we introduce the ontology Drammar, taking as a running example Hamlet. In particular, we address the “nunnery” scene in the Third Act, where Ophelia is sent to Hamlet by Polonius (her father) and Claudius (Hamlet’s uncle) to confirm the assumption that the Prince’s madness is caused by his rejected love. According to the two conspirers, Ophelia should induce him to talk about his inner feelings. At the same time, Hamlet tries to convince Ophelia that the court is corrupted and she should go to a nunnery. In the middle of the scene Hamlet puts Ophelia on a test to verify her honesty. Because he guesses (correctly) that the two conspirers are hidden behind the curtain, he asks the girl to reveal where her father Polonius is. She decides to lie and replies that he is at home. As a consequence, Hamlet becomes very angry in realizing that even Ophelia is corrupted and there is no hope to redeem the court.

The ontology Drammar (encoded in the OWL2 RL language) has been designed with the twofold goal of providing a formalized conceptual model of the dramatic elements [2,13,14], and an annotation schema for encoding the description of a dramatic item. So, along with classes that represent the domain of drama, it contains specific classes that are intended for interfacing the representation of drama with linguistic and common sense knowledge. The main classes of Drammar are: DramaEntity, grouping all the elements that belong to the drama domain, including the structural elements; Description Template, containing all the patterns for encoding linguistic schemata; External Reference, bridging the core elements of the ontology onto the external knowledge bases that allow the description of instantiated drama. Each class has then a number of subclasses; here we will describe the most relevant for the scope of this paper. The Drama Entity class is divided into three subclasses, each describing specific drama elements. Drama Perdurant and Drama Endurant represent, respectively,
the processes that occur in drama, and the entities (characters and objects) that participate in them. **Drama Structure** subsumes specific classes for representing the structures of the story, which include sequential structures (**DramaList**), such as plans of the agents and timelines of incidents, and set structures (**DramaSet**), such as units, which group the incidents occurring in a specific story fragment. The **Timeline** class represents the indexing of units along time, while the **Plan** class encompasses the agents’ intentions, and is organized hierarchically. The former accounts for the linear ordering of units as determined identifying intuitively the boundaries of the actions, the latter accounts for the intentions of the characters that motivate the actions occurring in the units. The **DramaEndurant** class subsumes the story entities participating in the unit, namely **Agent** (representing the characters that intentionally act in the incidents), and **Object** (any entity that is relevant to the action and does not have goals). The **DramaPerdurant** class provides the elements for the story dynamics, namely processes and states (subclasses **Process** and **State**, respectively), subdivided into **eventive** and **factual**, following a tradition dating back to 1927 [17]. The **EventiveProcess** class refers to what we have so far called incidents, and includes intentional and unintentional processes (**Action** and **UnintentionalEP** respectively) that occur in units or are committed in plans (**ActionInUnit** and **ActionInPlan**). The **EventiveState** class is divided into **StateOfAffairs**, **MentalState**, and **Done**; the latter class includes those states that represent the completions of processes. Mental states describe the intentional behavior of agents [7]; they encompass the following classes: **Belief**: the agent’s subjective view of the world; **Emotion**: what the agent feels; **Goal**: the objectives that motivate the actions of the agents and help to describe the character’s dramatic intention; **Value**: the moral values acknowledged by an agent; values can be put at stake by the unfolding of the story (specific class **ValueAtStake**).

The **Description Template** class has the purpose of binding a situation (e.g. either a process or a state) to its linguistic description. Each situation in Drammar is described by a template (linked to external knowledge repository - see next paragraph) that will provide an explicit shared pattern: for example, the process of **eating** will be univocally described as the relation between, at least, two entities (the eater and the eaten). The subclasses, namely **Schema** and **Role**, provide the primitives needed to realize this description. The **Schema** class represents the description of the situation in terms of the roles involved in it (i.e. the eating process5). In order to map the participant entities (i.e. the role eater and the role eaten), the class **Schema** is related to the **Role** class via the hasRole property.

The **ExternalReference** class is aimed at representing the qualities needed to describe specific drama entities. Following the paradigm of linked data [11], each different value of a quality is referred via an IRI (Internationalized Resource Identifiers)⁶ pointing to some external common sense or domain

5 See the Situation Description ontology pattern [8].

6 The IRI is a generalization of the uniform resource identifier (URI), that extends the string of characters used to identify a name of a resource from ASCII to Unicode.
specific ontology. [3] presents the linguistic interface for the annotation of linguistic schemata and commonsense knowledge information (involving the FrameNet roles and linguistic frames [1] and YAGO–SUMO commonsense ontology [4]). In Fig. 1, we illustrate how our running example, the “nunnery” scene, is represented in Drammar conceptual terms. The scene (SceneWhereQuestion, see top of Fig. 1) encompasses the conflicting goals of Hamlet and Ophelia (G_H_AskR and G_O_Lie respectively), and the plans they have devised to achieve them (P_H_AskR and P_O_Lie), to which they are committed (i.e., that they intend, as expressed by the intends property). Both agents care for the value of honesty (O_Honesty and H_Honesty). Here, we show only the plan-related individuals that are relevant to the excerpt. Hamlet’s plan contains the action of asking (A_ask_01, OLE_A_ask_01); Ophelia’s plan contains the action of lying (O_lie_01, OLE_O_lie_01). The same schema, PS_ask, describes both Hamlet’s action of asking in the unit and the corresponding action committed to by the plan; the same holds for Ophelia’s planned and executed actions, both described by the schema PS_lie. Hamlet’s and Ophelia’s executed actions belong to the same unit (i.e., the basic container of the actions of the drama), Unit17WhereQuestion, to which they are linked through the isInUnit property. The unit (UnitWhereQuestion) is positioned in the Timeline of the “nunnery” scene (TL_HamletNunnery). The ordering is provided by the precedes property: for example, the element that “stands for” the UnitWhereQuestion is preceded by the recommendation that Hamlet provides to Ophelia to go to a nunnery and precedes Hamlet’s outburst.
4 Mapping and Visualization

In this section, we focus on the core phases of mapping and visualization. Mapping is the intelligent phase that connects the plans and the incidents, by taking into account the coincident actions and the states that hold as preconditions and effects of the plans; visualization then takes into account the correspondences and provides a diagram that informs about the dramatic qualities.

4.1 Mapping

In the Drammar approach, the incidents in the units of the timeline are viewed as operators that carry on the story development from one state to the next one; states are projected from the plan structure onto the timeline, connecting the motivations (goals and plans intended by the characters) to the actions actually carried out. The projections of states onto the timeline and the connection of plans to incidents are yielded by if–then rules (encoded in SWRL language). The rules aim at detecting the matching of the actions (incidents) occurring in the unit and the actions in plans, according to some shared properties of the linguistic schemata. The automatization of the mapping corresponds to a workflow in which some scholar or enthusiast annotates a timeline of units and incidents and a drama scholar operates independently by identifying the characters’ intentions, encoded in plans and goals; then, the SWRL rule finds what intentions match with what incidents, to augment the annotation and form the base for the visualization. In particular, the application of such rules aligns Plans and Units and augments the Timeline by interspersing units with precondition and effect states (called UnitStates).

The mapping works as follows (see Fig. 2):

- match plan actions and unit incidents through the equality of the description schema in the antecedent of the rule (see curved dotted line “mapping” in Fig. 2); in the antecedent the rule also identifies the individuals to be connected in the consequent part;
- project the states required by the plan as preconditions or effects, the plan states, onto the unit preconditions and effects, the unit states (see curved dotted lines “hasSetMember” and “spans” in Fig. 2).

The ontology is initialized with the Timeline that includes empty unit states that precede and follow the units. Then, each application of the rule fills the

7 If–then rules, combined with ontological description, allow the derivation of novel knowledge through the form of an implication between an antecedent (body) and consequent (head). In particular, the Semantic Web Rule Language (SWRL) is the language born form the merge of Rule ML and OWL DL, that integrates OWL with a rule layer built on top of it, adding the possibility to declare arbitrary Horn clauses expressed as if–then rules.

8 The current implementation is based on simple operations, such as the exact equality of the linguistic frame, but it may potentially based on more complex algorithms for the computation of similarity indices.
Fig. 2. The main mapping rule, that accounts for the spanning relation between plans and units. Another rule accounts for the spanning of hierarchically higher plans with a number of units.

unit states with states contained in the plans. In the excerpt of the “nunnery” scene, we have Hamlet’s plan $P_{H, AskR}$ and its action $A_{ask, 01}$ mapped onto the action $I_{Ask, U17}$ (Hamlet asking Ophelia: “Where is your father?”) of the Unit $U_17_{WhereQuestion}$; the same happens for Ophelia’s plan $P_{O, Lie}$, between the action $A_{lie, 01}$ and the unit action $I_{lie, U17}$ (Ophelia lying about Polonius’ location: “At home, my lord.”). The higher plan $P_{H, LearningHonesty}$ (Hamlet) is then triggered because of the mapping of the subplan $P_{H, AskR}$, though the latter fails in achieving its goal (see the visualization below).

4.2 Visualization

The visualization module addresses the representation of multiple trees of characters’ plans, arranged hierarchically on a tree that spans a timeline of events. Tree layout, especially in the case of multiple trees spanning the same set of basic elements (usually the leaves of a tree) has been the object of several approaches of information visualization (see the survey in [9] on single and multiple trees); each approach brings specific advantages and disadvantages, depending on the task at hand. We have implemented a form of containment (or nested) approach, which has the advantage of a bounded space; this approach typically leaves no room for node content, but in our system this content is retrievable through mouse interaction on the node.
Fig. 3. General schema of the visualization: top) timeline, made of units U (made of incidents I and E) and unit states US (made of states S projected from plans P); bottom) agents’ plans, made of actions A and states S aligned with unit incidents I and states S, respectively. Notice that two incidents were not matched by the plans actions.

The multiplicity of trees is visualized as different layers. The abstract structure of visualization is in Fig. 3. In the top row there is the Timeline, consisting of units (U) and unit states (US). Units are made of incidents, which can be either intentional actions (I), so mapped to actions in agents’ plans, or unintentional events (E). Unit states are collections of single states, which are retrieved from the agents’ plans and projected onto the timeline. Unintentional events and unmapped intentional incidents are filled in white. In the lower part of the figure we visualize the plans of the agents, arranged hierarchically (root at the bottom). X and Y are the agents that commit to the plans; S is a state and A is an action. Plans closer to the timeline consist of an action bordered by precondition and effect states, respectively; plans higher in the hierarchy consists of a sequence of subplans bordered again by precondition and effect states. All actions and states are mapped onto the timeline (dotted lines in the figure). Each incident or state is represented by a box; boxes filled with white color and barred diagonally indicates elements that have not been realized in the timeline, thus the plan failed.

The visualization algorithm proceeds left to right by following the mapping between incidents and plan actions. It assumes the timeline distribution of the states and incidents over the x axis as fixed and aligns the plan actions and consequently the precondition and effect states as a consequence. The plan hierarchy
is built downwards, so higher layers will be lower in the visualization. Each agent features a color, which is declared in the agents’ area with a clickable button. All the plans of an agent are displayed with the agent’s color. The timeline incidents pivot the horizontal alignment: each realized plan action is aligned with the matching timeline incident; at the same time, states of the plans are projected onto the timeline to fill the unit states between adjacent units. The plan is a horizontal box that spans all the states and actions that belong to it. Fig. 4 shows the visualization of the motivations of the excerpt of the “nunnery” scene incident represented in Fig. 1. The content of a box appears in a text within a balloon when the mouse goes over the box. The current working implementation.
of the visualization tool is in D3\(^9\), after a preprocessing phase made in Processing\(^{10}\), which also produces a static image. These double implementation and exit was adopted after we realized that the visualization was very slow when the diagram had a relevant size (e.g., the whole “nunnery” scene). The current D3 visualization adapts to our case the “zoomable icicle” solution\(^{11}\) that provides some interesting interactivity features for zooming on a specific area of the scene and displaying tooltips for having a synoptic view while accessing the content.

5 Effectiveness of the Interface

Now we address the use of the interface in the experience of teaching drama to students by quickly fleshing out interesting aspects of the drama. In the last decades, the drama courses focus moved from literary to structural and actional qualities. This means that the text is more and more intended both as an incident design (either on stage or on screen) and as a network of relations over agents’ intentions. For example, McKee [15] guides the author through the scene splitting into beats according to the characters’ goals and value changes. This leads to a larger use of visualization systems to clearly stress the structural elements in the dramatic text, and to map the connection with the performance, i.e., to show the continuity between event design and event performance. For example the drama map provided by the ReadWriteThink website allows the students to focus on the elements of the drama posing key questions about the conflict’s structure.\(^{12}\)

Our visualization helps the class to understand how the text of the dramatic medium is bound to the character’s deliberation, and thus how to read the characters’ behaviors. For example, the more successful the mappings, the more the narrative text of the dramatic medium is bound to characters’ deliberation (i.e. the performance is consistent with the play). Therefore, our system can be used as a qualitative evaluation tool both in teaching drama authoring and in drama analysis. In Fig. 4 we propose a schema of how to interpret the actual visualization of an annotated example, and we highlight three examples of how our system can visualize some key features of drama.

Motivation for Incidents. In drama, it is important that the character’s plans show some consistency with the incidents that occur in the sequence of events. This is the fundamental feature that gives to the audience the perception of a logical sequencing of action, thus helps to create the believability of the story in terms of consistent list of incidents within the units. In our visualization, the list of incidents is grounded on the perceived behaviors of the agents involved. In other words, it is graphically clear how the action of asking (where Polonius is) is motivated by Hamlet’s plan of learning about Ophelia’s honesty.

\(^9\) http://d3js.org/
\(^{10}\) http://processing.org/
\(^{11}\) http://bl.ocks.org/mbostock/1005873
Orchestration of Conflicts. Normally the units listed in the timeline are the results of the synchronous occurrence of two agents’ plans (such as the ones by Hamlet and Ophelia in the “nunnery” scene). We adopt a visualization that shows a layer of parallel plans that map onto the same chunk of the timeline. When the two plans have a similar goal, they both aim at the same effect: thus, they map the same final state onto the timeline, and are described as a shared plan. Our visualization piles up different plans with opposite goals. When this occurs, very often it means that only one plan will achieve its goal and thus only one state is mapped onto the timeline. In Fig. 4, we see that plan \(P_{H\text{LearningHonesty}} \) and plan \(P_{O\text{Lie}} \) lead to conflicting states, Ophelia honesty at stake and Hamlet believes Ophelia is honest (\(B_{H\text{B}\text{O}} \)), but the latter state is not realized (null box in the Timeline).

Change. Drama is not reality but the essence of reality [5]; hence the actions are selected to give the sense of intensity and meaningfulness. Within this framework, any kind of failure bears some sort of change in the character (beside other opportunities in the story development). For example, in the “nunnery” scene, the failure of the Hamlet’s plan is a clear indication of the characters’ change. The sequence of null states and actions in the timeline in the Fig. 4 is a clear visualization of Hamlet’s plans failures.

6 Conclusion

This paper has presented an approach to the mapping of the characters’ intentions onto actions and the visualization of such information. Character’s intentions form multiple trees that span a timeline of incidents. The system is able to build the mapping between a library of plans and the timeline of incidents, and to visualize the contributions of the several characters’ intentions to the whole plot.

The system relies on an ontology of drama and builds upon the unrestricted annotation provided by narrative enthusiasts and media students. The system was tested on the analysis and exposition of the case of a short classical scene in Hamlet in drama studies teaching and analysis. Though oriented and tested to the didactics of drama structure, our system can be applied to the analysis of news stories, blog entries, or the fruition of cultural heritage. Other significant features should be added to the visualization, namely the Dramatic Arc and a dynamic/interactive construction of the mapping.

References