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Abstract 23 

The first studies of histamine and diabetes date back to the 1950s. Since that time the involvement 24 

of histamine in diabetes was related to its well known vasoactive properties and permeability 25 

leakage effects. In particular, the first evidence for a correlation between histamine and diabetes 26 

arose in 1989 when an increase in plasma and leucocyte histamine content was observed. Limited 27 

independent evidence followed in the subsequent two decades, focusing on both histamine 28 

glyceamic control and macro- and microvascular complications of diabetes. However, recent 29 

observations have sparked the question whether it is time to reconsider the functional contribution 30 

of histamine in diabetes. We reveal an interesting upsurge in the field which provides scope for new 31 

insights into the role of histamine in diabetes.  32 

 33 

Keywords: histamine, histamine receptor, diabetes, nephropathy, retinopathy, neuropathy 34 

 35 

Abbreviations: 36 

ADP= action potential duration; AGEs = advanced glycation end-products; BM = basement 37 

membrane; BRB = blood-retinal barrier; CGRP = calcitonin gene related peptide; CKD =  chronic 38 

kidney disease; DAO = diamine oxidase; DiO = diet-induced obesity; ESRD = end-stage renal 39 

disease; H1-4Rs = histamine H1-4Rs; HbA1 = glycated hemoglobin; HDC = histidine decarboxylase; 40 

STZ = streptozotocin;  TGF- β = tissue growth factor-β; TCAs = tricyclic antidepressants; Vmax = 41 

maximum rate of depolarization; VEGF = vascular endothelial growth factor; ZO-1 =  zonula 42 

occludent-1  43 
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1 Introduction 44 

Diabetes mellitus can be considered a family of chronic metabolic disorders associated with a 45 

hyperglycemic status caused by either the loss of insulin production due to the destruction of beta 46 

pancreatic cells, decreased insulin sensitivity, or both [1, 2]. In 2014, the global prevalence of 8.3% 47 

has been estimated and by the end of 2030 this value is expected to increase by 55% [3], resulting 48 

in obvious devastating consequences for healthcare expenditure worldwide. All the antidiabetic 49 

drugs currently available, although effective in reducing the risk of acute complications, such as 50 

hypoglycemia and hyperglycemia [4], are not effective in reversing the progression of this chronic 51 

and degenerative disorder. Indeed, diabetic patients are still at a high risk to develop longstanding 52 

complications including cardiovascular disease, such as coronary artery disease, and microvascular 53 

diseases, including neuropathy, retinopathy and nephropathy. Therefore, a better understanding of 54 

the underlying pathophysiology should contribute to new effective therapeutic approaches. Among 55 

the different mediators proposed to contribute to the pathophysiology of diabetes, histamine 56 

involvement has always been controversial and considered almost marginal. However, several lines 57 

of evidence support the contribution of histamine to the diabetic milieu resulting from the persistent 58 

hyperglycemia. For instance, the advanced glycation end-products (AGEs) have been demonstrated 59 

to activate mast cells whose degranulation may contribute to a vicious cycle, ultimately resulting in 60 

a low-grade inflammation typical of chronic diseases such as diabetes [5]. Therefore, this review 61 

aims to revisit the concept of histamine in the pathophysiology of diabetes and, in particular, its 62 

complications.  63 

2 Histamine and glycaemia 64 

Histamine is involved in a wide variety of pathophysiological events mostly related to the 65 

inflammatory response through four receptors, namely H1-4Rs.  The first studies of histamine and 66 

diabetes date back to the 1950s. Since that time the involvement of histamine in diabetes was 67 

related to its well-known vasoactive properties and permeability leakage effects correlated to 68 
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microvascular complications. In particular, the first evidence for a correlation between histamine 69 

and diabetes came in 1989 through the work of Gill and colleagues when they reported an increase 70 

in plasma and leucocyte histamine content which was claimed to contribute to the underlying 71 

pathogenesis evoking endothelial permeability [6]. These findings were in keeping with in vivo 72 

studies of experimental diabetes suggestive of an increased histaminergic tone in diabetic rodents. 73 

Indeed, histamine was found to be increased in plasma, kidney, brain, lung, heart, pancreas and 74 

intestine [6, 7] of diabetic rats. Independent evidence also suggested a parallel imbalance of the 75 

anabolism and catabolism of this amine with an increased synthesis and a simultaneous decreased 76 

catabolism [8-11]. For instance, a significant drop in intestinal diamine oxidase (DAO) activity [7] 77 

as well as an increase of histidine decarboxylase (HDC) activity in various tissues [12] were 78 

observed, thus providing evidence for a nascent histamine pool. The very recent observation of a 79 

reduced prevalence of hyperglycemia in HDC-/- NOD mice (an animal model of spontaneous type 1 80 

diabetes) in comparison with the wild-type counterpart [13] strongly lends weight to this original 81 

hypothesis. 82 

More intriguingly, it has been reported that histamine plasma and aortic synthesis [10] in diabetic 83 

rats are reduced when insulin is administrated [14], thus strongly supporting the hypothesis for an 84 

interconnection between histamine and glycaemic status. This hypothesis is further strengthened by 85 

the study of Azevedo and colleagues (1990) reporting an increase of pancreatic islet histamine 86 

content in streptozotocin (STZ)-induced diabetes rats [15]. Interestingly, recent data suggest the 87 

involvement of the peripheral H3R in the insulin-histamine loop (Supplementary Figure 1). Indeed, 88 

Nakamura and colleagues (2014) provided the first evidence for a potential diabetogenic effect of 89 

the pancreatic H3R, through reporting the presence of functional histamine H3R in this tissue. In 90 

particular, it has been demonstrated that H3R activation in pancreatic beta cells by imetit (PubChem 91 

CID 3692) inhibits the insulin secretion associated with high glucose levels in MIN6 cells [16]. 92 

Moreover, the same authors reported H3R expression in pancreatic alpha cells, indicating that H3R 93 

activation may reduce glucagon production by αTC1.6 cells in a non-hyperglycemic condition [17]. 94 
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Notably, although the H3R has been known to play a critical role in homeostatic regulatory 95 

functions, such as control of food intake and maintenance of body weight [18], its contribution to 96 

diabetes is controversial [18-24] and still far from being fully understood. Indeed, the H3R inverse 97 

agonist clobenoprit (PubChem CID 2790) has been demonstrated to increase the hypothalamic 98 

histamine release and reduce the energy intake in normal and leptin-resistant mice with diet-induced 99 

obesity (DiO) [25]. So far, some newly synthesized H3R antagonists have been specifically tested 100 

in diabetic animal models demonstrating an effectiveness in reducing non-fasting glucose levels by 101 

potentially blocking the increase of HbA1 [26]. More interestingly, the strategy of an H3R 102 

antagonism combined with a phenylsulfonylurea (well-known insulinotropic drugs) moiety has 103 

been explored [27]; although an effective prototype remains elusive. On the contrary, the activation 104 

of H3Rs in mice has been reported to decrease food intake and increase energy expenditure. Chronic 105 

dosing with a H3R agonist reduces body weight, fat mass, hyperleptinemia, and hyperinsulinemia in 106 

DiO mice [28].  Conversely, the protean H3R agonist proxyfan (PubChem CID 6421522) in mice 107 

improves glucose excursion increasing plasma insulin levels without affecting plasma glucagon 108 

levels [29]. Furthermore, the mildly obese H3R-deficient mice also demonstrate leptin and insulin 109 

resistance with impaired glucose tolerance [28]. Notably, the majority of these data were obtained 110 

before the clear demonstration of H3R peripheral expression [16, 30-34]. In particular, the 111 

pancreatic localization of the H3R raises the question of contradictory effects mediated by 112 

peripheral and central H3R.   113 

Conflicting data concerning the involvement of H2R on glycaemia has also arisen. Its antagonism 114 

was reported to decrease [35], not affect [36, 37] and increase [38, 39] glucose levels. In 115 

comparison, the clinical experience with antipsychotic drugs generated clearer evidence for the 116 

involvement of the central H1R in the development of a diabetic phenotype [40]. Consistently, it has 117 

been found that the intra-ventricle or –hypothalamic administration of an H1R agonist induces 118 

satiety evoking an anti-obesity effect [41, 42]. Moreover, a strategy based on the contemporary H1R 119 
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agonism and H3R antagonism was demonstrated to have the potential to reduce obesity also in 120 

patients with comorbidities such as diabetes [43]. 121 

3 Histamine and diabetes complications 122 

As mentioned above, despite the effectiveness of the different anti-diabetic strategies in controlling 123 

glycaemic levels, due to the glucose variability, patients are still exposed to a high risk of 124 

developing one or more of the longstanding and serious complications [4]. According to the 125 

definitions by the World Health Organization, the complications can be divided into macrovascular 126 

complications (including coronary artery disease, peripheral arterial disease and stroke) and 127 

microvascular complications (including diabetic nephropathy, neuropathy and retinopathy). 128 

Notably, for each new case of one given complication, a higher probability to display another one 129 

has been clearly documented [44].  130 

Interestingly, a higher content of histamine in the anatomical districts involved in the diabetic 131 

longterm complications has been reported in different studies [6, 7]. Independently from the source 132 

of histamine within these districts, due to an activation of mast cells, a recruitment of basophils, an 133 

imbalance in the amine anabolism/catabolism or all three, the increased histaminergic tone is a 134 

common feature of the different complications and deserves to be further clarified. In particular, 135 

based on its vascular actions, histamine has been suggested to be a key triggering stimulus for the 136 

functional microangiopathy in diabetes mellitus, from retinopathy to nephropathy. However, its 137 

complete functional contribution to diabetes microvascular complications is yet to be elucidated. 138 

3.1 Histamine and macrovascular complications 139 

Cardiovascular diseases (CVD) are one of the leading cause of death in diabetics, with an increased 140 

rate of heart disease or stroke from two- to four-fold compared to non-diabetic patients [45]. 141 

Notably, histamine has been reported to regulate several cardiovascular and endothelial functions 142 

through concerted actions on both smooth muscle and endothelial cells. These actions result in 143 
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vasoconstriction or vasodilation based on histamine level, diameter and initial vessel tone, and 144 

relative location within the coronary circulation [46]. Again the first evidence for histamine 145 

involvement in diabetic macrovascular complications comes from the 1980s studies, when the 146 

histamine metabolism in both aortic endothelial and subjacent smooth muscle cells of control and 147 

diabetic rats was studied [47]. Despite such intriguing initial results, the hypothesis suggested was 148 

not further developed, with sparse, indirect and almost contrasting data remaining in the literature.  149 

The evidence for a role of histamine stems from mast cell activation during the coronary blood 150 

vessel inflammation underling the atherogenesis process [48, 49], but also from its release from 151 

activated platelets [50]. Indeed, the number of mast cells was found to be increased in the narrow 152 

parts of blood vessels or at the site of plaque rupture in patients suffering from ischemic heart 153 

diseases [51, 52]. Notably, histamine release was demonstrated to significantly increase in coronary 154 

circulation during myocardial ischemia irrespective of the incidence of risk factors such as 155 

hypertension, type 2 diabetes, or dyslipidaemias [53].  156 

Among the different receptors, historically the macrovascular effects of histamine seems to be 157 

mostly related to the H1R and H2R, but no specific studies were designed to investigate the whole 158 

histamine receptor family and only one observation claims the ability of H3R to regulate the 159 

coronary vascular response [54]. H1R has been reported to mediate the overexpression of the 160 

adhesion molecules [55] and the activation of nitric oxide synthase [55-57] evoked by histamine in 161 

vascular endothelial cells. H2R has been demonstrated to cause coronary dilation in both an 162 

endothelium independent [56] and dependent [54] manner. 163 

Apart from atherosclerosis, patients with diabetes mellitus also exhibit QT (QTc) interval 164 

prolongation and increased QTc dispersion. Interestingly, HDC-/- mice with aging showed a 165 

decrease in maximum rate of depolarization (Vmax) and action potential duration (ADP)90 166 

prolongation comparable to those observed in the wild-type counterpart following diabetes 167 

induction by STZ administration [58]. This observation is still far from being conclusive, but it is in 168 
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keeping with the suggested arrhythmogenic potential of histamine [59, 60].  Although no specific 169 

receptor involvement have been described, histamine has been reported to induce Purkinje-fibers 170 

depolarization drive to ventricular tachycardia [61]. In mastocytosis patients, when a massive mast 171 

cells recruitment and degranulation occur, cardiac arrest has been observed [62]. Moreover, atrial 172 

fibrillation was described consequently to anaphylaxis reaction to venom and pollen 173 

immunotherapy in patients with established hyperhistaminemia [63]. Finally, a recent study 174 

pointing at a connection between histamine and diabetes macrovascular complications concluded 175 

that manipulation of cardiac mast cell function with nedocromil (PubChem CID 50294), a mast cell 176 

stabilizer, is sufficient to attenuate cardiomyopathy stimulated by diabetes [64].   177 

Collectively, in the literature, there are not enough data to support any conclusive dissertation on 178 

the role of histamine in the development/maintenance of the macrovascular complication of 179 

diabetes, with the majority of its effects ascribable to its general anti-inflammatory properties.  180 

3.2 Histamine and microvascular complications 181 

The vasoactive properties of histamine led to the hypothesis advocating its contribution to the 182 

development and maintenance of diabetes-related microvascular complications. As discussed 183 

above, the role of the amine was investigated in the different end-organ(s). 184 

3.2.1 Diabetic neuropathy 185 

Diabetic neuropathy is an heterogeneous family of nerve disorders resulting in improper locomotor 186 

and visceral organ dysfunctions at the level of peripheral, central, and visceral sensorimotor and 187 

motor nerves [65]. According to this definition we can recognize peripheral, autonomic, proximal, 188 

or focal neuropathy. Among these different neuropathies the peripheral subtype is the most 189 

common. As a consequence of the peripheral nerve degeneration, triggered by persistent 190 

hyperglycaemia, and according to the affected nerves, diabetes patients suffer from pain, weakness, 191 

and eventual loss of sensation in addition to severe chronic pain syndromes. 192 



 

9 

The wheal response to intradermal application of histamine in diabetic patients have been assessed 193 

since 1930 [66], but its involvement in pain transmission was clearly recognized only by Schwartz 194 

and collaborators in 1991. So far many strands of evidence have pointed to histaminergic 195 

neurotransmission as an important factor in the control of pain [67-70]. Indeed, diabetic patients 196 

have been described to be less responsive to histamine as well as other neurogenic inflammation 197 

mediators such as substance P. In addition, a bidirectional relationship between different 198 

neurotransmitters and histamine exists [71]. The mRNA of H1R has been detected in many 199 

substance P positive neurons [72] and histamine has been shown to mediate the release of substance 200 

P and glutamate [73]. Also, the expression of H1R and/or H3R within calcitonin gene related peptide 201 

(CGRP) positive neurons [72] was determined. CGRP and histamine can establish a vicious circle 202 

inducing one another [70, 74, 75]. 203 

Although histamine has been reported to modulate nociception through all four types of its receptor, 204 

H1R [69, 76-78], H2R [76, 78, 79], H3R [78, 79] and H4R [80-85], in 2014 the H3R antagonists were 205 

reported as very promising for neuropathic pain [86]. However, only one study was designed to 206 

evaluate the antinociceptive effect of the H3R in a diabetic model. This respective study showed 207 

that the selective agonist immepip (PubChem CID 3035842) reversed formalin-induced 208 

hyperalgesia in both phases of the formalin test [87]. This effect could be associated with both H3R 209 

peripheral activation, resulting in a reduction in inflammatory peptides release, and H3R central 210 

activation, leading to the inhibition of pain transmission [88-92]. Consistent with this theory, 211 

immepip (PubChem CID 3035842) was found to inhibit mechanical, not thermal sensitivity in rats, 212 

but was shown to affect neither mechanical nor thermal sensitivity in mice [93]. Moreover, the role 213 

of H3R receptor in nociception is still controversial, with different antagonists, including 214 

GSK189254 (PubChem CID 9798547), GSK334429 (PubChem CID 11452311) and ABT-239 215 

(PubChem CID 9818903), demonstrated to be effective in reducing the sensitivity to mechanical 216 

stimuli [94] or in relief from surgically- and virally-induced neuropathic pain as well as 217 

inflammatory pain [82, 95, 96], respectively. The discrepancy emerging from the above described 218 
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literature can be specifically explained by the observation that the H3R receptor is expressed both as 219 

an autoreceptor and heteroreceptor which inhibits the release of histamine [97] and other 220 

neurotransmitters, respectively, including acetylcholine, noradrenaline, dopamine and serotonin 221 

[98-102]. 222 

Notably, histamine has also been shown to play a role in autonomic neuropathy. Indeed, the 223 

deranged autonomic function of the airways in diabetic patients with autonomic neuropathy has 224 

been demonstrated to elicit an exaggerated response to histamine-induced bronchoconstriction 225 

[103]. A direct stimulation of bronchial smooth muscle contraction combined with vagal-mediated 226 

reflexes after stimulation of rapidly adapting irritant receptors and C-fibers has been argued to be 227 

the mechanism underling the histamine-induce bronchoconstriction, while bronchomotor tone is 228 

mainly controlled by the parasympathetic nervous system. Therefore, the exaggerated response to 229 

histamine in diabetic patients could be due to the widespread autonomic damage to the respiratory 230 

parasympathetic and sympathetic pathways (including non-adrenergic non-cholinergic pathways 231 

influencing airway tone) and/or denervation hypersensitivity [104-111]. However, despite the above 232 

observations the role of histamine in autonomic neuropathy is still far from clear.   233 

3.2.2 Diabetic retinopathy 234 

Diabetic retinopathy is still one of the major worldwide cause of blindness. Its development can be 235 

divided into non-proliferative, with microaneurysms, hard exudates, haemorrhages, and venous 236 

abnormalities and proliferative, with neovascularization, pre-retinal or vitreous haemorrhages, and 237 

fibrovascular proliferation [112, 113]. Development of glaucoma, retinal detachment, and vision 238 

loss may also happen at this stage [114].  239 

A possible role for histamine in this context was postulated when diabetic retinopathy was mainly 240 

considered a microvascular complication of endothelial dysfunction with capillary basement 241 

membrane (BM) thickening, pericyte and endothelial cell loss, blood-retinal barrier (BRB) 242 

breakdown and leakage, acellular capillaries, and neovascularization [115, 116]. Indeed, most of 243 
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these vascular effects are consistent with the vasoactive properties of histamine. Antihistamines, 244 

such as diphenhydramine (PubChem CID 3100), astemizole (PubChem CID 2247) and ranitidine 245 

(PubChem CID 3001055), have been shown to reduce the leakage of retinal vessels in diabetic rats 246 

and humans [117, 118], but also to attenuate blood-brain barrier permeability and to ameliorate 247 

cerebral blood flow disturbances [119]. 248 

In particular, it was reported that histamine specifically affects the zonula occludent (ZO)-1 249 

expression in cultured retinal microvascular endothelial cells [120]. Interestingly, the same authors 250 

described a similar inhibitory effect on ZO-1 expression for both high glucose (20mM) and low 251 

insulin (10-12M) culturing condition [121]. These data provide a mechanistic interpretation of the 252 

ability of histamine to induce a BRB dysfunction in both experimental diabetes and diabetic 253 

patients [118, 122, 123], suggesting that the increased histaminergic tone consequent to the diabetic 254 

milieu could directly account for the BRB breakdown and leakage vascular, for many years 255 

considered pivotal in the pathogenesis of diabetic retinopathy. These effects can be considered at 256 

least qualitatively equivalent to those observed for the vascular endothelial growth factor (VEGF) 257 

on permeability leakage [124]. 258 

The possible involvement of histamine in diabetic retinopathy is still plausible, although not deeply 259 

investigated, when, according to the neurodegenerative nature of this disease, the other components 260 

of the retina, such as neurons and glial cells are taken into account. It is currently acknowledged 261 

that cellular, molecular, and functional changes are evidenced in all the retina cellular 262 

compartments [115, 116, 125-127] at an early stage of diabetic retinopathy. Intriguingly, an 263 

increase in histamine synthesis was observed within the retinas of diabetic rats [117, 128]. This was 264 

due to an over-expression of the HDC enzyme in both the retinal neurons and glia [129]. As 265 

mentioned above for plasma, aorta and pancreas, an insulin-histamine loop does exist also within 266 

the retina. The histamine overproduction induced by diabetes was decreased by both the HDC 267 

inhibitor or insulin administration in experimental diabetes [128]. 268 
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Therefore, collectively the data in the literature suggest that histamine could at least participate in 269 

the neural cell contribution to the diabetes-induced vascular leakage. 270 

3.2.3 Diabetic nephropathy 271 

Diabetic nephropathy is one of the most important causes of chronic kidney disease (CKD), and 272 

therefore of end-stage renal disease (ESRD) in Western nations.  It has been estimated that the risk 273 

of developing CKD is increased by a factor of 12-fold in type 1 diabetes and 6-fold in type 2 274 

diabetes, compared with non-diabetic individuals [130]. About one-third of diabetic patients begin 275 

to show persistently high urinary albumin excretion, thence being at high risk to develop in primis 276 

diabetic ESRD, but also cardiovascular diseases and premature mortality, even without progression 277 

to ESRD [131]. 278 

Intriguingly, the first evidence for a possible role of histamine in the development of diabetic 279 

nephropathy arose from studies performed in STZ diabetic rats in which histamine levels, consistent 280 

with the generalized increase of the amine induced by diabetes, were found to be significantly 281 

increased in the kidney [132, 133]. Again, a greater tissue HDC activity without a concomitant 282 

decrease in histaminase activity could account for this event [133] especially at the glomerular level 283 

which has been identify as the major site of intrarenal histamine synthesis and accumulation [109, 284 

134]. The demonstrated ability of histamine to increase salt and water excretion [135-137], decrease 285 

the ultrafiltration coefficient by reducing the total filtration surface area [137], and increase renin 286 

release [138] led to the hypothesis of a direct involvement of histamine in regulating the renal 287 

microcirculation. For a long period, histamine was claimed to affect the glomerular 288 

microcirculation. However, recent evidence suggest and support the hypothesis of direct effects of 289 

histamine on glomerular integrity and function, far beyond simply modifying the glomerular 290 

hemodynamic microcirculation [139].  291 

At the tubular level, the first evidence of a histamine detrimental effect on tubular integrity and 292 

function was already available in the 1960s and 1970s when several reports suggested that mast 293 
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cells may be involved in kidney diseases, but as mast cells were not easily detected by routine 294 

histochemical staining, they were ignored or forgotten by nephrologists for many years [140]. In the 295 

normal kidney, mast cells are constitutively present at a low number. However, their density 296 

increases in the renal cortical tubulointeirstizium, in the periglomerular and perivascular area, but 297 

not in glomeruli, in a variety of human renal diseases including diabetic nephropathy [140-142]. 298 

Moreover, mast cells have occasionally been found in the wall of atrophied tubules [142]. In 299 

particular, it has been shown that with disease progression, the number and degranulation status of 300 

mast cells increased, suggesting that histamine released by mast cells into the tubular interstitium 301 

may promote renal inflammation and fibrosis [141, 142]. Indeed, histamine has been reported to 302 

promote fibrosis affecting the tissue growth factor (TGF)-β/Smad3/4 axis in the lung [143].  303 

In the past several decades, all the renal effects of histamine were ascribed only to H1R and H2R, 304 

both identified in the glomeruli [12, 132]. Consistent with results obtained in rats [138], it was 305 

found in humans that the H2R is the subtype present in glomeruli and involved in the cAMP 306 

accumulation subsequent to the increasing histamine [144]. Moreover, it has been demonstrated that 307 

histamine modulates mesangial cells and glomeruli via H1R [145]. In the last few years, convergent 308 

lines of evidence strongly support the conclusion that all four histamine receptors are present and 309 

functional in the human nephron, although with a differential anatomical topology [34]. Notably, 310 

among them, both the H3R and the H4R have been reported to be profoundly upregulated at the 311 

tubular level in STZ treated rats, which also displayed parallel renal damage (mostly again at the 312 

tubular level) [33, 146]. These latter data led to a new interest in histamine in kidney 313 

(patho)physiology supporting the hypothesis that it could directly and specifically contribute to the 314 

onset/progression of diabetic nephropathy. 315 

4 Conclusion 316 

Is it really the time to reconsider the functional contribution of histamine in diabetes? Indeed, 317 

although still far from conclusive, different elements point to a clear role of histamine in diabetes 318 
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and diabetic complications etiopathogenesis. The evidence is strong in some cases, sometimes 319 

independent, but sometimes contradictory; despite this heterogeniety, when viewing the timeline of 320 

interest for histamine involvement in this disease (Figure 1) it appears phasic with a clear upturn 321 

and renewal in interest in the last couple of years, thanks to the very recent discovery of a direct 322 

effect of histamine on glycaemia [13, 16, 17] as well as a profound up-regulation of both H3R and 323 

H4R in the  diabetic animal kidney  [33, 146]. As a whole, the revisit of the literature herein clearly 324 

shows growing independent lines of evidence for a bidirectional connection between histamine and 325 

diabetes (Table I).  326 

Table I. The diabetes-histamine loop: the state of the art  
Diabetes complication Diabetes affects 

histamine 
Histamine influences 

the progression 
Receptor involved 

   H1R H2R H3R H4R 
macrovascular Ï HDC and 

histamine in 

aortic endothelial 
and smooth 
muscle cells 

atherogenesis 

coronary dilation, 
arithomogenic activity 

(QT-prolongation) 

++ ++ + n.d. 

microvascular       
neuropathy       

peripheral 
neuropathy 

 pain control,  

neurogenic 

inflammation 

n.d. n.d. + n.d. 

autonomic 
neuropathy 

 Ï bronchoconstriction n.d. n.d. n.d. n.d. 

retinopathy Ï HDC and 

histamine 

Ï vascular leackage ++    

nephropathy Ï HDC, 

histamine, H3R 

and H4R 

expression 

Ï salt and water 
excretion,  
Ðultrafiltration 
coefficient,  
Ï renin release 

+ + ? ? 

++ = strongest evidence; + = spare evidence; ? = under 

investigation/charactherization; n.d. = no data 

  

 327 

Therefore, a pathophysiological role for this amine cannot be discounted anymore and new studies 328 

specifically aimed to assess its function in the onset and progression of the longstanding diabetes 329 

complications are strictly warranted. The state of the art on histamine in diabetes is recapitulated in 330 

Figure 1.  331 
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 332 

Figure 1. Milestones in the story of histamine and diabetes. Timeline of major events in the 333 

history of histamine and its link to diabetes and its complications - 1930s to present day. The phasic 334 

interest with the recent upsurge in the last couple of years is depicted. 335 

 336 

As reported in Table I, not all the diabetic complications have been provided with the same level of 337 

compelling evidence. Many blind spots remain regarding the role of histamine in macrovascular 338 

complications where the effect of the amine seems to be mostly related to its general vasoactive 339 

properties rather than to a specific function in diabetes. The discrepancies often observed in the 340 

literature can be mostly ascribed to the different models adopted as well as to the doses, the 341 

administration route and the actual selectivity of the compound used, which could differentially 342 

affect the central and peripheral histaminergic system. More notably, the majority of the evidence 343 

for histamine involvement in the different diabetes complications arises from studies not directly 344 

aimed to assess its role in diabetic disease. This is in particular the case for diabetic peripheral 345 

neuropathy where the studies were designed to assess a general role in nociception and/or 346 

neuropathic pain. Other fields, such as retinopathy, have found using new strategies, effective and 347 

specific pharmacological tools that have downgraded the antihistaminergic approach to a supporting 348 

role. However, since many of the investigations were prior to the discovery of the newest histamine 349 

receptor members H3R and H4R, [147] there is scope for new insights in histamine and diabetes, 350 

and the opportunity to develop new antihistamine drugs to overcome the paucity of effective 351 

therapies.  352 
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