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 ABSTRACT  

Incidence of bone metastases is very high in advanced prostate cancer patients. Bone 

metastases likely have a significant impact on functional status and quality of life, not only 

related to pain, but also to the relevant risk of skeletal-related events. A better 

understanding of mechanisms associated with bone metastatic disease secondary to 

prostate cancer and more specifically to the cross-talk between tumor cells and bone 

microenvironment in metastatic progression represented the background for the 

development of new effective bone-targeted therapies. Furthermore, a better knowledge of 

biological mechanisms driving disease progression led to significant advances in the 

treatment of castration-resistant prostate cancer, with the development and approval of 

new effective drugs. Aim of this review is to outline the physiopathology of bone 

metastases in prostate cancer and summarize the main results of clinical trials conducted 

with different drugs to control morbidity induced by skeletal metastases and bone disease 

progression. For each agent, therapeutic effect on bone metastases has been measured 

in terms of pain control and/or incidence of skeletal-related events, usually defined as a 

composite endpoint, including the need for local treatment (radiation therapy or surgery), 

spinal cord compression, pathological bone fractures. In details, data obtained with 

chemotherapy (mitoxantrone, docetaxel, cabazitaxel), new generation hormonal agents 

(abiraterone, enzalutamide), radium-223, bone-targeted agents (zoledronic acid, 

denosumab) and with several experimental agents (cabozantinib, dasatinib, anti-

endothelin and other agents) in patients with castration-resistant prostate cancer  are 

reviewed. 

KEYWORDS 

Castration resistant prostate cancer, bone metastasis, skeletal related event, new 

generation hormonal agents, chemotherapy, bone-targeted therapy  
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INTRODUCTION 

In developed countries, prostate cancer is the most common type of cancer diagnosed 

among men, with more than 1,100,000 new cases worldwide every year [1]. In this cancer, 

bone represents a preferential site of metastases, and patients with advanced disease 

have a very high incidence of bone metastases [2]. Autopsy data from prostate cancer 

patients indicate an incidence of secondary bone lesions as high as 65%-75%, preceded 

only by multiple myeloma [3]. These bone metastases are typically osteosclerotic (i.e. with 

increased osteoblastic activity), and likely to produce a significant impact on patients’ 

functional status and quality of life (QoL), not only related to pain, but also to the relevant 

risk of skeletal-related events (SREs) that can negatively impact physical well-being and 

activities of daily living [4,5]. According to Food and Drug Administration [6], skeletal 

related events (SREs) include pathologic bone fractures (both vertebral and non-

vertebral), spinal cord compression, surgery to bone, radiotherapy to bone. To estimate 

the incidence of SREs in patients with prostate cancer and bone metastases the control 

arm of  the trials testing bisphosphonates may be used as a reference value [7]. In a 15-

month observation period, nearly half (44.2%) of those patients experienced at least one 

SRE.  

SREs may have a relevant impact on survival of prostate cancer patients with bone 

metastases. In a landmark analysis of a randomized trial comparing zoledronic acid (ZA) 

versus placebo, patients without SREs in the first six months had significantly better 1-year 

survival rate compared to patients suffering from one or more SRE [8]. Furthermore, 

survival of patients with multiple events was worse than propensity-matched patients with 

only one SRE, although this difference was not statistically significant. A secondary 

analysis of randomized trials with ZA showed that, in patients with metastatic prostate 

cancer similarly to other tumor types, the incidence of pathological fractures is associated 

with a significantly increased risk of death [7]. In details, patients with pathological 
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fractures had a 29% increase in the risk of death at the unadjusted analysis (Hazard Ratio 

[HR] 1.29, 95% confidence interval [CI] 1.01-1.65), with comparable results observed for 

both vertebral and non-vertebral fractures. Adjusted analyses for prognostic covariates, 

including previous SRE occurrence and performance status, led to comparable results. As 

expected, although prostate cancer patients with metastatic spinal cord compression had a 

relatively better life expectancy compared to other tumors, this complication has a relevant 

impact on survival [9,10].  

Patients with a SRE have a significantly worse QoL [5,8] and  when assessed by validated 

instruments, such as the Functional Assessment of Cancer Therapy-General (FACT-G) 

and the Brief Pain Inventory (BPI), a clearly worse outcome was observed in patients with 

SREs compared to those without, with statistically significant differences in FACT-G total 

score, in functional well-being, physical well-being, emotional well-being and in BPI score 

[8]. When all types of SRE were considered as a whole (need for radiation, pathological 

fractures, other SRE) there was a statistically significant and clinically relevant decline in 

QoL in all domains [5]. Of course, treatment of SRE can improve QoL: radiation therapy 

can produce a significant reduction of pain [5], while treatment of spinal cord compression 

may improve performance status [10]. The occurrence of bone complications is also likely 

be responsible of the increased  direct and indirect costs of patients’ management [11]. 

All SREs are associated with relevant health resource utilization, including both inpatient 

hospitalizations and outpatient or emergency department visits and procedures [12-14]. 

Furthermore, those studies trying to calculate the costs associated with SREs may have 

under-estimated their global impact in terms of health resource utilization, due to the 

exclusion of patients with low performance status or life expectancy, and the exclusion of 

resource consumption associated with bone pain management [15].  
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Recently, the management of castration-resistant prostate cancer (CRPC) significantly 

changed, with approval of several new drugs [16]. This evolving therapeutic landscape 

was paired by a better knowledge of biological mechanisms driving disease progression. 

Nowadays, we know that AR signalling pathway has a significant activity also in CRPC 

and that the interplay between prostate cancer cells and bone microenvironment plays a 

crucial role in bone metastatic progression. 

Aim of this review is to outline the physiopathology of bone metastases in prostate cancer 

and the contribution of each of these new agents in terms of control of morbidity induced 

by skeletal metastases and bone disease progression. 
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PHYSIOPATHOLOGY OF BONE METASTASES IN PROSTATE CANCER 

Bone metastasis is a complex event due to the interaction among cancer cells, normal 

bone cells and bone microenvironment, leading to a severe disruption of physiological 

bone remodeling [17]. The latter is a dynamic process, critical to maintain skeletal integrity, 

responsible for replacement of old bone with a mechanically more competent bone. It 

occurs at specialized skeleton sites - called “bone remodeling units” - and is characterized 

by a functional sequence: osteoclast-mediated bone resorption followed by osteoblast-

induced bone apposition [18,19].  

In the early phase of bone remodeling, osteoclasts are attracted to bone surface, in which 

these cells excavate the Howship’s lacuna, a resorption cavity. Following the cavity 

formation, osteoclasts produce several factors responsible for osteoblasts attraction to the 

sites of previous resorption. This sequence of events is called “coupling phenomenon”. As 

described by Paget in 1889, tumor cells are “the seeds” which need a favorable “soil” in 

order to thrive at metastatic sites [20]. Skeletal microenvironment is an ideal “soil”, due to 

presence of growth factors and cytokines stored in the bone matrix and released during 

cross-talk between bone-resident cells and cancer cells [21].  

In the metastatic cascade, the first step is the homing of tumor cells to skeletal tissue 

[21,22]. This process is not a casual event, but is due to the production by bone 

microenvironment of the same chemotactic factors responsible for the migration of 

hematopoietic stem cells into the bone marrow. These cells are localized at a specific site, 

the hematopoietic stem cell niche, where they may remain quiescent or divide and then 

differentiate. An important chemotactic factor is the stromal-derived factor-1 (SDF-1), also 

called CXCL12. This cytokine, mainly produced by osteoblasts, interacts with the CXCR4 

receptor on hematopoietic stem cells, inducing their homing to the bone marrow [21-24]. 

The pathway SDF-1/CXCR4 is also able to modulate the attraction of prostatic tumor cells 

to bone. Some preclinical studies showed a significant expression of CXCR4 on the 
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surface of prostate cancer cells [25]. The induction of SDF-1 expression from bone marrow 

endothelial cells favors prostatic cancer migration and adhesion to extracellular bone 

matrix [22,26]. Therefore, prostatic tumor cells are able to compete with hematopoietic 

stem cells for the place in the bone marrow niche; this complex process determines the 

formation of so-called “onco-niche”, in which cancer cell may remain in a state of 

dormancy or may start to colonize and invade (Figure A) [17,21,22].  

During the metastatic colonization of the bone, prostate cancer cells interfere with the 

physiological bone remodeling due to the release of paracrine factors physiologically 

involved in the regulation of both osteoclastic and osteoblastic activity (Figure B). The 

early, crucial phase of this process is the abnormal increase of osteoclast-mediated bone 

resorption, due to several growth factors and cytokines, as transforming growth factor β1 

(TGF β1), parathyroid-hormone-related peptide and interleukin 6 [27]. These factors lead 

to the activation of the receptor activator nuclear kappa B (RANK) / RANK ligand (RANKL) 

pathway, which plays a central role in bone resorption regulation. RANKL, produced by 

osteoblasts, binds its receptor RANK on osteoclasts surface, favoring osteoclast 

maturation, survival and activity [17,21]. Increased osteolysis is crucial for the seeding of 

prostate cancer cells, and is also associated with the release from the bone matrix of 

several growth and survival factors, responsible for tumor progression [27]. In the 

subsequent phase of skeletal colonization there is an excessive bone apposition, which 

becomes dominant compared to bone resorption. This is due to growth factors including 

basic fibroblast growth factor, bone morphogenic proteins, endothelin-1 (ET-1), tumour 

growth factor 1 and insulin-like growth factor 1, that are released by cancer cells and from 

bone matrix and stimulate both osteoblasts activity and tumor proliferation. Prostatic 

cancer cells may also contribute to bone apposition by gaining the same functional 

activities of osteoblasts (“osteomimicry”) [27].  



9 
 

The complex interaction between bone microenvironment and tumor cells leads to the so-

called “vicious cycle”, that induces cancer progression [17].  

Prostate cancer patients with bone metastases frequently have SREs due to increased 

osteolysis in typically osteoblastic bone lesions [17,28]. Increased osteoclastic activity is 

not only confined to metastatic sites, but it may be considered a more generalized event 

[17,28]. This is caused by secondary hyperparathyroidism, due to the so-called “bone 

hunger syndrome”, a metabolic derangement in which calcium entrapment in skeletal 

tissue, due to increased osteoblastic activity, leads to hyperparathyroidism in response to 

serum calcium deficiency [29]. Compensatory increase of parathyroid hormone secretion 

is responsible of osteoclasts activation at distant sites.  

Furthermore, an additional cause of bone resorption is represented by iatrogenic 

osteoporosis, induced by androgen deprivation treatment [28]. 



10 
 

Skeletal related events: different definitions. 

In older trials, therapeutic effect on bone metastases was measured in terms of pain, 

decrease in biochemical markers of bone turnover, serial imaging assessment showing 

healing of bone lesions [30]. In recent trials, SREs have been defined as a composite 

endpoint, mostly including the need for local treatment (radiotherapy or surgery), spinal 

cord compression and pathological bone fractures [31-36]. Radiotherapy may include 

treatment of uncontrolled pain, treatment or prevention of imminent pathologic fractures, 

treatment or prevention of spinal cord compression. Surgery may include procedures to 

stabilize pathologic fractures or spinal cord compression, but also procedures aimed to 

prevent these SREs. Some trials consider only skeletal symptomatic events (SSE), other 

trials include also asymptomatic bone fractures. Only in some trials the use of 

radioisotopes is explicitly included among the radiation therapy procedures. Table A 

summarizes the definition of SREs in selected randomized trials conducted in patients with 

metastatic prostate cancer, using SREs as primary or secondary endpoint.    

 

 



11 
 

IMPACT OF ANTI-CANCER TREATMENTS 

Chemotherapy 

Mitoxantrone  -  

At the beginning of this century, mitoxantrone plus prednisone was commonly used in 

CRPC patients for its palliative role, despite the negative outcome of randomized trials that 

did not show a significant improvement in overall survival (OS) [37,38]. In one trial CRPC 

patients with pain received mitoxantrone plus prednisone or prednisone alone (Table B) 

[37]. Most of the enrolled patients (96%) had bone metastases. The primary endpoint was 

palliative response, defined as pain decrease without an increase in analgesics use. 

Palliative response rate was 29% with mitoxantrone plus prednisone and 12% with 

prednisone alone (p=0.01). Decrease in analgesics use without an increase in pain, one of 

the secondary endpoints, was comparable in the two arms. Later, another trial compared 

hydrocortisone alone vs. hydrocortisone plus mitoxantrone (Table B) [38]. Although there 

was no significant OS benefit, which was the primary endpoint, frequency and severity of 

pain were significantly better with mitoxantrone. Unfortunately, none of the trials included a 

description of SREs.  

 

Docetaxel -  

Before the TAX-327 [39] and the SWOG 99-16 study [40], that demonstrated the efficacy 

of docetaxel, no OS benefit had been shown with chemotherapy in CRPC patients. Both 

those two trials had OS as primary endpoint, while the impact on pain was among 

secondary endpoints (Table B). TAX-327 study compared two docetaxel schedules 

(every-3-week or weekly) plus prednisone versus mitoxantrone plus prednisone, and 

showed a significant OS benefit with every-3-week docetaxel [39,41]. Most patients (91%) 

had bone metastases and 45% had baseline pain. A reduction in pain was more frequently 

documented with every-3-week docetaxel than with mitoxantrone [39]. Pain response was 
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associated with OS outcome: median survival was 18.6 months among patients who 

achieved a pain response versus 12.5 months in patients who did not obtain pain 

response. However, improvement in median OS with every-3-week docetaxel was 3.9 

months among men without significant baseline pain, and 2.4 months among those with 

baseline pain, suggesting that OS benefit associated with docetaxel is not limited to 

symptomatic patients obtaining pain response [42,43]. In the SWOG 99-16 trial, patients 

were randomized to docetaxel plus estramustine versus mitoxantrone plus prednisone 

[40]. Patients in docetaxel-estramustine arm had a significant OS improvement, although 

pain relief was similar in the two arms. In both these randomized trials, no specific SREs 

description was available.  

Although not referred to CRPC but conducted in the “earlier” setting of hormone-naïve 

prostate cancer patients, in the STAMPEDE trial, the addition of docetaxel to androgen 

deprivation treatment (ADT) produced not only a relevant OS benefit (HR 0.78; p=0.006), 

but also a significant reduction in the time to first reported SSE (HR 0.60; p= 0.13 x 10-5) 

(Table B) [44]. 

  

Cabazitaxel -  

In preclinical and clinical models, cabazitaxel showed significant efficacy in docetaxel-

resistant and refractory prostate carcinomas [45,46]. In the randomized phase III TROPIC 

trial, comparing cabazitaxel plus prednisone versus mitoxantrone plus prednisone in 

patients with metastatic CRPC after docetaxel failure, cabazitaxel was associated with a 

significant prolongation of OS [47]. More than 80% of patients had bone metastases, and 

about 45% had baseline pain. Secondary endpoints included pain response and time to 

pain progression, and cabazitaxel showed similar pain improvement compared to 

mitoxantrone (Table B) [48]. In an expanded access program conducted in United 

Kingdom, 31%-57% of patients treated with cabazitaxel reported “no pain or discomfort” 
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during treatment at various cycles, compared to 22% at baseline [49]. No specific 

description of the impact on SREs of cabazitaxel is available.
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New generation hormonal agents 

Abiraterone -  

Abiraterone acetate (AA) is a potent, selective and irreversible inhibitor of CYP17, a critical 

enzyme in androgens synthesis [50]. The randomized trial COU-AA-301 compared AA 

plus prednisone vs. placebo plus prednisone in patients with metastatic CRPC (mCRPC) 

progressing after chemotherapy [51]. AA plus prednisone demonstrated a significant 

survival benefit [51,52]. At baseline, about 90% of patients in both arms had bone 

metastases, with similar pain scores. Incidence of SREs was 29% with AA and 33% with 

placebo; time to first SRE was significantly longer with AA (median 25.0 vs. 20.3 months; 

HR 0.615; p=0.0001) [35] (Table B). The most common SRE (expressed as rate per 100 

patients-years of exposure) was bone radiation (24% with AA vs. 46.1% with placebo); 

others included pathologic fracture (6.0% vs. 4.0%), bone surgery (1.7% vs. 1.0%), and 

spinal cord compression (7.3% vs. 14.0%). In patients with clinically significant pain at 

baseline, AA produced significantly more palliation (45.0% vs. 28.8%; p=0.0005) and 

faster palliation of pain intensity (median time to palliation 5.6 vs. 13.7 months; p=0.0018) 

[35]. Iuliani and al. investigated AA activity on bone microenvironment in an in vitro model 

and in a clinical prospective cohort of 49 mCRPC patients, in which serum markers of 

bone turnover (ALP and CTX) were measured at baseline and every 3 months during 

treatment with AA [53]. AA was associated with a statistically significant inhibition of 

osteoclast differentiation and with osteoblasts differentiation. During treatment, patients 

had a progressive CTX reduction along with an increase of ALP values. In conclusion, this 

study demonstrated a direct bone anabolic and anti-resorptive effect of AA.  

The randomized trial COU-AA-302 evaluated AA with prednisone compared to placebo 

plus prednisone in asymptomatic or mildly symptomatic mCRPC docetaxel-naive patients 

(Table B) [54]. Co-primary endpoints included radiographic progression-free survival 

(rPFS) and OS. The proportion of patients with bone disease only (51% and 49% in 
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experimental and control arm, respectively), and that of patients with more than 10 bone 

lesions (49% and 47%, respectively), were similar in the two arms. AA improved both OS 

and rPFS. Furthermore, secondary endpoints, such as time to symptomatic deterioration, 

time to pain progression and PSA PFS were significantly improved. Treatment with AA 

was associated with a significant improvement in time to opiate use (median not reached 

vs. 23.7 months; p=0.001), in time to increase in pain (median 26.7 vs. 18.4 months, 

p=0.049), and in time to progression of pain interference (median 10.3 vs. 7.4 months; 

p=0.005). Unfortunately, no data are available about the impact of treatments on SREs 

occurrence. A post hoc analysis evaluated the safety and efficacy of AA with concomitant 

bone targeted therapies (BTT) [55]. Overall, 34% of patients in experimental arm and 31% 

in control arm received concomitant BTT. Superiority of AA was confirmed both with and 

without BTT. Furthermore, although the interpretation of these results is limited by their 

post hoc nature, concomitant BTT prolonged time to opioid use (HR 0.80; p=0.036), time 

to performance status deterioration (HR 0.75; p<0.001) and was associated with better OS 

(HR 0.75; p=0.01). In a retrospective study of mCRPC patients treated with AA, out of 123 

patients with baseline pain, 29% reported an improvement during treatment, 32% no 

change and 28% a worsening [56].  

 

Enzalutamide -  

Enzalutamide is an AR antagonist, more potent than first-generation drugs [57]. Similarly 

to abiraterone, enzalutamide is approved for the treatment of both patients with mCRPC 

progressing after chemotherapy and chemotherapy-naive patients. The AFFIRM phase III 

trial randomized men with mCRPC progressing after chemotherapy to enzalutamide 

versus placebo (Table B) [58]. At baseline, proportion of patients with bone lesions (about 

92%), proportion of patients with more than 20 lesions (38%), and intensity of pain were 

similar between arms. Enzalutamide demonstrated a significant improvement in OS which 
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was the primary end point of the study, and its superiority was confirmed in all secondary 

endpoints. In details, median time to first SRE was 16.7 months with enzalutamide versus 

13.3 months with placebo (HR 0.69; p<0.001) (Table B) [34]. Approximately half of 

patients were receiving a bisphosphonate at baseline. Time to first SRE was significantly 

improved by enzalutamide in patients not receiving bisphosphonate (HR 0.614; p=0.0005) 

and not significantly in patients who were receiving bisphosphonate (HR 0.762; p=0.553), 

although the study was not designed and powered to test this interaction. Enzalutamide 

provided consistent benefits in several pain measures, including pain severity, pain 

interference and pain palliation. Pain palliation was achieved in 45% of patients with 

enzalutamide versus 7% with placebo (p=0.0079).   

The phase III PREVAIL study compared enzalutamide versus placebo in asymptomatic or 

mildly symptomatic patients with chemotherapy-naïve mCRPC (Table B), having OS and 

rPFS as co-primary endpoints [59]. Both were significantly improved with enzalutamide. At 

baseline, number of bone lesions and pain intensity were similar between arms. Although 

median time to first SRE was similar in the two arms, the risk of first SRE was significantly 

decreased with enzalutamide (HR 0.72; 95%CI 0.61-0.84; p<0.001) (Table B) [60]. 

Median time to pain progression was 5.7 months with enzalutamide versus 5.6 months 

with placebo (HR 0.62, 95%CI 0.53-0.74; p<0.0001). At week 13, progression of pain was 

significantly less common with enzalutamide (29%) than with placebo (42%, p<0.0001).  
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Radium-223 - 

Radium-223 dichloride is a  particle-emitting agent [61] and, as a calcium mimetic, is 

taken up into areas of high bone turnover, such as bone metastases [62]. Once radium-

223 binds bone,  particles induce double-stranded DNA breaks, causing a local citotoxic 

effect [63]. To date, it is the only radionuclide that showed OS benefit in CRPC. The phase 

III trial ALSYMPCA randomized mCRPC patients with bone metastases and without 

visceral metastases to receive either radium-223 or placebo in addition to the best 

standard of care (Table C) [64], having OS as the primary endpoint.  Time to first SSE and 

time to increase in alkaline phosphatase (ALP) were among secondary endpoints. At 

baseline, number of bone lesions and pain intensity were similar between the arms. OS 

was significantly prolonged by radium-223  and time to first SSE was also improved 

(median 15.6 vs. 9.8 months; HR 0.66, 95%CI 0.52-0.83; p<0.001). The use of external 

beam radiation therapy to treat bone pain and the risk of spinal cord compression were 

significantly reduced, while radium-223 did not significantly reduce the risk of symptomatic 

pathological bone fracture and the need for tumor-related surgery. Decrease in ALP ≥30% 

occurred in 47% with radium-223 vs. 3% with placebo (p<0.001) [36]. Radium-223 

provided a delay in biochemical (ALP) progression (median 7.4 vs. 3.8 months). In the 

ALSYMPCA study, 55% of patients required opioids at baseline [65]. Data about pain 

response were not collected, however in patients without opioids at baseline the proportion 

of patients who received opioids during study was 36% with radium-223 versus 50% with 

placebo, and radium-223 significantly delayed time to opioids use (HR 0.62; 95%CI 0.46–

0.85). At baseline, 41% of patients were treated with BTT, and radium-223 increased OS 

regardless of bisphosphonate use. Delay in SSEs with radium-223 was reported both in 

patients not treated with BTT (although not statistically significant: median 11.8 vs. 8.4 

months; HR 0.77; p=0.07) and in patients treated with bisphosphonates (median 19.6 vs. 

10.2 months; HR 0.49; p=0.00048). In 2015, a systematic review evaluated the efficacy of 
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radiopharmaceuticals (89-strontium-chloride, 153-samarium-EDTMP, 186-rhenium-HEDP, 

188-rhenium-HEDP and 223-radium-chloride) for palliation of bone pain from prostate 

cancer [66]. Pain response rates greater than 50%–60% were observed with all 

radionuclides. However, this review did not identify which radionuclide provides the best 

level and duration of pain relief, and OS results are not easily interpreted, because most 

studies were underpowered.  
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Bone-targeted agents 

Zoledronic acid and other bisphosphonates–  

Bisphosphonates reduce excessive bone turnover while preserving bone structure and 

mineralization. In early 1990s, several trials were initiated to investigate the use of 

bisphosfonates in prostate cancer: PR04 trial investigated the efficacy of sodium 

clodronate in locally advanced PC with negative bone scan, while PR05 investigated the 

same compound in bone metastatic hormone sensitive patient [67, 68]. Both trials resulted 

negative in terms of bone metastases- free survival and symptomatic bone PFS 

advantage, respectively. Mature data about OS, that was secondary endpoint, were 

published later: these data showed a benefit in OS only in PR05 patients, not in PR04 

patients [69]. 

The first agent approved for the management of bone metastases in CRPC patients was 

zoledronic acid (ZA), a third-generation bisphosphonate. A phase III trial compared ZA 

versus placebo, demonstrating a significant reduction in the incidence of at least one SRE 

during the 24-month study period (Table C) [31,70]. Proportion of patients with at least one 

SRE was 49% with placebo and 38% with ZA (p=0.028). Furthermore, ZA significantly 

prolonged time to first SRE (HR 0.67; p=0.009), and time to first and subsequent SRE (HR 

0.64, p= 0.002). The annual SRE incidence was 0.77 with ZA versus 1.47 with placebo 

(p=0.005 ) [71]. Pain scores and use of analgesics favored ZA. There were no differences 

either in disease progression or in OS [31,70]. In this study, 70% of patients treated with 

ZA had normalization within 1 month of the urinary levels of N-telopeptide (NTX), a 

markers of bone resorption. The normalization of NTX levels within 3 months correlated 

with a 59% reduction in the risk of death (p<0.0001) [71]. 

The TRAPEZE trial investigated the efficacy of addition of ZA and/or strontium-89 to 

docetaxel in CRPC patients [72]. Patients were randomized to receive docetaxel plus 

prednisolone: alone; with ZA; with a single dose of Sr89 after cycle 6 or both. Sr89 
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improved clinical progression free survival (CPFS), but not OS. ZA did not improve CPFS 

or OS but did significantly improve median SRE-free interval, mostly post-progression, 

suggesting a role as post-chemotherapy maintenance therapy. (Table C) 

Of note, several trials have tested the role of zoledronic acid in patients with “earlier” 

phase of disease. The CALGB90202 study randomized castration-sensitive prostate 

cancer patients to ZA or placebo, with the aim of detecting a  reduction in the risk of first 

SRE (Table C) [73]. Unfortunately, the primary endpoint was not met. Early treatment with 

ZA was not associated with a decreased SRE risk, compared with treatment initiation after 

progression to castration-resistant disease. Similarly, in the abovementioned STAMPEDE 

trial (Table B), the addition of ZA to ADT in hormone-naïve patients did not translate into a 

significant benefit in time to first SSE, both in the entire population and in the subgroup of 

patients with bone metastases [44]. On the contrary, the arm testing the addition of both 

docetaxel and ZA to ADT produced a significant benefit, but similar to the benefit obtained 

with docetaxel alone. 

The ZEUS study investigated the efficacy of ZA for the prevention of bone metastasis in 

high-risk non-metastatic prostate cancer patients receiving ADT [74]: there was no 

difference in the occurrence of bone metastasis. After a median follow-up of 4.8 years, the 

proportion of bone metastasis was 14.7% with ZA and 13.2% in control group (p=0.65). 

In conclusion, data about a post hoc analysis of RADAR trial, conducted in patients with 

locally advanced prostate cancer, must be mentioned but regarded cautiously [75]. 

RADAR trial investigated whether 18 months of androgen suppression (intermediate-term 

androgen suppression, ITAS) plus radiotherapy with or without 18 months of ZA is more 

effective than 6 months of neoadjuvant androgen suppression (short-term androgen 

suppression, STAS) plus radiotherapy with or without ZA. Secondary endpoint data and 

post hoc analyses showed that ITAS plus ZA reduce PSA progression and decrease need 

for secondary therapeutic intervention, in patients with Gleason 8-10 tumors. However, 
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neither prostate cancer-specific mortality nor all-cause mortality differed between control 

and experimental groups. 

Considering this negative evidence in castration-sensitive and high-risk non metastatic 

prostate cancer patients, CRPC is the only setting of disease with proven efficacy of ZA in 

the management of bone metastases. 

 

Denosumab -  

Denosumab is a fully human monoclonal antibody against RANKL, and prevents the 

activation of its receptor, RANK, thus inhibiting osteoclast formation, function and survival, 

decreasing bone resorption and increasing bone mass and strength [32]. In a phase III trial 

that compared denosumab versus ZA in patients with bone metastatic CRPC, denosumab 

produced a 3.6 months significant improvement in median time to first SRE [32] (Table C). 

Furthermore, denosumab significantly delayed time to first and subsequent SREs (rate 

ratio 0.82, p=0.008). The two groups had a similar OS and time-to-disease progression. At 

week 13, median decrease in concentration of urinary N-telopeptide adjusted for creatinine 

(uNTX/Cr) and serum bone ALP were significantly greater with denosumab [32]. An 

exploratory analysis showed that, compared with ZA, denosumab significantly reduced 

also the risk of first SSE (HR 0.78, p=0.005) and first and subsequent SSEs (rate ratio 

0.78, p=0.004) [76]. 

Of note, similarly to ZA, denosumab has subsequently been also tested in non-metastatic 

patients to evaluate its efficacy in delaying time to bone metastases. In a phase III, 

placebo- controlled trial in non-metastatic CRPC patients at high risk for bone metastasis, 

denosumab generated a 4.2- month improvement in median bone metastasis-free survival 

(BMFS, HR 0.85, p=0.028), in contrast with above mentioned ZEUS trial results that, 

however, were obtained in hormone sensitive patients [77]. Denosumab also produced a 

33% reduction in the risk of symptomatic bone metastasis. However, there was no impact 
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on time to overall prostate cancer progression or OS (Table C) [77]. The relationship 

between both PSA value and PSA doubling time (PSADT) at baseline with BMFS was 

explored [78]. In the placebo group, patients with PSADT < 8 months had a shorter BMFS. 

Denosumab consistently increased BMFS among men with PSADT ≤10 months (HR 0.84; 

p=0.042), ≤6 months (HR 0.77; p=0.006) and ≤4 months (HR 0.71; p=0.004) [78]. 

Based on these results, beyond its efficacy in metastatic CRPC, denosumab has also 

shown a role in prolonging BMFS in high-risk non metastatic patients.   
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New drugs 

Several new drugs have been recently or are currently being tested in prostate cancer 

patients. Here we summarize the results reported in studies investigating cabozantinib, 

dasatinib, anti-endothelin drugs, cathepsin K inhibitors and aflibercept, with specific details 

about bone disease control, although all these drugs did not show any improvement of 

survival benefit in phase III studies. 

 

Cabozantinib -  

Cabozantinib is an oral tyrosine kinase inhibitor that blocks MET, vascular endothelial 

growth factor receptor 2 (VEGFR-2) as well as other tyrosine kinases including RET, KIT, 

AXL and FLT3 [79]. MET is overexpressed in bone metastases from solid tumours, such 

as prostate cancer, and is involved in proliferation, differentiation and migration of 

osteoblasts and osteoclasts [80]. In a phase II randomized discontinuation trial, 

cabozantinib produced a relevant PFS prolongation compared with placebo [81]. Of note, 

cabozantinib showed a partial or complete resolution of bone lesions in 56% and 19% of 

patients and 64% of patients who received analgesics experienced an improvement in 

pain intensity, while 46% stopped or reduced narcotics. Similarly, in a non-randomized 

phase II trial, cabozantinib produced pain palliation and pain relief in 42% and 57% of 

patients respectively [82]. Disappointingly, two phase III randomized trials produced 

negative results (Table C) [83,84]. In the COMET-1 trial, that compared cabozantinib 

versus prednisone in men with progressive mCRPC pre-treated with docetaxel, 

abiraterone and/or enzalutamide, cabozantinib improved PFS and bone scan response, 

but no OS improvement was observed [83]. In the COMET-2 trial, cabozantinib was 

compared versus mitoxantrone in men with progressive mCRPC, and the primary endpoint 

of pain palliation was not met [84]. 
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Dasatinib -  

SRC, a non-receptor protein tyrosine kinase, is a key signalling molecule in tumorigenesis 

and bone metabolism [85]. SRC signalling has a central role in tumour growth, invasion, 

metastasis, and is a mediator of osteoclast activity and function, involved in pathogenesis 

of prostate carcinoma bone metastases [86]. Dasatinib is a potent oral inhibitor of several 

tyrosine kinases including SRC, SFKs members and BCR-ABL [87]. In a phase I/II trial, 

dasatinib was evaluated in combination with docetaxel in chemotherapy-naïve or 

docetaxel pre-treated mCRPC patients [88]. Fourteen patients (30%) had disappearance 

of at least one bone lesion and 19 patients (41%) had stable bone scans. Most of the 

patients had decrease in urinary NTX and BALP (87% and 76%, respectively). In a phase 

II trial, conducted in mCRPC chemotherapy-naive patients [89], dasatinib showed again a 

significant reduction of urinary NTX and ALP. In the randomized phase III READY trial, 

dasatinib plus docetaxel was compared to docetaxel plus placebo in mCRPC 

chemotherapy-naive patients (Table C) [90], with OS as primary endpoint and SREs and 

pain palliation as secondary end points. Dasatinib failed to improve OS, while median time 

to first SRE was 31.1 months with placebo and not reached with dasatinib (HR 0.81, 

p=0.08). Reduction in pain intensity was not significantly different between arms.  

 

Anti-endothelin -  

Endothelins (ET-1, ET-2 and ET-3) are a family of small peptides with multiple roles 

including regulation of the vasomotor tone, nociception, hormone production and cellular 

proliferation [91]. ET-1 stimulates osteoblast activity and plays a key role in promoting  

prostate cancer growth and metastasis [92]. The activity of ET-1 is mediated by endothelin 

A receptor (ET-A) [93]. In preclinical models, endothelin receptor antagonists showed 

inhibition of  the development and progression of metastases [94].  
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Atrasentan is a potent, oral, selective ET-A antagonist that inhibits the osteoblast-

dependent formation of new bone induced by metastatic cancer cells [95]. In a phase II, 

placebo-controlled trial, atrasentan was tested in hormone refractory metastatic prostate 

cancer (HRPC) patients [96]. The primary endpoint was the rate of pain relief after 12 

weeks, that was not met. However, atrasentan 10 mg produced a statistically significant 

improvement in BPI, particularly the benefit was demostrated in pain interference with 

relations with other people (p=0.031) and in the worst pain in the last 24 hours (p=0.03). In 

another phase II trial in asymptomatic HRPC patients [94], markers of bone deposition and 

resorption were significantly reduced with atrasentan compared to placebo. A phase III 

randomized, placebo-controlled trial evaluating atrasentan in non-metastatic HRPC (Table 

C) did not meet the primary endpoint of delaying time to disease progression and did not 

show a significant improvement in time to first skeletal lesion, although atrasentan 

lengthened PSA doubling time (p=0.031) and slowed BALP increase (p<0.001) [97]. 

Zibotentan is an oral, selective ET-A antagonist, competing with ET-1 for receptor binding 

and therefore indirectly increasing pro-apoptotic signalling. Three trials (ENTHUSE) 

evaluated zibotentan in CRPC patients (Table C) [98-100]. Disappointingly, in these trials 

there was no significant improvement either in OS, the primary endpoint, or in secondary 

endpoints, including time to pain progression and pain response.  

 

Cathepsin K inhibitors  
 
Cathepsin K is a cysteine protease, expressed in osteoclasts and various type of cancers 

[101]. It plays a key role in osteoclast-mediated bone resorption and promotes tumor cells 

invasion [102]. Cathepsin K inhibitors have been studied for post-menopausal 

osteoporosis and bone metastatic disease [103]. Odanacatib, a cathepsin K inhibitor, has 

been evaluated in a randomized, double blind trial in order to assess the efficacy and 

safety in reducing markers of bone resorption in bone metastatic breast cancer patients 
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[104]. Forty-three patients were randomized to oral odanacatib 5 mg daily for 4 weeks or 

intravenous ZA 4 mg given once at study initiation. The study showed that odanacatib 

reduced uNTx similarly to ZA after 4 weeks of treatment [104].Two phase III clinical trials 

were planned in order to evaluate its efficacy and safety in prolonging time to first bone 

metastasis in CRPC patients (NCT00691899) and in reducing risk of bone metastases in 

women with breast cancer (NCT00692458). Unfortunately, these studies were closed 

before starting accrual [105]. Further clinical trials are needed in order to obtain more 

clinical informations. 

 

Aflibercept  
 
Aflibercept is an anti-angiogenic agent with high affinity to the isoform VEGF-A, it also 

binds VEGF-B and platelet-derived growth factors PlGF1 and PlGF2 [106]. A recent phase 

III, randomized, double-blind placebo-controlled trial (VENICE) has evaluated docetaxel 

plus aflibercept vs docetaxel plus placebo in 1224 mCRPC patients [107]. The primary 

endpoint was OS; secondary endpoints included PFS, PSA-PFS, time to first SRE and 

pain-PFS. Aflibercept has not met its primary endpoint (22.1 months vs 21.1 months; 

p=0.38). There were not differences in terms of secondary end-points, in particular median 

time to first SRE was 15.3 months in aflibercept group vs 15.0 months in placebo group 

(p=0.31). 
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CONCLUSIONS  

Recently, a better understanding of mechanisms associated with bone metastatic disease 

in prostate cancer and, more specifically, the crucial role of cross-talk between tumor cells 

and bone micro-environment in metastatic progression provided the basis for the 

development of new effective bone-targeted therapies.  

There is no question that prostate cancer cells have a strong bone tropism, and their 

dissemination into the bone alters the equilibrium between osteoclasts and osteoblasts. 

Although bone lesions secondary to prostate carcinoma are mainly characterized by 

aberrant osteoblast activation, osteolysis is common and is responsible of increased 

incidence of SREs that are dramatic clinical events, able to decrease QoL, autonomy and 

survival of CRPC patients.  

Abnormal osteoclast activity is the rationale for the administration of potent osteolysis 

inhibitors, such as zoledronic acid and denosumab. These agents reduce the burden of 

bone metastatic disease, although this benefit does not translate in an improvement in 

survival.  

Recently, a new treatment opportunity for patients with prostate cancer and bone 

metastases is represented by radium-223. Notably, this α-emitter, when used in men with 

CRPC and bone metastases, not only showed efficacy in preventing symptomatic skeletal 

events, but it was the first bone-targeted therapy associated with a significant OS 

improvement.  

Additionally, in the last five years, highly effective new systemic agents have significantly 

changed the treatment landscape of CRPC patients, improving their life expectancy [12]. 

Some of these therapies also documented efficacy in delaying SRE and improving bone 

pain. Trials testing the concomitant administration of radium-223 with abiraterone 

(NCT02043678), enzalutamide (NCT02194842) and docetaxel (NCT01106352) are 

ongoing. Results of these studies will help to better understand how to combine systemic 
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new agents with bone-targeted therapies, in order to effectively interfere with the “seed” 

and with the “soil” at the same time. 
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Figure legends 

Figure A. Mechanisms of shift from hematopoietic stem cell niche to “onco-niche”. 

A) Hematopoietic stem cell into the bone marrow is localized in the hematopoietic stem 

cell niche in connection with osteoblasts through SDF-1/CXCR4 pathway. Prostatic tumor 

cells are able to compete with hematopoietic stem cell for the place in the bone marrow 

using SDF-1/CXCR4 axis, favoring the formation of “onco-niche.  

B) In the “onco-niche”, cancer cell may remain in a state of dormancy or may start to 

colonize and invade bone.  

 

Figure B. Pathogenesis of “vicious cycle” that underpin osteoblastic bone metastases 

from prostate carcinoma.  

A) In the early phase of metastatic colonization osteolysis predominates due to production 

of transforming growth factor β1 (TGF β1), parathyroid-hormone-related peptide (PTHrP) 

and interleukin 6 (IL-6). These factors activate the receptor activator nuclear kappa B 

(RANK)/RANK ligand (RANKL) pathway, which is responsible of bone resorption 

stimulation. 

B) The increase of osteolysis causes the release from bone matrix of growth factors and 

cytokines responsible for neoplastic proliferation.  

C) In the next phase of skeletal colonization bone neoapposition become dominant due to 

growth factors released by cancer cells and from bone matrix, such as basic fibroblast 

growth factor (bFGF), bone morphogenic proteins (BMPs), endothelin-1 (ET-1), tumour 

growth factor b1 (TGFb1) and insulin-like growth factor 1 (IGF-1), able to stimulate 

osteoblasts activity.  



30 
 

References 
 

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global 
cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.  

2. Costa L, Badia X, Chow E, Lipton A, Wardley A. Impact of skeletal 
complications on patients' quality of life, mobility, and functional independence. 
Support Care Cancer 2008;16:879-89.  

3. Coleman RE. Metastatic bone disease: clinical features, pathophysiology and 
treatment strategies. Cancer Treat Rev 2001;27:165-76.  

4. Broder MS, Gutierrez B, Cherepanov D, Linhares Y. Burden of skeletal-related 
events in prostate cancer: unmet need in pain improvement. Support Care 
Cancer 2015;23:237-47.  

5. Weinfurt KP, Li Y, Castel LD, Saad F, Timbie JW, Glendenning GA et al. The 
significance of skeletal-related events for the health-related quality of life of 
patients with metastatic prostate cancer. Ann Oncol. 2005;16:579-84.  

6. Clinical Trials Endpoints for the Approval of Cancer Drugs and Biologics, U.S. 
Department of Health and Human Services, Food and Drug Administration, 
Center for Drug Evaluation and Research (CDER), Center for Biologics 
Evaluation and Research (CBER) 2007. 

7. Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R. Pathologic 
fractures correlate with reduced survival in patients with malignant bone 
disease. Cancer 2007;110:1860-7.  

8. DePuy V, Anstrom KJ, Castel LD, Schulman KA, Weinfurt KP, Saad F. Effects 
of skeletal morbidities on longitudinal patient-reported outcomes and survival 
in patients with metastatic prostate cancer. Support Care Cancer 2007;15:869-
76. 

9. Aass N, Fossa SD. Pre- and post-treatment daily life function in patients with 
hormone resistant prostate carcinoma treated with radiotherapy for spinal cord 
compression. Radiother Oncol 2005;74:259-65.  

10. Rades D, Stalpers LJ, Veninga T, Rudat V, Schulte R, Hoskin PJ. Evaluation 
of functional outcome and local control after radiotherapy for metastatic spinal 
cord compression in patients with prostate cancer. J Urol. 2007;175:552-6.  

11. Krupski TL, Foley KA, Baser O, Long S, Macarios D, Litwin MS. Health care 
cost associated with prostate cancer, androgen deprivation therapy and bone 
complications. J Urol 2007;178:1423-8. 

12. Bahl A, Hoefeler H, Duran I, Hechmati G, Garzon-Rodriguez C, Ashcroft J, 
et al. Health resource utilization associated with skeletal-related events in 
patients with advanced prostate cancer: a European subgroup analysis from 
an observational, multinational study. J Clin Med 2014; 3(3):883-96.  

13. Hagiwara M, Delea TE, Saville MW, Chung K. Healthcare utilization and costs 
associated with skeletal-related events in prostate cancer patients with bone 
metastases. Prostate Cancer Prostatic Dis 2013; 16:23–27.  

14. Lage MJ, Barber BL, Harrison DJ, Jun S. The cost of treating skeletal-related 
events in patients with prostate cancer. Am J Manag Care 2008; 14:317–322.  

15. Hechmati G, Cure S, Gouepo A, Hoefeler H, Lorusso V, Luftner D, et al. Cost 
of skeletal-related events in European patients with solid tumours and bone 
metastases: Data from a prospective multinational observational study. J Med 
Econ 2013; 16:691–700.  

16. Tucci M, Scagliotti GV, Vignani F. Metastatic castration-resistant prostate 
cancer: time for innovation. Future Oncol 2015;11:91-106. 



31 
 

17. Guise T. Examining the metastatic niche: targeting the microenvironment. 
Semin. Oncol 2010;37(suppl2):S2-S14 

18. Parfitt AM. The physiology and clinical significance of bone histomorphometry: 
Techniques and Interpretations. CRC Press 1983;143. 

19. Autio KA, Morris MJ. Targeting bone physiology for the treatment of metastatic 
prostate cancer. Clin Adv Hematol Oncol 2013;11:134–43. 

20. Paget S. The distribution of secondary growths in cancer of the breast. Cancer 
Metastasis Rev 1989;8:98–101. 

21. Pedersen EA, Shiozawa Y, Pienta KJ, Taichman RS. The prostate cancer 
bone marrow niche: more than just ‘fertile soil’. Asian J Androl 2012;14:423–7. 

22. Weilbaecher K, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. 
Nat Rev Cancer 2011;11:411–25.  

23. Yu C, Shiozawa Y, Taichman RS, McCauley LK, Pienta K, Keller E. Prostate 
Cancer and Parasitism of the Bone Hematopoietic Stem Cell Niche. Crit Rev 
Eukaryot Gene Expr 2012;22:131–48. 

24. Camacho DF, Pienta KJ. A multi-targeted approach to treating bone 
metastases. Cancer Metastasis Rev 2014;33:545–53. 

25. Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA et al. 
Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) 
in vivo. J Cell Biochem 2003;89:462–73. 

26. Sun YX, Fang M, Wang J, Cooper CR, Pienta KJ, Taichman RS. Expression 
and activation of αvβ3 integrins by SDF-1/CXC12 increases the 
aggressiveness of prostate cancer cells. Prostate 2007;67:61–73. 

27. Msaouel P, Pissimissis N, Halapas A, Koutsilieris M. Mechanisms of bone 
metastasis in prostate cancer: clinical implications. Best Pract Res Clin 
Endocrinol Metab 2008;22:341-55. 

28. Tucci M, Mosca A, Lamanna G, Porpiglia F, Terzolo M, Vana F et al. 
Prognostic significance of disordered calcium metabolism in hormone-
refractory prostate cancer patients with metastatic bone disease. Prostate 
Cancer and Prostatic Diseases 2009;12:94–9. 

29. Rico H, Uson A, Hernandez ER, Prados P, Paramo P, Cabranes JA. 
Hyperparathyroidism in metastases of prostate carcinoma. A biochemical, 
hormonal and histomorphometric study. Eur Urol 1990;17:35-9. 

30. Lipton A, Glover D, Harvey H, Grabelsky S, Zelenakas K, Macerata R, et al. 
Pamidronate in the treatment of bone metastases: results of 2 dose-ranging 
trials in patients with breast or prostate cancer. Ann Oncol 1994;5:31-5. 

31. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, et 
al. A randomized, placebo-controlled trial of zoledronic acid in patients with 
hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 
2002;94:1458-68. 

32. Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, et al. 
Denosumab versus zoledronic acid for treatment of bone metastases in men 
with castration-resistant prostate cancer: a randomised, double-blind study. 
Lancet 2011;377:813-22. 

33. Smith MR, Coleman RE, Klotz L, Pittman K, Milecki P, Ng S, et al. 
Denosumab for the prevention of skeletal complications in metastatic 
castration-resistant prostate cancer: comparison of skeletal-related events and 
symptomatic skeletal events. Ann Oncol 2015;26:368-74. 

34. Fizazi K, Scher HI, Miller K, Basch E, Sternberg CN, Cella D, et al. Effect of  
enzalutamide on time to first skeletal-related event, pain, and quality of life in 



32 
 

men with castration-resistant prostate cancer: results from the randomised, 
phase 3 AFFIRM trial. Lancet Oncol 2014;15:1147-56. 

35. Logothetis CJ, Basch E, Molina A, Fizazi K, North SA, Chi KN, et al. Effect of 
abiraterone acetate and prednisone compared with placebo and prednisone 
on pain control and skeletal-related events in patients with metastatic 
castration-resistant prostate cancer: exploratory analysis of data from the 
COU-AA-301 randomised trial. Lancet Oncol 2012;13:1210-7 

36. Sartor O, Coleman R, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, et al. 
Effect of radium-223 dichloride on symptomatic skeletal events in patients with 
castration-resistant prostate cancer and bone metastases: results from a 
phase 3, double-blind, randomised trial. Lancet Oncol 2014;15:738-46.  

37. Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ,et al. 
Chemotherapy with mitoxantrone plus prednisone or prednisone alone for 
symptomatic hormone-resistant prostate cancer: a Canadian randomized trial 
with palliative end points. J Clin Oncol 1996;14:1756-64. 

38. Kantoff PW, Halabi S, Conaway M, Picus J, Kirshner J, Hars V, et al. 
Hydrocortisone with or without mitoxantrone in men with hormone-refractory 
prostate cancer: results of the cancer  and leukemia group B 9182 study. J 
Clin Oncol 1999;17:2506-13. 

39. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. 
Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced 
prostate cancer. N Engl J Med 2004;351:1502-12. 

40. Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, et 
al. Docetaxel and estramustine compared with mitoxantrone and prednisone 
for advanced refractory prostate cancer. N Engl J Med 2004;351:1513-20. 

41. Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF. 
Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced 
prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 
2008;26:242-5. 

42. Armstrong AJ, Garrett-Mayer E, Ou Yang YC, Carducci MA, Tannock I, de Wit 
R, et al. Prostate-specific antigen and pain surrogacy analysis in metastatic 
hormone-refractory prostate cancer. J Clin Oncol 2007;25:3965-70. 

43. Berthold DR, Pond GR, Roessner M, de Wit R, Eisenberger M, Tannock AI. 
Treatment of hormone-refractory prostate cancer with docetaxel or 
mitoxantrone: relationships between prostate-specific antigen, pain, and 
quality of life response and survival in the TAX-327 study. Clin Cancer Res 
2008;14:2763-7. 

44. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, et 
al. STAMPEDE investigators. Addition of docetaxel, zoledronic acid, or both to 
first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival 
results from an adaptive, multiarm, multistage, platform randomised controlled 
trial. Lancet 2015; [Epub ahead of print] 

45. Mita AC, Denis LJ, Rowinsky EK, Debono JS, Goetz AD, Ochoa L, et al. 
Phase I and pharmacokinetic study of XRP6258 (RPR 116258A), a novel 
taxane, administered as a 1-hour infusion every 3 weeks in patients with 
advanced solid tumors. Clin Cancer Res 2009;15:723-30. 

46. Bouchet BP, Galmarini CM. Cabazitaxel, a new taxane with favorable 
properties. Drugs Today (Barc) 2010;46:735-42. 

47. De Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. 
Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant 



33 
 

prostate cancer progressing after docetaxel treatment: a randomised open-
label trial. Lancet 2010;376:1147-54. 

48. Bahl A, Oudard S, Tombal B, Ozgüroglu M, Hansen S, Kocak I, et al. Impact 
of cabazitaxel on 2-year survival and palliation of tumour-related pain in men 
with metastatic castration-resistant prostate cancer treated in the TROPIC 
trial. Ann Oncol 2013;24:2402-8. 

49. Bahl A, Masson S, Malik Z, Birtle AJ, Sundar S, Jones RJ, et al. Final quality 
of life and safety data for patients with metastatic castration-resistant prostate 
cancer treated with cabazitaxel in the UK Early Access Programme (EAP) 
(NCT01254279) BJU Int 2015 Jan 30. 

50. Logothetis CJ, Efstathiou E, Manuguid F, Kirkpatrick P. Abiraterone acetate 
Nat Rev Drug Discov 2011;10:573-4. 

51. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. 
Abiraterone and increased survival in metastatic prostate cancer. N Engl J 
Med. 2011;364:1995-2005. 

52. Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, et al. 
Abiraterone acetate for treatment of metastatic castration-resistant prostate 
cancer: final overall survival analysis of the COU-AA-301 randomised, double-
blind, placebo-controlled phase 3 study Lancet Oncol 2012;13:983-92. 

53. Iuliani M, Pantano F, Buttigliero C, Fioramonti M, Bertaglia V, Vincenzi B, et al. 
Biological and clinical effects of abiraterone on anti-resorptive and anabolic 
activity in bone microenvironment. Oncotarget 2015;6:12520-8. 

54. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. 
Abiraterone in metastatic prostate cancer without previous chemotherapy. N 
Engl J Med 2013;368:138-48. 

55. Saad F, Shore N, Van Poppel H, Rathkopf DE, Smith MR, de Bono JS, et al. 
Impact of bone-targeted therapies in chemotherapy-naïve metastatic 
castration-resistant prostate cancer patients treated with Abiraterone Acetate: 
post hoc analysis of study COU-AA-302. Eur Urol 2015;68:570-7. 

56. Caffo O, De Giorgi U, Fratino L, Lo Re G, Basso U, D'Angelo A, et al. Safety 
and clinical outcomes of patients treated with abiraterone acetate after 
docetaxel: results of the Italian Named Patient Programme. BJU Int 
2014;115:764-71. 

57. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of 
a second-generation antiandrogen for treatment of advanced prostate cancer. 
Science 2009;324:787–90. 

58. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased 
survival with enzalutamide in prostate cancer after chemotherapy. N Engl J 
Med 2012;367:1187-97. 

59. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et 
al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J 
Med 2014;371:424-33. 

60. Loriot Y, Miller K, Sternberg CN, Fizazi K, De Bono JS, Chowdhury S, et al. 
Effect of enzalutamide on health-related quality of life, pain, and skeletal-
related events in asymptomatic and minimally symptomatic, chemotherapy-
naive patients with metastatic castration-resistant prostate cancer (PREVAIL): 
results from a randomised, phase 3 trial. Lancet Oncol 2015;16:509-21. 

61. Bruland OS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer 
irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: 
adjuvant or alternative to conventional modalities? Clin Cancer Res 
2006;12:6250–7. 



34 
 

62. Henriksen G, Fisher DR, Roeske JC, Bruland OS, Larsen RH. Targeting of 
osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 
89Sr in mice. J Nucl Med 2003;44:252–9. 

63. Lewington VJ. Bone-seeking radionuclides for therapy. J Nucl Med 
2005;46(suppl 1):38S–47S. 

64. Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fosså SD, et al. 
Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J 
Med 2013; 369:213–23. 

65. Nilsson S, Sartor AO, Buland OS, Fang F, Aksnes AK, Parker C, et al. Pain 
analysis from the phase III randomized ALSYMPCA study with radium-223 
(Ra-223) in patients with castration-resistant prostate cancer (CRPC) with 
bone metastases. J Clin Oncol 2013;31(suppl 6). 

66. Jong JM, Oprea-Lager DE, Hooft L, de Klerk JM, Bloemendal HJ, Verheul HM, 
et al. Radiopharmaceuticals for Palliation of Bone Pain in Patients with 
Castration-resistant Prostate Cancer Metastatic to Bone: A Systematic 
Review. Eur Urol. 2015 Sep 18. 

67. Mason MD, Sydes MR, Glaholm J, Langley RE, Huddart RA, Sokal M et al.; 
Medical Research Council PR04 Collaborators.Oral sodium clodronate for 
nonmetastatic prostate cancer--results of a randomized double-blind placebo-
controlled trial: Medical Research Council PR04 (ISRCTN61384873). J 
Natl Cancer Inst. 2007;99(10):765-76. 

68. Dearnaley DP, Sydes MR, Mason MD, Stott M, Powell CS, Robinson AC et 
al.; Medical Research Council Pr05 Collaborators.A double-blind, placebo-
controlled, randomized trial of oral sodium clodronate for metastaticprostate 
cancer (MRC PR05 Trial). J Natl Cancer Inst. 2003 ;95(17):1300-11. 

69. Dearnaley DP, Mason MD, Parmar MK, Sanders K, Sydes MR. Adjuvant 
therapy with oral sodium clodronate in locally advanced and 
metastatic prostate cancer: long-term overall survival results from the MRC 
PR04 and PR05 randomised controlled trials. Lancet Oncol. 2009;10(9):872-
6.  

70. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, et 
al. Long-term efficacy of zoledronic acid for the prevention of skeletal 
complications in patients with metastatic hormone-refractory prostate cancer. J 
Natl Cancer Inst. 2004;96:879-82. 

71. Lipton A, Cook R, Saad F, Major P, Garnero P, Terpos E, et al. Normalization 
of bone markers is associated with improved survival in patients with bone 
metastases from solid tumors and elevated bone resorption receiving 
zoledronic acid. Cancer 2008;113:193-201. 

72. James ND, Pirrie S, Barton D, Brown JE, Billingham L, Collins SI et al.Clinical 
outcomes in patients with castrate-refractory prostate cancer (CRPC) 
metastatic to bone randomized in the factorial TRAPEZE trial to docetaxel (D) 
with strontium-89 (Sr89), zoledronic acid (ZA), neither, or both  Abstract 
Number: LBA5000, presented at  ASCO 2013 Annual Meeting 

73. Smith MR, Halabi S, Ryan CJ, Hussain A, Vogelzang N, Stadler W, et al. 
Randomized controlled trial of early zoledronic acid in men with castration-
sensitive prostate cancer and bone metastases: results of CALGB 90202 
(alliance). J Clin Oncol 2014;32:1143-50. 

74. Wirth M, Tammela T, Cicalese V, Gomez Veiga F, Delaere K, Miller K, et al. 
Prevention of bone metastases in patients with high-risk non metastatic 
prostate cancer treated with zoledronic acid: efficacy and safety results of the 
Zometa European Study (ZEUS). Eur Urol 2015;67:482-91. 



35 
 

 
75. Denham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J et al. 

Short-term androgen suppression and radiotherapy versus intermediate-term 
androgen suppression and radiotherapy, with or without zoledronic acid, in 
men with locally advanced prostate cancer (TROG 03.04 RADAR): an open-
label, randomised, phase 3 factorial trial. Lancet Oncol. 2014;15(10):1076-89. 

76. Smith MR, Coleman RE, Klotz L, Pittman K, Milecki P, Ng S, et al. 
Denosumab for the prevention of skeletal complications in metastatic 
castration-resistant prostate cancer: comparison of skeletal-related events and 
symptomatic skeletal events. Ann Oncol. 2015;26:368-74. 

77. Smith MR, Saad F, Coleman R, Shore N, Fizazi K, Tombal B, et al. 
Denosumab and bone-metastasis-free survival in men with castration-resistant 
prostate cancer: results of a phase 3, randomised, placebo-controlled trial. 
Lancet 2012;379:39-46. 

78. Smith MR, Saad F, Oudard S, Shore N, Fizazi K, Sieber P, et al. Denosumab 
and bone metastasis-free survival in men with non metastatic castration-
resistant prostate cancer: exploratory analyses by baseline prostate-specific 
antigen doubling time. J Clin Oncol 2013;31:3800-6. 

79. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib 
(XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses 
metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 2011;10:2298–
308. 

80. Knudsen B, Gmyrek G, Inra J, Scherr DS, Vaughan ED, Nanus DM, et al. High 
expression of the Met receptor in prostate cancer metastasis to bone. Urology 
2002;60:1113-7. 

81. Smith DC, Smith MR, Sweeney C, Elfiky AA, Logothetis C, Corn PG, et al. 
Cabozantinib in patients with advanced prostate cancer: results of a phase II 
randomized discontinuation trial. J Clin Oncol 2013;3:412–9. 

82. Basch E, Autio KA, Smith MR, Bennett AV, Weitzman AL, Scheffold C et al. 
Effects of cabozantinib on pain and narcotic use in patients with castration-
resistant prostate cancer: results from a phase 2 nonrandomized expansion 
cohort. Eur Urol 2015;67:310-8. 

83. Smith RM, De Bono JS, Sternberg C, Le Moulec S, Oudard S, De Giorgi U, et 
al. Final analysis of COMET-1: Cabozantinib versus prednisone in metastatic 
castration-resistant prostate cancer (mCRPC) patients previously treated with 
docetaxel and abiraterone and/or enzalutamide. J Clin Oncol 2015;33(suppl 
7);abstr 139. 

84. Basch EM, Scholz MC, De Bono JS, Vogelzang NJ, DeSouza PL, Marx GM, 
et al. Final analysis of COMET-2: Cabozantinib versus 
mitoxantrone/prednisone in metastatic castration-resistant prostate cancer 
(mCRPC) patients with moderate to severe pain who were previously treated 
with docetaxel and abiraterone and/or enzalutamide. J Clin Oncol 2015; 
33(suppl 7);abstr 141. 

85. Brunton VG, Frame MC. Src and focal adhesion kinase as therapeutic targets 
in cancer. Curr Opin Pharmacol 2008;8:427–32. 

86. Saad F. Src as a therapeutic target in men with prostate cancer and bone 
metastases. BJU Int 2009;103:434–40. 

87. Saad F, Lipton A. SRC kinase inhibition: targeting bone metastases and tumor 
growth in prostate and breast cancer. Cancer Treatment Reviews. 2010; 
36:177–84. 



36 
 

88. Araujo JC, Mathew P, Armstrong AJ, Braud EL, Posadas E, Lonberg M et al. 
Dasatinib combined with docetaxel for castration-resistant prostate cancer: 
results from a phase 1-2 study. Cancer. 2012;118:63–71. 

89. Yu EY, Wilding G, Posadas E, Gross M, Culine S, Massard C et al. Phase II 
study of dasatinib in patients with metastatic castration-resistant prostate 
cancer. Clin Cancer Res. 2009;15:7421-8. 

90. Araujo JC, Trudel GC, Saad F, Armstrong AJ, Yu EY, Bellmunt J et al. 
Docetaxel and dasatinib or placebo in men with metastatic castration-resistant 
prostate cancer (READY): a randomised, double-blind phase 3 trial. Lancet 
Oncol 2013;14:1307-16. 

91. Yanagisawa M, Inoue A, Ishikawa T, Kasuya Y, Kimura S, Kumagaye S ,et al. 
Primary structure, synthesis, and biological activity of rat endothelin, an 
endothelium-derived vasoconstrictor peptide. Proc Natl Acad Sci USA 
1988;85:6964-7. 

92. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA 
, et al. Identification of endothelin-1 in the pathophysiology of metastatic 
adenocarcinoma of the prostate. Nat Med 1995;1:944–9. 

93. Nelson JB, Chan-Tack K, Hedican SP, Magnuson SR, Opgenorth TJ, Bova 
GS, et al. Endothelin-1 production and decreased endothelin B receptor 
expression in advanced prostate cancer. Cancer Res 1996;56:663-8. 

94. Nelson JB, Nabulsi AA, Vogelzang NJ, Breul J, Zonnenberg BA, Daliani DD, et 
al. Suppression of prostate cancer induced bone remodeling by the endothelin 
receptor A antagonist atrasentan. J Urol 2003;169:1143–9. 

95. Nelson JB. Endothelin inhibition: novel therapy for prostate cancer. J Urol. 
2003;170:S65-7. 

96. Nelson JB. Endothelin receptor antagonists. World J Urol 2005;23:19-27. 
97. Nelson JB, Love W, Chin JL, Saad F, Schulman CC, Sleep DJ, et al. Phase 3, 

randomized, controlled trial of atrasentan in patients with non metastatic, 
hormone-refractory prostate cancer. Cancer 2008;113:2478-87. 

98. Fizazi K, Higano CS, Nelson JB, Gleave M, Miller K, Morris T, et al. Phase III, 
randomized, placebo-controlled study of docetaxel in combination with 
zibotentan in patients with metastatic castration-resistant prostate cancer. J 
Clin Oncol. 2013;31:1740-7. 

99. Miller K, Moul JW, Gleave M, Fizazi K, Nelson JB, Morris T, et al. Phase III, 
randomized, placebo-controlled study of once-daily oral zibotentan (ZD4054) 
in patients with non-metastatic castration-resistant prostate cancer. Prostate 
Cancer Prostatic Dis 2013;16:187-92. 

100. Nelson JB, Fizazi K, Miller K, Higano C, Moul JW, Akaza H, et al. Phase 3, 
randomized, placebo-controlled study of zibotentan (ZD4054) in patients with 
castration-resistant prostate cancer metastatic to bone. Cancer 
2012;118:5709-18. 

101. Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B. Emerging roles 
of cysteine cathepsins in disease and their potential as drug targets. Curr 
Pharm Des. 2007;13:387–403. 

102. Lecaille F, Kaleta J, Bromme D. Human and parasitic papain-like cysteine 
proteases: their role in physiology and pathology and recent developments in 
inhibitor design. Chem Rev. 2002;102:4459–48 

103. Verbovšek U, Van Noorden CJ, Lah TT. Complexity of cancer protease 
biology: Cathepsin K expression and function in cancer progression. Semin 
Cancer Biol. 2015; 35:71-84. 



37 
 

104. Jensen AB, Wynne C, Ramirez G, He W, Song Y, Berd Y et al. The cathepsin 
K inhibitor odanacatib suppresses bone resorption in women with breast 
cancer and established bone metastases: results of a 4-week, double-blind, 
randomized, controlled trial. Clin Breast Cancer. 2010;10:452-58. 

105. Deal C. Future therapeutic targets in osteoporosis. Curr Opin Rheumatol 
2009;21:380–85 

106. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M et al. VEGF-
trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci. 
2002;99:11393–98. 

107. Tannock IF, Fizazi K, Ivanov S, Karlsson CT, Fléchon A, Skoneczna I et al. 
Aflibercept versus placebo in combination with docetaxel and prednisone for 
treatment of men with metastatic castration-resistant prostate cancer 
(VENICE): a phase 3, double-blind randomised trial. Lancet Oncol. 
2013;14:760-8 

 

 



38 
 

 


