Evaluation of antimicrobial activity of Italian honey for wound healing application in veterinary medicine.

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1611345 since 2016-11-30T01:05:03Z

Published version:
DOI:10.17236/sat00075

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is the author's final version of the contribution published as:

Grego E1, Robino P1, Tramuta C1, Giusto G1, Boi M2, Colombo R2, Serra G2, Chiadô-Cutin S3, Gandini M1, Nebbia P1.

Evaluation of antimicrobial activity of Italian honey for wound healing application in veterinary medicine.


The publisher's version is available at:

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/1611345

This full text was downloaded from iris-Aperto: https://iris.unito.it/
Evaluation of antimicrobial activity of Italian honey for wound healing application in veterinary medicine

E. Grego¹, P. Robino¹, C. Tramuta¹, G. Giusto¹, M. Boi³, R. Colombo³, G. Serra³, S. Chiadò-Cutin², M. Gandini¹, P. Nebbia¹

¹ Department of Veterinary Sciences, University of Turin, Italy
² Agripiemonte Miele, Torino, Italy
³ Council for agricultural research and the analysis of Agrarian Economy, Beekeeping and Silkworm Research Unit (CRA-API), Bologna, Italy

Abstract
Honey as a topical treatment for infected wounds dates back to ancient times. However, few studies have been reported concerning the medical properties of Italian honey. In this study, the microbial contamination, the antimicrobial activity and the antibiotic residues of 6 different varieties of Piedmont honeys were evaluated. The antimicrobial activity of honeys was tested by agar well diffusion method and 1 honey for each variety has been selected and tested by broth micro-dilution test to determine Minimum Inhibitory Concentrations (MICs) and evaluated by Minimum Bactericidal Concentrations (MBCs). The honeys with a high level of antibacterial activity were analyzed for the presence of tetracyclines, sulfonamides and macrolide residues. The agar well diffusion method showed the greatest antimicrobial activity for honeydew, chestnut and lime tree honeys. The MICs and MBCs identified the close similarity to the medical manuka honey of honeydew, polyfloral and chestnut honey. Good results were also obtained against MRSA isolates. The levels of antibiotic residues on these honeys were below the limit of quantification. Based on our results the Italian variety of honeydew showed the best antimicrobial activity and can be considered as medical potential devices, like Manuka, and taken into account for the treatment of infected wounds in animals.

Keywords: Antibacterial activity, Italian honey, Manuka honey, MCB, MIC.

Introduction
The development of bacterial resistance to antibiotic therapy is understood to be a natural occurrence. Since the use of antibiotics became widespread over 50 years ago, bacteria have
progressively developed resistance (Basualdo et al., 2007) and in particular multidrug-resistant strains such as *Staphylococcus aureus* methicillin-resistant (MRSA), *E. coli* extended-spectrum β-lactamase (ESBL) and *Pseudomonas aeruginosa* (Chong et al., 2011; Abdel-moein et al., 2012; Wang et al., 2012). In recent years the rise of multi-resistant bacteria has led to alternative antimicrobial strategies and the development of new compounds to be used instead of conventional antibiotic therapy. Therefore, substances such as honey, propolis, aloe vera and chitosan have been used to promote optimal healing wounds (Ammayappanand Moses 2009; Vandamme et al., 2013; Carnwath et al., 2014). In practice the use of honey-based products (e.g. solid membranes), applied directly on surgical wounds, are preferred because they provide a physical barrier in the immediate post-operative period (Ward and Panitch, 2011). Therefore, the production of honey-based materials might represent a new therapeutic option.

The inhibitory effect of honey against numerous species of Gram-positive and Gram-negative bacteria, including *Staphylococcus aureus* and *Pseudomonas aeruginosa*, has been recognized since ancient times (Wang et al., 2012) as previously reported (Basualdo et al., 2007; Alandejani et al., 2009; Mohapatra et al., 2011). Moreover, honey is capable of killing bacteria even in their highly resistant biofilm state, proving to be more effective than any single commonly used antibiotic (e.g. rifampicin, cefazolin, oxacillin, gentamicin, etc.) (Wang et al., 2012). In addition, there is until now no evidence of bacterial resistance to honey although chemical antibacterial drugs induce microbial resistance and may have a detrimental effect on wound tissue (Cooper et al., 1991; Wilson et al., 2005). The antimicrobial activity of honey is attributed largely to osmolarity, acidity, hydrogen peroxide production, nectar, pollen and the presence of methylglyoxal (MGO) (Basualdo et al., 2007; Voidarou et al., 2011). However, the possible presence of antibiotic residues may also be taken into account as antibiotics are often used in bee-keeping as a preventive or therapeutic treatment in the protection of apiaries. Notwithstanding this, the use of antibiotic in Italy is absolutely prohibited (U.E., Reg. n. 37/2010).

The chemical composition and the related antibacterial effect of honeys vary depending on the plant source, season, and production methods. The Manuka honey produced in New Zeland from the manuka tree is well known for its therapeutic effect (Molan, 2002) and different studies have been performed worldwide on this product (Lusby et al., 2005; George and Cutting, 2007). Carnwath *et al.* (2014) demonstrated that the use of honey for the treatment of skin wounds, in animals and human, is beneficial and promotes tissue healing. Interestingly the Manuka honey has been recently described as an important tool for wounds care (Molan, and Rhodes, 2015).
Few studies have been conducted on antibacterial activity, wound-healing properties of honey produced in Europe and the Mediterranean area (Voidarou et al., 2011; Vica et al., 2014) such as Italy (Fidaleo et al., 2011; Tenore et al., 2012; Coniglio et al., 2013). In Piedmont (North West Italy), the geomorphology, the complexity of the flora and climate allow the production of a wide variety of honeys e.g. chestnut, dandelion, honeydews, lime tree and polyfloral. Thus, the aim of the present study was to characterize in vitro the antimicrobial activity and to evaluate the antibiotic residues of 6 different varieties of honeys produced in Piedmont against bacteria isolated from infected dog skin. In order to consider the future application of these Italian honey and the derived honey-based materials in veterinary surgical procedure for wound healing.

**Materials and methods**

**Honey sample collection**

The study was carried out on honey samples produced in Piedmont (North West Italy). The selected honeys were guaranteed as to flower-specificity and quality by experts of the Piedmont Honey Producers Association with palynological evaluation. In addition a preliminary selection on the beekeepers was done by this association that led to collect 26 unpasteurized honeys (5 chestnut honeys, 5 dandelion honeys, 5 honeydews, 4 lime tree honeys, 4 polyfloral mountain honeys and 3 rhododendron honey) derived from 9 piedmont beekeepers. A medical grade manuka honey (Medihoney™) was used as a standard to compare our local honeys. Each sample was collected in a sterile container and kept in the dark at 4°C until analysis.

**Bacterial strains**

Antibacterial properties of the honey samples were tested against the following strains isolated from canine wound infections: *Staphylococcus aureus* methicillin-resistant (MRSA), *S. aureus* methicillin-susceptible (MSSA), *Enterococcus fecalis*, *Escherichia coli*, *E. coli* producing extended-spectrum β-lactamase (ESBL), *Proteus mirabilis* and *Pseudomonas aeruginosa*.

**Bacterial culture**

The honey samples were examined for the presence of bacterial contamination by culture on 5% sheep blood agar (Oxoid) overnight at 37°C.

**Assessment of antibacterial activity**

Undiluted honey samples were screened for their antimicrobial activity by the agar well diffusion method (Sherlock et al., 2012). Bacterial strains were grown overnight in Trypticase Soy Broth (TSB) (Oxoid) at 37°C and adjusted to 0.5 McFarland standard. Each culture was inoculated on the surface of Petri plates. Subsequently, wells 6 mm diameter were bored into the surface of the agar.
Each well was consequently filled with about 80 µl of honey sample. Plates were incubated at 37°C and after 24 h the inhibition zones were measured. Each assay was carried out in triplicate. Furthermore, a laboratory synthesized honey, which was prepared by dissolving in 10 ml of distilled water, 40% fructose, 30% glucose and 2% sucrose (Merck Millipore) was used in each experiment (Sherlock et al., 2012).

Subsequently, one sample for each variety of honey, showing the higher antimicrobial activity, was selected and tested by Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs) assays. MIC were determined by micro-method (Sherlock et al., 2012) and the final concentrations of honey samples used were 50%, 25%, 12.5%; 6.3%, 3.1%, 1.6% (v/v). Briefly, 10 µl of 0.5 Mac Farland standardized culture was added to 190 µl of tested diluted honey. MICs were determined by spectrophotometric assay to 600 nm. Control wells contained broth (negative or sterility control) and broth with bacteria (positive control). Plates were incubated in the dark at 37°C shaking at 150 rpm for 24h. After 20h of incubation at 37°C, bacterial growth inhibition was determined by monitoring the optical density (OD) which was read just prior to incubation (T0) and 24h (T24) later at 600nm. The OD for each replicate at T0 was subtracted from the OD for each replicate at T24. Then a value of 100% growth was assigned to the adjusted OD of the positive control. The percentage inhibition of growth was determined using the formula: \( \text{percentage inhibition} = 1 - \frac{\text{OD test well}}{\text{OD of corresponding control well}} \times 100 \) (Patton et al. 2006). The MIC was reported as the lowest concentration of test material that inhibited bacterial growth. From the wells showing no visible sign of growth/turbidity in MIC determination, test bacteria were inoculated onto Trypticase Soy Agar (TSA) plates by streak plate method. The plates were then incubated at 37°C for 24 h. The smallest concentration showing no growth of test organisms was considered as the MBC. Each test was performed in triplicate.

**Antibiotic residues analysis**

The honeys with a high level of antibacterial activity (honeydew, polyfloral and chestnut) were analyzed by LC-MS/MS technique to detect the residue presence of the following classes of antibiotics: tetracyclines, sulfonamides and macrolide (tylosin) (Giannetti et al., 2010; Huq and Kallury, 2006).

**Results**

A preliminary selection on the beekeepers has been done by Agripiemonte Agripiemonte Miele that has permitted to select the 26 honeys introduced in our study.

**Honey bacterial analysis**
All 26 honeys were tested to evaluate the microbial contamination. Eighteen honeys resulted negative, 6 were contaminated by *Bacillus* spp. (1 chestnut honey, 2 dandelion, 1 honeydew, 1 lime tree honey, 1 polyfloral mountain honey) and 2 by coliforms (1 chestnut honey and 1 honeydew) and were further excluded.

*Antibacterial activity of honey samples*

The 18 honeys without bacterial contamination were screened by agar well diffusion method and the results are reported in Table 1. Greater antimicrobial activity was observed for honeydew, chestnut and lime tree honeys. In particular, honeydew produced a clearing zone comparable to manuka honey while dandelion and rododendrum honeys showed slow antibacterial activity.

One honey for each of the 6 different varieties included in this study was submitted to MICs and MBCs analysis and the results were showed in Table 2. Honeydew, polyfloral and chestnut honeys maintained antibacterial activity at a concentration of 25% and below. In particular, honeydew and polyfloral had a greater antimicrobial activity, more similar to manuka honey. In general, lime tree, rhododendron and dandelion produced a less antibacterial effect compared to the other tested honeys. The laboratory synthesized honey showed low antimicrobial activity in both considered assays.

*Antibiotic residues*

No antibiotic residues were detected in any of the investigated honeys (honeydew, polyfloral and chestnut honeys). Indeed, the results were below the limit of quantification (LOQ) corresponding to 0,005 mg/kg.

**Discussion**

Several studies all over the world have reported the emergence of multi-resistant bacteria in human and veterinary medicine. For this reason, honey was repurposed for wound care since it offers a good alternative to conventional antimicrobial drugs (Basualdo et al., 2007; George and Cutting, 2007; Mohapatra et al., 2011; Vica et al., 2014). In this study, 26 Italian honeys of 6 different varieties were characterized to evaluate the microbial contamination, the antimicrobial properties and the levels of antibiotic residues. A medical honey should be free from microbial contamination. Despite a strict beekeepers selection was done, 8 out of 26 tested honeys were contaminated by bacteria. Anyway the results can be considered encouraging since good antimicrobial activity against bacteria isolated from dog wounds was found in honeydew, chestnut and polyfloral honeys. Great variability in the antimicrobial activity of tested honeys was observed, probably due to the different bacterial susceptibility and to the flower source of honeys.
The honeydew, chestnut and polyfloral honeys presented a high bacteriostatic and bactericidal activity on Gram-positive bacteria, comparable to manuka honey. Moreover a interesting antimicrobial activity against \textit{S. aureus} was demonstrated as reported by other authors (Basualdo et al., 2007; Vica et al., 2014), and good results were also obtained against the MRSA strain. These data are important, since various strains have already developed multi-resistance and are the major pathogens in surgical wound infections (Cruz et al., 2005). In the light of this problem, new therapeutic strategies for the treatment of infected wounds are necessary. Therefore the use of honey against bacterial infections will allow greater cost saving and greater product availability without toxic effects. Moreover, chestnut, honeydew and polyfloral honeys showed the same antimicrobial activity of manuka honey against \textit{E. fecalis}, which is in contrast to recent studies reporting that \textit{E. fecalis} is not inhibited by honey (Basualdo et al., 2007; Carnwath et al., 2014).

As to Gram-negative bacteria, all honey samples demonstrated good capability to inhibit the growth of both \textit{E. coli} strains in accordance with earlier researches (Mohapatra et al., 2011; Carnwath et al. 2014). In particular honeydew showed the highest antimicrobial activity against \textit{E. coli} ESBL. These data are in accordance with a recent Italian study (Coniglio et al., 2013). The antimicrobial activities of tested honeys were less effective against \textit{P. aeruginosa} and \textit{P. mirabilis} than \textit{E. coli}. In particular, the antibacterial efficacies of honeys against \textit{P. aeruginosa} were mainly bacteriostatic as reported previously (Basualdo et al., 2007; George and Cutting, 2007).

Among the 26 tested honeys the honeydew showed the highest microbiological activity, quite similar to the medical manuka honey results. Honeydew is a particular type of honey produced by Honeybees (Apismellifera) from byproducts of Metcalfa pruinosa (Alma, 2000; Wilson and Lucchi, 1997 and 2000; Lucchi and Mazzoni, 2004). This characteristic, together with the large diversity of geobotanical conditions and floral species present in Italy, contributed to produce the particular composition of honeydew (Marcuzzan and Sabatini, 2008), which explains its antibacterial activity respect to other tested honeys. Our data are supported by a recent report (Majtan et al., 2011) that documented the exceptional antibacterial activity of honeydew against multi-resistant \textit{Stenotrophomonas maltophilia}.

Interestingly, this is the first study that has measured the antibiotic residue in the tested honeys. The data are interesting since the levels of antibiotic residues were below LOQ, supporting the good beekeeping production and the effective antibacterial activity of the Piedmont honeys.

In conclusion, we demonstrated that honeydew and other local honeys of North West Italy, possess a high antibacterial activity, comparable to manuka honey without the presence of antibiotic residue. Therefore, they may be taken into account for the treatment of infected wounds to help
reduce the actual problems of antibiotics resistance. For this purpose further experiments will be conducted to analyze the chemical composition and to assess the application of honeydew honey and honeydew-based materials in surgical wounds.

Acknowledgments
The authors thank “Agripiemonte Miele” producers’ association that has kindly provided honey samples.

Grant support
This research was funded by own funding of the Progetti di ricerca di interesse nazionale (PRIN 2013).

Conflict of interest
None of the authors have any financial or personal relationships that could inappropriately influence or bias the content of the paper.

References


<table>
<thead>
<tr>
<th>Strains</th>
<th>Honey samples</th>
<th>Chestnut samples n.</th>
<th>Dandelion samples n.</th>
<th>Honeydews samples n.</th>
<th>Lime tree samples n.</th>
<th>Polyfloral samples n.</th>
<th>Rhododendron samples n.</th>
<th>Manuka LSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus MSSA</td>
<td>25 21 20</td>
<td>10 10</td>
<td>31 20 20</td>
<td>17 28 19</td>
<td>22 17 21</td>
<td>13 13 12</td>
<td>28 11</td>
<td></td>
</tr>
<tr>
<td>S. aureus MRSA</td>
<td>20 19 20</td>
<td>8 8</td>
<td>20 21 20</td>
<td>14 21 14</td>
<td>15 14 15</td>
<td>12 11 10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>E. fecalis</td>
<td>12 8 10</td>
<td>13 13 13</td>
<td>8 8 8</td>
<td>- - -</td>
<td>8 8 13</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
</tbody>
</table>
Where no value is given (-), no zone of inhibition was observed.

### Table 2

<table>
<thead>
<tr>
<th>Strains</th>
<th>Honey samples (%) of inhibition</th>
<th>Chestnut n. 1</th>
<th>Dandelium n. 3</th>
<th>Honeydews n. 1</th>
<th>Lime tree n. 2</th>
<th>Polyfloral n. 3</th>
<th>Rhododendron n. 1</th>
<th>Manuka</th>
<th>LSH</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>E. coli</strong></td>
<td></td>
<td>12</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>9</td>
<td>16</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td><strong>E. coli ESBL</strong></td>
<td></td>
<td>10</td>
<td>-</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td><strong>P. mirabilis</strong></td>
<td></td>
<td>13</td>
<td>15</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td><strong>P. aeruginosa</strong></td>
<td></td>
<td>15</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

**E. coli**

**E. coli ESBL**

**P. mirabilis**

**P. aeruginosa**

Where no value is given (-), no zone of inhibition was observed.
<table>
<thead>
<tr>
<th></th>
<th>E. fecalis</th>
<th>E. coli</th>
<th>E. coli ESBL</th>
<th>P. mirabilis</th>
<th>P. aeruginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 1: Antimicrobial activity by agar well diffusion method: diameters of zones of inhibition (including 6 mm well diameter) of 18 honey samples, manuka and a laboratory synthesized honey (LSH) against clinical strains
Table 2: Antimicrobial activity by micromethod assay: Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assay of 6 honeys, manuka and laboratory synthesized honey (LSH) against clinical strains

Corresponding author
Elena Grego, Tel.: +39 011 6709194; Fax: +39 011 6709196; E-mail: elena.grego@unito.it
Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini2, 10095 Grugliasco, Torino, Italy.