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The paper aims at providing a general theoretical frame bridging the macroscopic growth law with the com- 

plex heterogeneous structure of real tumors. We apply the “Phenomenological Universality” approach to 

model the growth of cancer cells accounting for “populations”, which are defined not as biologically pre- 

defined cellular ensemble but as groups of cells behaving homogeneously with respect to their position (e.g. 

primary or metastatic tumor), growth characteristics, response to treatment, etc. Populations may mutually 

interact, limit each other their growth or even mutate into another population. To keep the description as 

simple and manageable as possible only two populations are considered, but the extension to a multiplicity 

of cell populations is straightforward. 

Our findings indicate that the eradication of the metastatic population is much more critical in the pres- 

ence of mutations, either spontaneous or therapy-induced. Furthermore, a treatment that eradicates only the 

primary tumor, having a low kill rate on the metastases, is ultimately not successful but promotes a “growth 

spurt” in the latter. 

© 2015 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

Tumor is a very inhomogeneous system of cells [1] dynamically

nteracting and adapting to their environment. Normally two or more

ell populations coexist, e.g. the primary tumor and one or more sec-

ndary ones, generated by cells of the primary tumor which moved

o lymph nodes or distant organs. Adaptation to different environ-

ents normally modifies the cells characteristics, originating a dif-

erent cell population. To account for any heterogeneity among cells,

ue to whatever cause or nature, different cell populations are con-

idered. The transformation of a given population into another one

s termed mutation whenever the phenotypic modifications reflect

enetic alterations. Sometimes such mutations may be induced or

odulated in response to therapies (see [2] in case of the prostate

ancer). As a matter of fact, primary tumors are normally treated by

urgical eradication or radical radio therapy. When unsuccessful, tu-

or seeds may survive generating a local recurrence (whose cells

ay be somewhat different from their progenitor, adding a new cell

opulation into the picture). At the same time, in order to prevent
∗ Corresponding author. Tel.: +39 0116708198. 
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r, more often, to control distant tumor spread, systemic therapies

re delivered, generally called chemo-therapies. Nowadays, also hor-

one therapies are very common to contrast the growth of hormone-

ensitive tumors, like breast and prostate cancer. In this last case

t is well known that, after an initial reduction of the tumor vol-

me, the growth of hormone-resistant cells will finally induce an al-

ost uncontrollable tumor saturation [2] . Any realistic model should

herefore take into account the appearance of therapy-induced cell

utations. 

The key question in the modeling strategy is how strong the in-

erplay among different cell populations must be. Since they are part

f the same organism, a “minimal” hypothesis states that they share

he same overall energetic and physical resources. Since the total tu-

or carrying capacity is limited, it is therefore reasonable to assume

hat the growth of both cell populations is constrained [3,4] . How-

ver, several authors (see for instance [5,6] ) have speculated about

he possibility that the whole tumor (i.e primary, nodes and metas-

ases) behaves as a “coherent body”. Experimental evidences of en-

anced proliferation of the dormant secondary tumors following the

urgical excision of the primary one have been shown in both animal

7,8] and human [9,10] models. A recent model of [3] shows that the

ffect of primary tumor resection on the growth of bone metastases is

ot always favorable: since large tumors limit the resources available
r the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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for the growth of smaller ones, the resection of the primary tumor

may trigger the proliferation of dormant tumors by promoting their

vascularization and growth. 

The biological mechanisms underlying the above macroscopic

findings are still debated. The simultaneous production of growth

hormones and angiogenic factors as well as of their inhibitors by

the primary tumor, and their different stability (normally the in-

hibitors have a longer lifetime) may explain the successful control of

the metastatic progression until the primary tumor is present. Also

the post-surgery wound healing processes and the resulting local

and systemic inflammation may be responsible for secondary tumor

growth [11,12] . 

We investigate here the equilibrium conditions of two asymmetri-

cal cell populations, paying close attention to their stability or insta-

bility, which are assumed to predict the successful cure or the fatal

evolution of the tumor. The parameter conditions ensuring the stable

configuration, i.e. the stop of the tumor growth, are outlined in detail.

The paper is organized as follows. In Section 2 the governing equa-

tions for the cell populations growth, with or without therapeutic in-

terventions, are presented. In Section 3 two non-mutating popula-

tions are investigated, assuming as mutual interplay the constraint

on the total carrying capacity, accounting for the geometrical re-

strictions and the overall environmental conditions, such as growth

factor release and energetic resources. The response to therapies is

investigated in Section 4 . Section 5 considers the spontaneous or

therapy-induced emergence of a mutated population. In Section 6 the

results are collected in a phase-space diagram encompassing real

clinical situations occurring in a large population of patients at dif-

ferent stages of tumor evolution. We focus on possible practical ap-

plications as the case of recurrent prostate cancer, where previously

prostectomized patients are treated with Androgen Deprivation Ther-

apy (ADT). Such therapy is very effective on the initially predominant

hormone-sensitive cancer cells, but promotes a mutation into non-

hormone sensitive cells and finally fails in controlling tumor prolifer-

ation. A final discussion concludes the paper. 

2. The model 

The recently proposed Phenomenological Universalities (PUN) ap-

proach [13–16] actually includes most of the growth models pro-

posed in the past within a single mathematical frame: they range

from simple exponential to logistics and Gompertzian growth, to the

ontogenetic model of [17] . PUN was successfully applied to describe

the tumor multi-passage transplant in mice [6] , external stresses lim-

iting tumor invasiveness [18] , multi-cellular tumor spheroids [19] as

well as to simulate the response to selected therapies [20] . Applica-

tions to other growth phenomena, such as human height from birth

to maturity [21] show that the model may easily include “growth

spurts”provided a “piece-wise” formulation is used. In this setting,

each time interval is characterized by its own specific parameter val-

ues. Extensions of PUN to multiple cells populations have been pro-

posed as well, e.g. proposing a “vector” PUN model [22] . 

The PUN approach describes tumor growth in a very general way,

see [15,16] for details: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

dN(t)

dt 
= c(t )N(t )

dc(t)

dt 
= 

n ∑ 

i =0 

βi c 
i 

(1)

where N is the cancer cells population, c ( t ) is the growth rate function

and n is the degree of the Taylor expansion. This approach generalizes

the most used equations in population growth, in fact: in the case

n = 0 , c ( t ) constant, N grows following an exponential law; for n = 1 ,

it follows a Gompertzian law and for n = 2 a West/logistic growth law,

[23] . 
.1. U 0 – Malthus growth law 

The first approximation of tumor growth is the exponential law;

n fact, at an initial stage, tumor cells duplicate very fast with a fixed

oubling time (i.e. the time in which the cancer mass doubles) which

stimates the rate of the exponential growth. 

Using PUN notation, we see that, for n = 0 , from (1) the deriva-

ive of c is a constant; assuming it vanishes, β0 = 0 , it follows that

(t) = c 0 which in turn implies N(t) = e c 0 t , upon integration of the

rst (1) . For c 0 > 0, the model exhibits an unbounded population

rowth. However, real tumors cannot expand indefinitely because

f physical constraints. Thus, in the subsequent sections we will not

onsider this unrealistic case anymore. 

.2. U 1 – Gompertzian growth law 

This function describes the tumor development more realistically.

ndeed, following an initial exponential unrestricted phase, due to

ack of nutrients and space the tumor population growth progres-

ively slows down until finally the tumor population attains its car-

ying capacity. The mathematics reflects the biological processes, i.e.

he cancer core becomes hypoxic and necrotic while the proliferat-

ng tumor border may reach some physical barrier such as tissue or

ones and it stops growing. The dynamic system, in the U 1 case, is: 
 

 

 

 

 

dN(t)

dt 
= c(t )N(t )

dc(t)

dt 
= β1 c + β0 

ntegrating the second equation by separation of variables, setting

0 = 0 , c 0 = e −β1 t 0 β−1 
1 

, β = β1 < 0 and then substituting c ( t ) into

he first one we have: 

dN(t)

dt 
= c 0 e 

βt N(t) (2)

hose solution is: 

(t) = N 0 e 
c 0 
β

(e βt −1 )
. (3)

here β is inversely proportional to the tumor carrying capacity and

 0 denotes the growth rate. Note that in this case the carrying capacity

epends on the initial condition N 0 . 

To emphasize the role of the carrying capacity, Eq. (3) can be

ewritten as: 

(t) = N ∞ 

e ze −rt 

(4)

here N ∞ 

= lim t→∞ 

N(t) = N 0 e 
− c 0 

β is the carrying capacity and r the

xponential growth rate. We can easily transform (3) into (4) back

nd forth by setting r = −β, N ∞ 

= N 0 e 
− c 0 

β and z = 

c 0 
β

. 

.3. U 2 – West growth law 

West and collaborators have published their allometric theory

o give a robust physical foundation to the empirical relationship

etween the basal metabolic rate and the 3/4 power of the mass

bserved in all living beings (Kleiber scaling law, [24] ) This formal-

sm has been extended by [15] for tumors. In addition to the carry-

ng capacity, a second independent parameter relating the cellular

etabolic energy and the energy required for duplication comes into

lay. Also this function could be derived by the PUN approach, in fact

or n = 2 we have: 

dc(t)

dt 
= β0 + β1 c + β2 c 

2 . 

his is a very general equation that defines a class of functions; in

articular, choosing β2 = − 1 , t 0 = 0 and β1 inversely proportional to
4 



I. Stura et al. / Mathematical Biosciences 271 (2016) 19–28 21 

t

w  

d  

c  

o

 

U  

(

N

w  

t  

r  

i

3

 

o  

m  

c  

u  

l  

o⎧⎪⎨
⎪⎩
a  

o

 

i  

t  

a  

p  

e  

t  

o  

m

 

w  

I  

l

p  

e  

t  

g⎧⎪⎨
⎪⎩
N  

g  

t  

t  

s

4

 

j  

o  

s  

h  

t

 

t  

l  

l  

c  

m  

s  

r  

s⎧⎪⎨
⎪⎩
w  

N  

t  

s  

w  

N  

f

4

 

c  

a

N

N

F  

t

a  

N

 

t⎧⎪⎨
⎪⎩
T  

g

N

N

I  

N  

i  

e  

d  

(  

s

he carrying capacity N ∞ 

, N is seen to follow the West growth law: 

dN(t)

dt 
= AN 

3 
4 

[ 

1 − 4 

√ 

N 

N ∞ 

] 

(5) 

here A is the ratio between the cellular metabolic rate B c (which

epends on the cell line) and the energy E c required to form a new

ell. As shown by [25] , this parameter could be easy estimated by the

bserved growth time scale τ = 

4 E c 
B c 

. 

In the following sections we will use an equivalent notation for

 2 for which an analytical solution is readily found. Assuming N ∞ 

=
β0 β2 β

−1 
1 

− 1 )
1 
4 , β1 < 0 and A = −4 β1 N 

1 
4 ∞ 

we have: 

c(t) = 

β0 (
1 + 

β0 β2 

β1 

)
e −β1 t − β0 β2 

β1 

(t) = N ∞ 

[ 

1 −
( 

1 + 

4 

√ 

N 0 

N ∞ 

) 

e 
− 1 

4 
At 

4 √ N ∞ 

] 4 

. (6) 

here N ∞ 

is the carrying capacity and A corresponds to the ini-

ial growth rate. Note that it affects the time at which the function

eaches the limiting value but it does not influence the final value

tself. 

. The two weakly interacting populations model 

We assume the cancer mass to be composed by different groups

f cells (or populations), distinguished either genetically (e.g. two or

ore clones of the same tumor) or epigenetically (e.g. hypoxic/oxic

ells at the center/at the edge of the mass). To describe the tumor

sing the PUN approach, we denote by N 1 and by N 2 the two popu-

ations. Assuming that the two populations are independent of each

ther, the system becomes: 
 

 

 

 

 

dN 1 (t)

dt 
= c 1 (t)N 1 (t)

dN 2 (t)

dt 
= c 2 (t)N 2 (t)

(7) 

nd the solutions are independent and each population grows on its

wn. 

In realistic contexts the carrying capacities of the populations are

n fact constrained by physical and energetic restrictions, because the

otal carrying capacity at most equals the maximum volume avail-

ble for the tumor to expand (e.g. the intestine for the primary tumor

lus the liver for the metastasis) or is limited by the amount of nutri-

nts that cancer cells could use to grow. As shown by [3] , the primary

umor often uses most of the total nutrients precluding the growth

f micro-metastases, but whenever the primary tumor is eradicated,

etastases exhibit a sudden growth spurt. 

The constraint is expressed by the condition N ∞ , 1 + N ∞ , 2 = N ∞ 

,

hich in turn implies a relationship among the growth parameters.

n practice, as is common in the literature, [3] , in the models that fol-

ow we implement the restriction by introducing a new parameter ε
roviding an extra degree of freedom. We could interpret this param-

ter as a measure of the metabolic rate increment in response to par-

icularly favorable growth conditions. It also expresses an additional

rowth rate for the second population. We thus obtain 

 

 

 

 

 

dN 1 (t)

dt 
= c 1 (t)N 1 (t)

dN 2 (t)

dt 
= c 2 (t)N 2 (t) + εN 2 (t). 

(8) 

ote also that the populations proliferate differently during tumor

rowth: in the early stage N 1 ( t ) � N 2 ( t ) because N 1 is expanding and

he second population is a minor clone; if N 1 is instead the primary

umor and N 2 is a metastasis, then N 1 ( t ) � N 2 ( t ) because in the new

ite the cancer cells can freely proliferate. 
. The two populations model with treatment 

In order to eradicate or reduce the volume of the tumor, the ma-

ority of the diagnosed primary cancers are treated by radical surgery

r radio-therapy. These treatments are administered in a relatively

hort time (1–40 days). To prevent and/or control secondary tumors

ormone- and chemo-therapies are instead prescribed for a longer

ime span (months-years). 

As it often occurs, we assume that the two populations respond

o treatments differently. In particular let us assume that cell popu-

ation 1 is very sensitive to the therapy while population 2 is either

ess sensitive or not sensitive at all to it. This situation resembles the

linical cases when in the same tumor mass a clone resistant to hor-

one therapy coexists with another one sensitive to it, or when two

eparated masses are differently treated, i.e. the primary tumor with

adio-therapy and the metastasis with hormone/chemo-therapy. The

ystem (7) becomes: 
 

 

 

 

 

dN 1 

dt 
= c 1 (t)N 1 − d 1 (t)N 1 

dN 2 

dt 
= c 2 (t)N 2 − d 2 (t)N 2 

(9) 

here d 1 ( t ) and d 2 ( t ) are the treatment kill rates on the populations

 1 and N 2 respectively. In principle, d 1 and d 2 could be functions of

ime to account for different times of treatments and one- or multi-

hot therapies. For sake of simplicity, in the following computation

e will assume d 1 and d 2 to be constants with d 1 � d 2 , stating that

 1 is more sensitive and d 2 is negligible if the treatment of N 2 is inef-

ective. 

.1. U 1 case 

In case of the Gompertzian growth law we have c 1 (t) = c 1 e 
β1 t ,

 2 (t) = c 2 e 
β2 t with c 1 , c 2 , β1 and β2 having constant values. The an-

lytical solutions are: 

 1 = N 0 , 1 e 
c 1 
β1 

e β1 t −d 1 t− c 1 
β1 = N ∞ , 1 e 

− d 1 
r 1 e log (N 0 , 1 /(N ∞ , 1 exp(−d 1 /r 1 )))e −r 1 t 

 2 = N 0 , 2 e 
c 2 
β2 

e β2 t −d 2 t− c 2 
β2 = N ∞ , 2 e 

− d 1 
r 1 e log (N 0 , 2 /(N ∞ , 2 exp(−d 2 /r 2 )))e −r 2 t 

or the equilibrium points we have c i (t) = d i , i = 1 , 2 , from which

he times to reach the equilibria are obtained, t ∗1 = β−1 
1 

log 
(
d 1 c 

−1 
1 

)
nd t ∗2 = β−1 

2 
log 

(
d 2 c 

−1 
2 

)
, with c i < d i and t ∗

i 
> 0 , i = 1 , 2 . In the limit,

 i tends to zero whenever d i > 0, i = 1 , 2 . 

Rewriting the system using Eq. (4) and accounting for the maximal

otal carrying capacity for the tumor, recall (8) , we have: 

 

 

 

 

 

dN 1 (t)

dt 
= −r 1 N 1 (t) log 

N 1 

N ∞ , 1 

− d 1 N 1 (t)

dN 2 (t)

dt 
= −r 2 N 2 (t) log 

N 2 

N ∞ , 2 

− d 2 N 2 (t) + εN 2 (t). 

(10) 

he value of ε corresponding to the fixed total carrying capacity is

iven in Table 1 . The solutions are respectively 

 1 (t) = N ∞ , 1 e 
− d 1 

r 1 e log (N 0 , 1 /(N ∞ , 1 exp(−d 1 /r 1 )))e −r 1 t 

 2 (t) = N ∞ , 2 e 
− d 2 

r 2 e log (N 0 , 2 /(N ∞ , 2 exp(−(d 2 −ε)/r 2 )))e −r 2 t 

. 

n the limit, they tend respectively to N 

∗
∞ , 1 

= N ∞ , 1 exp ( − d 1 
r 1 

) and to

 

∗
∞ , 2 = N ∞ , 2 exp ( − d 2 −ε

r 2 
); note that the carrying capacities are mod-

fied (see Figs. 1 and 2 ). Empirically, population 1 can be considered

radicated when d 1 ≥ 10 r 1 . In the general case, the critical value of m

epends both on r 1 and N ∞ , 1 . Note that using the initial assumption

 d 2 � d 1 ) the best scenario (death of both populations) is not attained

o easily, since d � ε + r . 
2 2 
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Table 1 

U 1 case: modified carrying capacities and interaction constant in the different scenar- 

ios. 

Model N ∗∞ , 1 N ∗∞ , 2 ε

(7) N ∞ , 1 N ∞ , 2 0 

(9) N ∞ , 1 e 
−m 
r 1 N ∞ , 2 e 

ε+ m 
N ∗∞ , 1 
N ∗∞ , 2 

r 2 r 2 log 

(
N ∞ −N ∞ , 1 e 

− m 
r 1 

N ∞ , 2 

)
− m 

N ∗∞ , 1 
N ∗∞ , 2 

(12) N ∞ , 1 e 
− d 1 

r 1 N ∞ , 2 e 
− d 2 −ε

r 2 r 2 log 

(
N ∞ −N ∞ , 1 e 

− d 1 
r 1 

N ∞ , 2 

)
− d 1 

(15) N ∞ , 1 e 
−(m + d 1 )

r 1 N ∞ , 2 e 
−

d 2 −ε−m 
N ∗∞ , 1 
N ∗∞ , 2 

r 2 r 2 log 

(
N ∞ −N ∞ , 1 e 

− m + d 1 
r 1 

N ∞ , 2 

)
− m 

N ∗∞ , 1 
N ∗∞ , 2 

− d 1 
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4.2. U 2 case 

In case of the West law we present the alternative formulation of

the model used in (5) . The system becomes: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

dN 1 

dt 
= A 1 N 

3 
4 

1 

(
1 − 4 

√ 

N 1 

N ∞ , 1 

)
− d 1 N 1 

dN 2 

dt 
= A 2 N 

3 
4 

2 

(
1 − 4 

√ 

N 2 

N ∞ , 2 

)
− d 2 N 2 + εN 2 (t). 

(11)

Again, the value of ε fixing the total carrying capacity is reported in

Table 2 . Unfortunately, the analytical solutions are not easily man-

ageable, but we can study the limits of the two solutions that have

the form N 

∗
i 

= (N 

− 1 
4 

∞ ,i 
+ d i A 

−1 
i 

)−4 , i = 1 , 2 . Note that in the simplest

case without treatment the limit corresponds to the carrying capac-

ity N ∞ , i , without any dependencies on the growth factor. This limit

depends on A i , that is the strength of the tumor growth (see Fig. 3 ). 

5. The two populations model with mutation 

If one of the two populations, e.g. the first one, is a less resistant

and/or is composed by a less aggressive clone than the other, it tends

to mutate to better adapt to the environment. The velocity of the
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Fig. 1. Treatment in the U 1 case. Changing the kill rate parameter d 1 we can observe the coe

frames). Top right frame: the kill rate is smaller than the growth rate ( r 1 = 0 . 005 , d 1 = 0 . 00

frames: the kill rate is larger than the growth rate; r 1 = 0 . 005 , d 1 = 0 . 025 (left), r 1 = 0 . 005 , d
utation depends on the effective advantage experienced by the mu-

ated population: if it is not so marked, e.g. it has a slightly different

rowth rates, the mutation could be slow, otherwise the first popula-

ion tends to mutate very rapidly, as it may occur when a therapy is

ery effective against the first population but not against the second

ne. We describe this situation as follows: 
 

 

 

 

 

dN 1 (t)

dt 
= c 1 (t)N 1 (t) − mN 1 (t)

dN 2 (t)

dt 
= c 2 (t)N 2 (t) + mN 1 (t)

(12)

here, assuming no leaking, m represents the cell mutation rate from

he first to the second clone. 

.1. U 1 case 

In case of the Gompertzian growth law we have c 1 (t) =
 1 e 

β1 t , c 2 (t) = c 2 e 
β2 t with c 1 , c 2 , β1 and β2 constants. The analyti-

al solutions are: 

 1 = N ∞ , 1 e 
−r 1 e 

t 
N ∞ , 1 −mt+ r 1 , 

 2 = e c 2 e 
β2 t −c 2 

(
m 

∫ t 

e 
− c 2 

β2 
e β2 λ+ c 2 

β2 N 1 (λ)dλ + C 

)
. 

n the limit, N 1 tends to zero when m > 0. Since the behavior cannot

e described analytically, the numerical evaluation shows that the

imit of N 2 depends on c 1 c 2 (β1 β2 )
−1 . 

Rewriting the system using Eq. (4) and imposing a fixed carrying

apacity N ∞ 

we have: 
 

 

 

 

 

dN 1 (t)

dt 
= −r 1 N 1 (t) log 

N 1 

N ∞ , 1 

− mN 1 (t)

dN 2 (t)

dt 
= −r 2 N 2 (t) log 

N 2 

N ∞ , 2 

+ mN 1 (t) + εN 2 (t)

(13)

here ε is given in Table 1 . For simplicity, we now impose no con-

traint ( ε = 0 ). In this case 

 1 (t) = N ∞ , 1 e 
− m 

r 1 e log (N 0 , 1 /(N ∞ , 1 exp(−m/r 1 )))e −r 1 t 
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Fig. 2. Treatment in the U 1 case. Changing the kill rate parameter d 2 we can observe the coexistence of the two populations (top frames) or the extinction of the second one 

(bottom frames). Top right frame: the kill rate is smaller than the growth rate ( r 1 = 0 . 003 , d 1 = 0 . 0015 ). Top left frame: kill and growth rates are equal ( r 1 = 0 . 003 , d 1 = 0 . 003 ). 

Bottom frames: the kill rate is larger than the growth rate; r 1 = 0 . 003 , d 1 = 0 . 015 (left), r 1 = 0 . 003 , d 1 = 0 . 03 (right). 

Table 2 

U 2 case: modified carrying capacities and interaction constant in the different scenarios. 

Model N ∗∞ , 1 N ∗∞ , 2 ε

(6) N ∞ , 1 N ∞ , 2 0 

(11) 

(
1 

N 1 / 4 ∞ , 1 
+ 

d 1 
A 1 

)−4 (
1 

N 1 / 4 ∞ , 2 
+ 

d 2 −ε
A 2 

)−4 

d 2 + A 2 

(
1 

N 1 / 4 ∞ , 2 
− 1 

(N ∗−N ∗
1 
)1 / 4 

)

(14) 

(
1 

N 1 / 4 ∞ , 1 
+ 

m 
A 1 

)−4 

( 

( A 

N 
1 / 4 
∞ , 2 

−ε)N ∗2 −mN ∗1 

A 2 

) 

4 
3 

−m 

N ∗1 
N ∗−N ∗

1 
+ A 2 

(
1 

N 1 / 4 ∞ , 2 
− 1 

(N ∗−N ∗
1 
)1 / 4 

)

(17) 

(
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N 1 / 4 ∞ , 1 
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m + d 1 
A 1 

)−4 

( 

( A 

N 
1 / 4 
∞ , 2 

+ d 2 −ε)N ∗2 −mN ∗1 

A 2 

) 

4 
3 

d 2 − m 

N ∗1 
N ∗−N ∗

1 
+ A 2 

(
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− 1 
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)1 / 4 
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b  
o that it tends to N 

∗
∞ , 1 

= N ∞ , 1 e 
− m 

r 1 , hence the first population will

anish if and only if e 
− m 

r 1 is close to 0, which entails m � r 1 . Again

 sufficient condition for the disappearance of population 1 is m ≥
0 r 1 , i.e. the mutation must be very effective. In the general case, the

ritical value of m depends both on r 1 and N ∞ , 1 . The modified carry-

ng capacity of the second population is N 

∗
∞ , 2 = N ∞ , 2 exp 

(
− m 

r 2 

N ∗∞ , 1 

N ∗∞ , 2 

)
,

hich is not an explicit formula (see Fig. 4 ). Provided N ∞ , 1 � N ∞ , 2 

he condition m � r 2 is not strong enough to ensure the population

rowth. 

In the phase plots ( Fig. 5 ) we can see that the system tends to the

quilibrium point (N 

∗
∞ , 1 , N 

∗
∞ , 2 ) both in case of extinction of the first

opulation and in case of coexistence of the two clones. 

Imposing the constraint N ∞ , 1 + N ∞ , 2 = N ∞ 

, and then 

= r 2 log 

[ (
N ∞ 

− N ∞ , 1 exp 

(
−m 

r 1 

))
N 

−1 
∞ , 2 

] 
− m 

N 

∗
∞ , 1 

N 

∗
∞ , 2 

, 

nd the second population could increase (if ε > 0) or decrease (if ε
 0) depending on the initial carrying capacities of both populations

nd on the mutation rate. 

.2. U 2 case 

As in the treatment case, the analytical solutions are not so easy

o manage, but we can study the limits of the two solutions N and
1 
 2 using the notation (5) ; the system becomes: 
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dt 
= A 1 N 
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1 − 4 
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N ∞ , 1 
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]
− mN 1 

dN 2 

dt 
= A 2 N 

3 
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[
1 − 4 

√ 

N 2 

N ∞ , 2 
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]
+ mN 1 

(14) 

he limits for t tending to infinity are then found: 

 

∗
1 = 

( 

1 

N 

1 / 4 
∞ , 1 

+ 

m 

A 1 

) −4 

, N 

∗
2 = 

( 

mN 

∗
1 

A 2 
N 1 / 4 ∞ , 2 

− A 2 
N ∗1 / 4 

2 

) 

4 
3 

. 

ote that N 

∗
1 

also in this case depends on the growth rate A 1 , while

 

∗
2 

is strictly linked to the first one and depends on both the growth

ates A 1 and A 2 , on the mutation rate and on the initial carrying ca-

acities. In Fig. 6 note also the behavior of the second population: it

as a larger advantage if A 1 > A 2 than in the reverse case. 

. Combination of mutation and treatment 

In real pathological situations the mutation could be induced

y the treatment itself. Accounting for such a situation, the model
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Fig. 3. An example of treatment when cells grow according to the West law. In both frames the two populations receive the same treatment ( d 1 = 0 . 03 , d 2 = 0 . 01 ). Note how the 

growth rate changes the final carrying capacities: in the left frame we take A 1 = 0 . 9 and A 2 = 0 . 4 , in the right one A 1 = 0 . 4 and A 2 = 0 . 9 . As a reference, we plot also the horizontal 

lines indicating the levels of the carrying capacities that the tumors would reach in the absence of treatment. 
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Fig. 4. Mutation in U 1 case. Changing the mutation parameter m we can observe the coexistence of the two populations (top row) or the extinction of the first one (bottom row). 

Top right frame: the mutation rate is smaller than the growth rate ( r 1 = 0 . 005 , m = 0 . 0025 ). Top left frame: mutation and growth rates are equal ( r 1 = 0 . 005 , m = 0 . 005 ). Bottom 

frames: the mutation rate is larger than the growth rate; r 1 = 0 . 005 , m = 0 . 025 (left), r 1 = 0 . 005 , m = 0 . 05 (right). 
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becomes: ⎧ ⎪ ⎨ 

⎪ ⎩ 

dN 1 (t)

dt 
= c 1 (t )N 1 − m(t )N 1 − d 1 (t )N 1 

dN 2 (t)

dt 
= c 2 (t )N 2 + m(t )N 1 − d 2 (t )N 2 

(15)

Note that we inserted a time dependence in (15) for both the muta-

tion and kill rates: in fact, in the general case, the treatment could

vary in time (e.g. cycles of different drugs) and the mutation will
hange along with the therapy progression (e.g. no mutation with-

ut treatment, higher mutation rate in the first period of the treat-

ent with respect to the following cycles). To model these fea-

ures we use piecewise functions with constant parameters. For ex-

mple, to model three chemo-therapy cycles, we used a couple of

quations like ( 15 ) during the treatment (i.e. the day of the cycle

nd the following day) and another couple of equations like ( 12 ),

ithout the parameters d i , during the days between two cycles (see

ig. 9 ). 
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Fig. 5. Mutation in U 1 case. Phase space portraits with different mutation rates (x axis: N 1 population, y axis: N 2 population). Top right frame: the mutation does not affect 

the growth of both populations ( r 1 = 0 . 005 , m = 0 . 0025 , N ∗∞ , 1 = 151 . 6 , N ∗∞ , 2 = 356 . 3 ). Top left frame: the first population is visibly reduced by the mutation ( r 1 = 0 . 005 , m = 

0 . 005 , N ∗∞ , 1 = 91 . 9 , N ∗∞ , 2 = 375 . 8 ). Bottom row: the first population becomes extinct while the second one thrives; r 1 = 0 . 005 , m = 0 . 025 , N ∗∞ , 1 = 1 . 7 , N ∗∞ , 2 = 263 . 6 (left), r 1 = 

0 . 005 , m = 0 . 05 , N ∗∞ , 1 = 0 . 01 , N ∗∞ , 2 = 250 . 1 (right). 
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Fig. 6. An example of mutation in the West case. In both frames the two populations have the same mutation rate ( m = 0 . 03 ). Note that population N 2 has a greater advantage 

in the left frame (where A 1 = 0 . 6 and A 2 = 0 . 4 ) than in the right one (where A 1 = 0 . 4 and A 2 = 0 . 6 ). As a reference, we plot also the horizontal lines indicating the levels of the 

carrying capacities that the tumors would reach in the absence of treatment. 
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Fig. 7. Mutation and treatment in U 1 case. The parameter reference values in all frames, unless otherwise noted, are r 1 = 0 . 005 , r 2 = 0 . 0 03 , m = 0 . 0 05 , d 1 = 0 . 0 05 , d 2 = 0 . 0 03 . 

Top row left: all parameters are at the low reference values entailing coexistence of the two populations. Top row right: high kill rate of the first population ( d 1 = 0 . 05 ), but 

the second one survives; Second row left: high kill rate of the second population ( d 2 = 0 . 03 ), the first one prevails; Second row right: high mutation rate ( m = 0 . 05 ), only the 

second one thrives; Third row left: high kill rates ( d 1 = 0 . 05 , d 2 = 0 . 03 ), both populations are eradicated; Third row right: high kill rate of the first population and high mutation 

rate ( d 1 = 0 . 05 , m = 0 . 05 ), the first population decreases rapidly; Bottom row left: high kill rate of the second population and high mutation rate ( d 2 = 0 . 03 , m = 0 . 05 ), both 

populations vanish; Bottom row right: high kill and high mutation rates ( d 1 = 0 . 05 , d 2 = 0 . 03 , m = 0 . 05 ), both populations disappear. 
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a  
6.1. U 1 case 

In the Gompertzian case the solutions of the system (15) are a

combination of the mutation-only and treatment-only cases. The sys-

tem becomes: ⎧ ⎪ ⎨ 

⎪ ⎩ 

dN 1 (t)

dt 
= −r 1 N 1 log 

N 1 

N ∞ , 1 

− mN 1 − d 1 N 1 

dN 2 (t)

dt 
= −r 2 N 2 log 

N 2 

N ∞ , 2 

+ mN 1 − d 2 N 2 + εN 2 . 

(16)

The final carrying capacities are 

N 

∗
∞ , 1 = N ∞ , 1 exp 

(
−m + d 1 

r 1 

)
, 

N 

∗
∞ , 2 = N ∞ , 2 exp 

[
− 1 

r 2 

(
d 2 − ε − m 

N 

∗
∞ , 1 

N 

∗
∞ , 2 

)]
. 

The tumor will be eradicated only if suitable parameter combinations

involving m, d 1 and d 2 are satisfied, namely m + d 1 ≥ 10 r 1 and d 2 −
ε − mN ∞ , 1 N 

−1 
∞ , 2 

≥ 10 r 2 . From these inequalities, if the mutation rate

is low, the successful implementation of the therapy depends only

on the kill rates (see Fig. 7 ). In the presence of a high mutation rate

instead, combined with a low kill rate of the secondary tumor d 2 , the

main tumor is eradicated but the metastasis persists. Unfortunately,

this is the worst and most common scenario: the treatment is very

effective on the sensitive clone, eradicating it easily, but it promotes

a “growth spurt” in the resistant clone. 

6.2. U 2 case 

As it occurs for the U 1 case, this is a combination of the mutation-

only and the treatment-only scenarios. We can study the limits of the
wo solutions N 1 and N 2 using (5) ; the system becomes: 
 

 

 

 

 

 

 

 

 

dN 1 

dt 
= AN 
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1 − 4 
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N ∞ , 1 
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)
− mN 1 − d 1 N 1 

dN 2 

dt 
= AN 
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∞ , 2 

(
1 − 4 
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N 2 

N ∞ , 2 

˜ 

)
+ mN 1 − d 2 N 2 + εN 2 . 

(17)

he value of ε for the maximal possible total carrying capacity is

iven in Table 2 . The limits of the populations for t → ∞ are 

 

∗
1 = 

(
N 

− 1 
4 

∞ , 1 
+ 

m + d 1 
A 1 

)−4 

, 

 

∗
2 = 

[ 
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−1 
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(
(AN 

− 1 
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∞ , 2 
+ d 2 )N 

∗
2 − mN 

∗
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)] 4 
3 

. 

s shown in Fig. 8 , the tumor growth rates A 1 and A 2 are of paramount

mportance to assess the final tumor volume in the case of treat-

ent when mutation occurs. Summing the two populations equilib-

ium values in the two frames, we find in the right frame a smaller

alue than the one of the left frame. This is due to the lower value of

he tumor growth rate A 1 in the right frame, although the metastasis

as there a larger growth rate A 2 . This behavior allows us to conjec-

ure that a combined therapy, with chemo-therapy drugs, expressed

y the d 1 and d 2 parameters, and biological therapies (i.e. hormone-

herapy) which modify the metabolic cell rate, i.e. the parameters A i ,

ould be more effective than a massive dose of chemo-therapy drugs.

ased on these simulations, we plan to investigate further the possi-

le clinical applications and compare the treatments effectiveness by

alidating the model against real clinical data. 

. Discussion and conclusions 

The approach of the “Phenomenological Universalities” allows

 satisfactory investigation of the growth of an asymmetrical
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Fig. 8. An example of mutation and treatment in the West case. In both frames the two populations receive the same treatment and have the same mutation rate ( d 1 = 0 . 03 , 

d 2 = 0 . 01 , m = 0 . 03 ). Note how the growth rate modifies the final carrying capacity: on the left A 1 = 0 . 9 and A 2 = 0 . 4 , on the right A 1 = 0 . 4 and A 2 = 0 . 9 . As a reference, we plot 

also the horizontal lines indicating the levels of the carrying capacities that the tumors would reach in the absence of treatment. 
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Fig. 9. Simulations of cells mutation and for the patient response to treatment in the Gompertzian case. Black rhombus are the measure of the real tumor volumes pre ( t = 0 ) and 

after ( t = 45 ) chemo-therapy. The circles represent the simulations performed with m = 0 . 35 , the stars those obtained with m = 0 . 09 . The patient on the left shows a bad response 

to treatment, since the final tumor size is related to the mutation rate m = 0 . 35 ; the patient on the right shows a good response to treatment since the final tumor size is instead 

related to m = 0 . 09 . 
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wo-population cancer. Different interactions were studied, corre-

ponding to different clinical scenarios, i.e. the growth of both pop-

lations constrained by a fixed total carrying capacity, the response

o treatments, the occurrence of spontaneous mutation and of muta-

ions elicited by therapeutic interventions. 

To model the growth of the cells populations in a manageable and

ealistic way we applied the Gompertzian and West functions, which

ave been successfully validated on various tumor scenarios, find-

ng analytical solutions whenever possible. Numerical simulations

ssessed the effectiveness and role of the model parameters in the

emaining cases. 

In the specific case of a two-clones tumor, although effective ther-

pies and/or a large mutation rate can reduce the primary tumor vol-

me or the cell population which is more treatment-sensitive, our
ndings indicate that the eradication of the second population (e.g.

etastatic population and/or less treatment-sensitive cell clones) is

uch more critical in the presence of spontaneous mutations and,

ven worse, when mutations are induced or promoted by therapies.

ssuming as growth description the West law, the model emphasizes

he importance of the growth rates of the cell populations to deter-

ine the final tumors size. Looking toward clinical application this

pproach is to be preferred, because of the biological significance of

he parameter A , related to the cellular metabolic rate and duplication

nergy of each specific cell population. Provided such information is

vailable for specific tumors, the West growth assumption represents

n optimal model for the simulations of the tumor development and

f its response to therapies. As an example of clinical application,

e challenged our model against lung (Non- small cell lung, NSCL)
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human cancer data (from [26] ). NSCL cancer is known to be composed

by two different phenotypes, i.e. hypoxic cells in the core and well

oxygenated cells in the outer ring. Oxygenated cells exhibit a large

growth rate but a low resistance to chemo-therapy; hypoxic cells, on

the contrary, have a low growth rate but a larger resistance to chemo-

therapy. In the database we chose, growth and kill rates, initial and

final volumes after therapy as well as growth and drug kill rates were

available. We tested our model using two scenarios: m = 0 . 35 (bad

response to the treatment) and m = 0 . 09 (good response to the treat-

ment). Unfortunately, since only the final tumor volume is available

and not the two single populations (large colored dot in Fig. 9 ), we

cannot evaluate the actual value of the mutation rates. 

As far as the limitations and weaknesses of the model are con-

cerned, two points have to be focused: 1) Timescales and actual tu-

mor volumes cannot be desumed by the model unless the input pa-

rameter are quantitatively estimated on clinical or biological data, be-

cause the model is intrinsically non related to empirical data but to

scale-free parameter and equations; 2) to realistically account for the

huge number of mutations taking place during tumor growth, which

differs from patient to patient, a large number of different interacting

populations should be considered. Modeling n > 2 interacting pop-

ulations is a possible future development, but numerical approaches

will be necessary instead of the more direct and intuitively effective

analytical ones. 

Work is in progress toward the application of the model to re-

lapsed prostate cancer in patients who underwent radical prostate-

ctomy and are treated with Androgen Deprivation Therapy, which is

known to trigger a mutation from hormone dependent to hormone

resistant cancer cells. The follow-up and clinical data of some hun-

dreds of relapsed patients contained in the EUREKA1 database [27] is

being investigated in order to assess a reasonable range of values for

the model parameters. 

In conclusion, the model presented here could be an useful start-

ing point for simulating different treatment scenarios and, provided

a careful validation of the parameter values is carried on extensive

clinical database, it may help in the preliminary estimation of the ex-

pected effectiveness of different therapeutic approaches. 
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