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Abstract 

Spinal cord injury (SCI) often results in significant dysfunction and disability. A series of treatments 

have been proposed to prevent and overcome the formation of the glial scar and inhibitory factors to 

axon regrowth. In the last decade, cell therapy has emerged as a new tool for several diseases of the 

nervous system. Stem cells act as minipumps providing trophic and immunomodulatory factors to 

enhance axonal growth, to modulate the environment and to reduce neuroinflammation. This capability 

can be boosted by genetical manipulation to deliver trophic molecules. Different types of stem cells 

have been tested, according to their properties and the therapeutic aims. They differ from each other for 

origin, developmental stage, stage of differentiation and fate lineage. Related to this, stem cells 

differentiating into neurons could be used for cell replacement, even though the feasibility that stem 

cells after transplantation in the adult lesioned spinal cord can differentiate into neurons, integrate 

within neural circuits and emit axons reaching the muscle is quite remote. The timing of cell therapy 

has been variable, and may be summarized in the acute and chronic phases of disease, when stem cells 

interact with a completely different environment. Even though further experimental studies are needed 

to elucidate the mechanisms of action, the therapeutic and the side effects of cell therapy, several 

clinical protocols have been tested or are under trial. Here we report the state-of-the-art of cell therapy 

in SCI, in terms of feasibility, outcome and side effects. 
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Background 

Spinal cord injury (SCI) often results in significant dysfunction and disability. It physically and 

psychologically affects not only the individual, but also his/her family and the whole society. 

Worldwide SCI affects approximately 6 million people, most often of young age; the chances of 

recovery are very low and the disability is permanent, with long-lasting deficits, such as partial or 

complete paralysis and loss of sensation below the level of the injury. Early rehabilitation in an 

organized multidisciplinary SCI care system lowers mortality, decreases pressure sores, slightly 

increases chance of neurologic recovery, and shortens lengths of stay, thus reducing hospital charges. 

Nevertheless, continued functional dependency, healthcare needs and costs, as well as caregiver burden 

and stress often remain tremendous. 

Functional deficits following SCI result from damage to axon fibers, loss of neurons, activation 

of astrocytes and microglia, and degeneration of oligodendrocytes [32] and demyelination. The 

outcome is determined by the mechanical insult, i.e. the primary damage, followed by several 

secondary processes as ischemia, anoxia, free-radical formation and excitotoxicity [56,96]. 

The first mechanism of injury consists of traction and compression forces. Compression by 

bone fragments or soft tissue injures both central and peripheral nervous structures. Within minutes, the 

spinal cord swells and exceeds venous pressure and results in secondary ischemia. The spinal 

neurogenic shock leads to systemic hypotension that exacerbates the ischemia. Finally, the release of 

toxic molecules leads to secondary damage [130]. The wave of secondary cell death, which mainly 

affects neurons and oligodendrocytes, spreads rostrally and caudally from the site of impact, leading to 

structural and functional damage. Key secondary injury mechanisms include damage of spinal cord 

vasculature and ischemia, glutamatergic excitotoxicity, oxidative cell stress, lipid peroxidation and 

inflammation, all of which alone or in concert can stimulate apoptosis. 

Toxic agents such as intracellular Ca++, free radicals and excitotoxic aminoacids are responsible 

for triggering molecular pathways leading to cell death, such as caspases and MAP kinases, and 

inflammation. In addition, neutrophils and microglial cells, stimulated by chemokynes released at the 

lesion area, migrate into the site of injury, and cause enlargement of the lesion area. The traumatic 

lesion is followed by the degenerative changes of astroglia, oligodendroglia and neurons in and around 

the lesion site [105,141,224]. The outcome of this sequence of events is the formation of the glial scar, 

a cavity surrounded by reactive glia which represents a physical obstacle to axonal regrowth 

[54,148,186,224]. 
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Inhibition of axonal growth 

Highly vulnerable to insults, neurons and oligodendroglia are spontaneously replaced after SCI to a 

very limited extent due to restricted regenerative potential of endogenous neural stem/progenitor cells. 

Furthermore, axonal regeneration and remyelination, especially from mature neurons, are also 

extremely limited if present at all. These disappointing limitations can be ascribed to the presence of 

the glial scar, neurotrophic factor deprivation, decreasing cyclic adenosine monophosphate levels, 

inhibitory sulfated proteoglycans, and inhibitory myelin-associated molecules. Formation of the glial 

scar represents an attempt by glial cells to limit the extent of the injury site and promote healing. Scar 

formation involves oligodendrocyte precursor cells, microglia, macrophages and extracellular matrix. 

Besides the glial scar, there are other inhibitory obstacles to axonal regeneration, such as myelin 

inhibitory molecules including the myelin-associated neurite outgrowth inhibitor Nogo-A, the myelin-

associated glycoprotein, the proteoglycans brevican and versican V2, and several potentially 

repulsive/inhibitory axonal guidance molecules [129,177]. After injury, upregulation of chondroitin 

sulphate proteoglycans (CSPGs), which are associated with astrocyte and oligodendrocyte precursors, 

is a major contributor to the inhibitory properties of the adult central nervous system (CNS). 

Therefore, one major therapeutic aim is to modify the extracellular matrix. In vitro experiments 

have demonstrated that proteoglycans associated with reactive astrocytes can be modified to increase 

axonal growth by removing or preventing the production of sugar epitopes on the proteoglycan 

molecules [21,64,132,133,191]. An in vivo transgenic model whose astrocytes express a CSPG 

degrading enzyme showed enhanced axonal growth after injury [26]. Neutralizing a 

heparan/chondroitin sulphate proteoglycan expressed after brain injury with a blocking antibody allows 

neurite outgrowth and prevents growth cone collapse in vitro [20]. Injured corticospinal fibers and 

uninjured serotonergic fibers increase sprouting after enzymatic treatment to remove sugar epitopes 

[10] and in vivo studies have revealed remarkable long-distance regeneration of adult axons though 

CNS white matter tracts after enzymatic treatment to digest these proteoglycan side chains [191]. 

 

Timing of transplantation 

The success of any treatment seems strictly dependent on the timing of SCI therapy. In fact, the 

therapeutic time window in which the spinal microenvironment is not compromised is very narrow 

[55,72]. 

After the initial injury, the damage site expands from the injury epicenter, i.e. many centimeters 

in a human. Analysis of chronic SCI shows that, typically, portions of the outer white matter are spared 
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while there is extensive damage of the inner grey matter. Within white matter, both ascending and 

descending axons degenerate, and demyelination occurs due to loss of oligodendrocytes. Chronic, 

progressive demyelination is a persistent feature of SCI [203]. The astrocyte response begins 

immediately after injury (proliferation, hypertrophy, etc.) and evolves over time. Reactive astrocytes 

produce extracellular matrix components such as chondroitin and keratan sulfate proteoglycans. 

Ultimately, a scar-encapsulated cavity many times the size of the initial injury forms [54,186]. 

The occurring cellular events are characterized by the time-dependent expression of specific 

molecules, such as the early activation of inflammatory cytokines (interleukin-1 alpha and interleukin-1 

beta, tumor necrosis factor- alfa and interleukin-6), and the glial cyst and scar formation in the 

following days [147]. The weeks before the complete formation of the glial scar may offer a potential 

temporal opportunity to facilitate and maximize benefit from endogenous or transplanted stem cells. 

This is thought to be the interval whereby stem cells can achieve maximum repair in the injured CNS. 

Therefore, SCI involves different phenomena, which have a specific chronology summarized in an 

acute and a chronic phases. Consequently, stem cell transplantation occurring at different time intervals 

from the injury may interact with different mechanisms of damage or repair. Transplantation in the 

acute phase occurs before the formation of the glial scar and cyst, and also modulates the early phases 

of microglia activation and astrogliosis. On the other hand, since it is quite often difficult to foresee the 

outcome of an injury in the acute phase, the lesion must be stabilized before invasive treatment. 

Transplantation in the chronic phase could give new hopes to people who are functionally impaired 

since months or years: in fact, several authors have demonstrated the stem cell ability to fill the lesion 

cavity and eventually to bridge the gap on the lesion area (Figure 1A) [141]. 

 

Experimental models of SCI 

Treatment for SCI in patients still remains limited to the reduction of the lesion and to the control of 

inflammation and of glial activation [4,49,53]. Even though this approach has been questioned, 

cortisone remains the elective treatment in many countries, such as Italy. Most of the studies involving 

new therapeutic strategies, and in particular those involving stem cell therapy, undergo a preclinical 

phase. To this aim, the major challenge consists in creating a reproducible experimental model which 

can mimic the human pathology. Actually, two models in mice and rats are commonly used in studies 

on SCI treatment: the compression and the transection models. The first one is quite adherent to the 

SCI due to trauma, and is the most relevant for human SCI. However, the spared axons and 

regenerating axons in the injured spinal cord are not easy to distinguish [197]. Specific devices have 
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been used to create reproducible SCI compression lesions, such as the IH device (Precision Systems 

and Instrumentation LLC) [172] or the a 23 g clip (Walsh) [90]. On the other hand, unilateral [45] or 

bilateral [164] transection of the dorsolateral funiculus in rodents allows to study axon regeneration and 

sprouting while reducing the role of the glial cyst. In particular, unilateral transection allows to study 

axonal sprouting from the contralateral side and the effects of stem cell transplantation [19]. In any 

case, it must be considered that there are consistent differences in the anatomy of the descending 

pathways controlling movement between humans and rodents [176]. 

 In order to assess the outcome of treatment in preclinical studies, a general consensus must be 

achieved on the parameters to consider. First of all, a battery of behavioral tests is currently used for 

testing the improvement of motor performance following treatment in terms of muscular strength, 

resistance and coordination [180]. Nevertheless, it must be considered that in rodents the relevance of 

intrinsic spinal circuits is much higher than in primates [169]. Second, the morphological outcome 

includes a series of parameters relative to i) fiber sprouting [number of myelinated fibers in the white 

matter, of  Growth Associated Protein 43 or 5HT (serotonin)-positive fibers], ii) glial activation 

(microglial activation and astrogliosis), iii) glial scar and cyst size. [4,18,19,88,104]. 

 

Treatments that promote recovery following SCI 

The limited spontaneous regeneration and regrowth of the proximal segment of the injured spinal cord 

represents an important target for research. Treatments should act on both on the intrinsic neuronal 

mechanisms and on extracellular matrix (ECM), and on non neuronal cells located beyond the lesion, 

especially neutrophils and microglia. On the extrinsic side, the ECM is responsible for the formation 

and stabilization of perineuronal nets and matrix networks containing potent growth inhibitory 

molecules, such as CSPGs. Interventions that have been combined with transplants to promote repair 

and/or recovery include the application of neurotrophic or growth factors, pharmacological agents that 

mimic the action of neurotransmitters, antiapoptotic agents, agents that interfere with axonal growth 

inhibitors and physical rehabilitation and training [56,105,178]. Most treatments are devoted to cure 

acute injury, whereas chronic injury is a more challenging condition. Recent advances in stem cell 

biology have provided new tools in therapeutic strategies in neurodegenerative diseases and injury, 

aiming both to cell replacement and trophic support. 

Potential approaches aim to optimize functional recovery after SCI. They include minimizing 

the progression of secondary injury, manipulating the neuroinhibitory environment of the spinal cord, 

replacing lost tissue with transplanted cells or peripheral nerve grafts, remyelinating denuded axons, 
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and maximizing the intrinsic regenerative potential of endogenous progenitor cells. Their primary goal 

has been to replace lost cells [148]. While early studies transplanted differentiated neural cells and glia, 

more recent studies have proposed transplantation of stem cells or unrestricted progenitors, committed 

to the neural lineage (Figure 1B). These cells have a remarkable ability to differentiate into appropriate 

cells by taking cues from their close environment. Moreover, transplanted cells can provide molecules, 

such as neurotrophic factors, supporting nervous system regeneration. 

The issue of stem cell research is politically and ethically charged. As a result, stem cell 

technology is imbued in an ethical conflict between human embryo research raising moral concerns on 

the one hand, and the magnitude of the potential benefits to patients, on the other. Stem cells may be 

derived from a variety of sources, including early embryos, fetal tissue and some adult tissues (e.g., 

bone marrow and blood). 

This review reports the state-of-the-art of cell therapy in SCI. First, the limit to regeneration 

present in the injury site as well as the issues involved in cell sourcing are detailed. Next, the different 

types of cell therapy are defined with the benefits and drawbacks of each type given. Methods for 

delivering cells are also discussed. Finally, suggestions are made for future work in developing 

therapies for SCI. Recent advances in neural injury and repair, and the progress towards development 

of neuroprotective and regenerative interventions are discussed. 

 

Regenerative approach vs cell replacement strategies (Figure 2) 

Spinal cord repair consists in axonal regeneration, in the restoration of former neural circuits and 

eventually in the formation of new ones. Cell-based approaches for spinal cord functional repair center 

on two fundamental directions that are not mutually exclusive: restitution of white matter long-tracts 

(“regenerative” approaches) and cell (i.e., neuronal or oligodendrocyte) replacement [54,87,186]. The 

challenges to obtain functional recovery are the following: i) cell survival or replacement; ii) axon 

regeneration or growth; iii) correct targeting by growing axons, and iv) establishment of correct and 

functional synaptic connections. The solutions proposed include intraspinal transplants with fetal cells 

or progenitor cells to restore the intraspinal circuitry or to function as relays for damaged axons. The 

physiologically disrupted but anatomically preserved axons can be remyelinated by Schwann cells, 

oligodendrocytes, and olfactory ensheathing cells (OECs) transplantation. 

When cell replacement is considered, stem cells can differentiate into neurons and form new 

circuits eventually bridging the gap on the lesion area. Nevertheless, the loss of neurons contribute only 

minimally to the functional deficits in SCI, as only neurons at the injured segmental level are lost. Cell-
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based therapies can substitute lost glial cells to some extent and provide growth promoting factors; 

however, structural and functional recovery is moderate at best [166]. Ideally, cell candidates for 

transplantation should be able to replace the function of astrocytes, which build the cellular scaffold of 

the spinal cord and provide guidance cues for regenerating axons and oligodendrocytes, which 

myelinate axons, thus allowing proper nerve conduction [33,178]. We have recently obtained a good 

integration of neural precursors collected from the spinal cord of embryonic day 12 (E12) mice into the 

lesioned spinal cord of the adult mouse, with the elongation of axons through several neuromers, 

emitting segmental collaterals [18] (Figure 1C). 

Regarding the bystander role, it has been shown that different types of stem cells can produce and 

release in the environment trophic factors and immunomodulatory molecules [209]. Various cell types 

such as fibroblasts, Schwann cells and OECs have been analysed for their regenerative potential after 

transplantation into the injured spinal cord [16,53,200,208]. Successful axon regeneration requires that 

injured neurons activate a specific gene program, which includes activation of regulatory genes and 

growth-associated proteins needed to sustain the elongation of the axon stem. The expression of these 

genes is modulated by extrinsic signals issued by different sources. On the one hand, intrinsic neuronal 

properties are influenced by molecular cues present in the axonal microenvironment. On the other, 

there is increasing evidence that interaction with the external world through sensory stimulation or 

physical exercise also exerts a strong modulatory effect on neuritic growth and plasticity. Therefore, 

the growth potential of injured neurons (but also of their uninjured counterparts that may contribute to 

repair through circuit reorganization) depends on the interaction between intrinsic neuronal properties, 

environmental regulatory molecules and experience-related mechanisms. 

Cell replacement [113] can be achieved by transplanting stem cells either differentiated in vitro 

[94], or naïve, expected to differentiate in vivo [15]. Undifferentiated cells, however, may aim to 

replace different cell types such as glia as well as neurons. In addition to undifferentiated or progenitor 

neural stem cells, many different cell types such as genetically modified fibroblasts, OECs and 

Schwann cells have been used to promote axonal regeneration [109,115,200,205,224]. Functional 

recovery has been obtained in experimental models of SCI following transplantation of embryonic stem 

cells (ESCs) [129], mesenchymal stem cells (MSCs), neural stem cells (NSCs) and glia restricted 

precursor cells [18,29,44,76,83,89,92,129,146,200]. 

 

EMBRYONIC STEM CELL TRANSPLANTATION 
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ESCs have the broadest potential of any true stem cell. ESCs are isolated from the inner cell mass 

of the blastocyst [62,131,220], derived through in vitro fertilization [52,126,183]. They a) can replicate 

indefinitely without aging, b) are pluripotent, i.e. can give rise to all the different types of cells in the 

body, c) give rise to genetically normal cells and d) can be easily manipulated genetically [110]. ESCs 

can be differentiated in vitro before transplantation: culture in media containing Vitronectin and 

retinoic acid, Sonic hedgehog, Noggin, or SB431542 can promote oligodendrocyte differentiation [57]. 

Therefore, ESCs can differentiate into functional neurons [13,60,95,114,118,229], which integrate in 

vivo into host circuits as shown electrophysiologically after transplantation [24,71,215]. In addition, 

they are able to differentiate into glia [23,174], such as oligodendrocytes, capable of rapid 

differentiation and myelination in mixed neuron/glial cell culture [98,101] and which remyelinate and 

promote regeneration in the injured axons in SCI [131] and functional recovery [61,106,144,166]. On 

the other hand, ESCs have an intrinsic potential to give origin to teratomas after transplantation 

[15,31,173], even after fluorescent-activated cell sorting [35,199,214] during or after differentiation to 

purify the neural cells. Moreover, they can give rise to normal cells in the wrong place. Therefore, 

before transplanting ESC-derived cells, it is critical to get rid of undifferentiated pluripotent cells, to 

gain control of ESCs and guide their differentiation toward the neural lineage. Elimination of 

pluripotent cells has been convincingly obtained by spontaneous differentiation of ESCs cultured at 

low density, followed by propagation as a monolayer in Epidermal Growth Factor (EGF) and basic 

Fibroblast Growth Factor (bFGF) [38]. ESCs in the presence of appropriate signaling molecules can be 

maintained as a relatively homogeneous population of stem cells. Prolonged differentiation protocols 

[22], or inhibition of proliferation signaling pathways by genetic manipulation [111] decreases the 

incidence of tumor formation. ESC-derived tumor formation can be also prevented by co-

transplantation with BMSCs [127]. 

 

STEM CELLS OF NEURAL ORIGIN 

NSCs can be isolated from many regions of the CNS of embryonic as well as adult mammals 

[79], and propagated in culture in the presence of EGF and/or bFGF as neurospheres. Neurospheres, 

differently to ESCs, represent heterogeneous clusters of proliferating cells including stem cells, 

committed progenitors and differentiated cells [1]. NSCs also seem to be restricted in the variety of 

neurons they can generate. In fact, NSCs did not give rise to motoneurons, whereas they could be 

successfully differentiated into cortical projection neurons [50], interneurons [175], and hippocampal 

pyramidal neurons [39]. Differentiated NSCs fully integrated into the host circuits, since they could be 
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retrogradely labeled from the axon terminals, formed synaptic contacts, and generated action potentials 

in vivo [50]. In addition to be able to differentiate into neurons [93,189], they can differentiate into 

glial cells, such as astrocytes [51,75,219] and oligodendrocytes [155,226], and endothelial cells [223]. 

NSCs can protect against glutamate-induced excitotoxicity and secrete GDNF and NGF (nerve growth 

factor), thus promoting survival of injured motoneurons [117]. Embryonic neural precursors can 

integrate into host damaged tissue, differentiate into neurons, astrocytes and oligodendrocytes, and 

promote regeneration and repair [69,107], enhancing sprouting of serotonergic and noradrenergic fibers 

[18,137]. 

Organotypic cell replacement can be achieved with neural precursors cells (NPCs). NPCs from 

embryonic as well as adult CNS tissue have the capacity for self-renewal and multipotency [162,193]. 

After delayed transplantation of embryonic derived NPCs into the injured rat spinal cord, 

differentiation into glial and neuronal lineages as well as modest functional improvement have been 

reported [68,129,200]. Even though NSCs display a lower tumorigenic risk than ESCs, it has been 

reported at least in one case that they can give rise to brain tumor [6]. 

Transplantation of neural stem cells and progenitors entails ethical concerns, limited availability 

and need for immunosuppression in the host, which can be avoided by the isolation and expansion of 

autologous adult NPCs. Autologous adult NPCs transplanted into the intact spinal cord of adult rats 

survive, migrate over considerable distances and differentiate into astroglial and oligodendroglial cells 

[184]. Subventricular zone-derived adult NPCs survive after delayed transplantation - at least seven 

days post injury- into the spinal cord parenchyma surrounding the injury site [28]. 

Acutely injured spine area is an inhospitable CNS environment for any cell graft, due to the release 

of inflammatory molecules and the upregulation of mediators of cell death/degeneration and secondary 

ischemic events. It has been proposed that neurospheres can survive in the host better than single cell 

suspensions, since cell cell contacts remain intact and detrimental effects by dissociation methods are 

avoided [194]. Adult NPCs transplanted into the fluid-filled lesion cavity (cyst) fail to produce 

extracellular matrix needed to survive [129]. On the other hand, adult NPCs migrate and align along 

injured axon pathways caudal and rostral to the lesion site, suggesting that they are not sealed off by 

the surrounding host spinal cord, in contrast to other cell types such as fibroblasts or Schwann cells 

[28,34,49,63,67]. Remyelination of host axons by neural stem cells may be one mechanism generating 

functional recovery [116], moreover, stem cells can also promote regeneration, enhancing sprouting of 

descending fibers [18]. Peripheral nervous system (PNS) myelinating Schwann cells derived from 

neural crest-like skin-derived precursors, used for autologous graft, transplantated into the injured rat 
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spinal cord, reduced contusion cavity size, myelinated endogenous host axons, recruited endogenous 

stem cells, provided a bridge across the lesion site, increased the size of spared tissue rim, reduced 

reactive gliosis, and generated an environment highly permissive to axonal growth [150,151]. 

Transplantation of Schwann cells results in a strong integration in the host tissue with anatomical and 

functional improvement, excepted when transplanted directly into lesion cavity, where they show poor 

survival rate [49]. 

OECs surround olfactory axons and facilitate their lifelong regeneration. They are attractive for 

their plasticity and allow axons to cross glial scars as well as the PNS-CNS boundary. OECs can 

stimulate tissue repair and neuroprotection, enhance axonal regeneration and remyelination, activate 

angiogenesis, influence the endogenous glia after lesion [163], even though there are contrasting 

reports probably due to the changes in their biological properties with increasing age and/or passage 

number. A recent study on 7 patients receiving autologous OECs into the lesion site after chronic SCI 

demonstrated a variable extent of functional recovery, as far as restoration of bladder sensation, 

voluntary anal sphincter contraction and improved motor and sensory function to variable extent [157]. 

 

Bone marrow-derived cells 

Adult bone marrow is easily accessible, containing both hematopoietic stem cells (HSC) and bone 

marrow MSCs, and their usage does not imply the ethical concerns associated with ES cells. In fact, 

they can be collected from the patient himself or from donors following informed consent. 

Rodent HSCs transplanted into mice with compression SCI generate oligodendrocytes, resulting 

in significant functional recovery of hindlimb function and general locomotion [3]. As neural 

differentiation of HSCs is controversial, they are thought to impart beneficial neuroprotective and/or 

immunomodulatory effects by releasing growth or antiinflammatory factors [40,145,190]. 

Azizi et al. [7] infused rat brains with human marrow stromal cells/MSCs, capable of 

expansion, self-renewal, and differentiation into several different cell lineages. Their migration into the 

brain resembles that of paraventricular astrocytes, but whether the cells adopt neural cell fates remains 

uncertain. Several studies have suggested that MSCs, like bone marrow mononuclear cells and 

umbilical cord cells, may generate neurons both in vitro and in vivo. Nevertheless, these conclusions 

have been drawn mostly on morphological criteria in vitro [46,221] and in vivo on studies employing 

transferable labels [100,140,185], without electrophysiological evidence [122]. Therefore, these studies 

have been challenged [25,41,121,195]. More recently, the appearance of neuronal-like MSCs has been 

ascribed to a process of cell fusion rather than that of transdifferentiation [222]. Nevertheless, cell 
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fusion is probably very rare, and the acquisition of neural antigens by MSCs might simply reflect their 

extreme immaturity and their undetermined fate [47,70,122]. 

On the other hand, MSCs, which are currently used in association with HSCs in order to 

decrease immunoreaction in the host, have an anti-inflammatory potential, i.e. decrease microglia and 

astroglia activation, and their usage in diseases of the nervous system has a positive functional outcome 

[70,143]. Recently, MSCs have been transplanted into the injured spinal cord, either embedded in a 

polymer, or by lumbar puncture, associated with neurotrophic factor such as IL-6, BDNF (brain 

derived growth factor), NGF, VEGF (vascular endothelial growth factor),  NT-3 (neurotrophin-3) 

[42,81,103,108,122,135,142,167,207], with promising results in terms of functional outcome 

[8,99,210,217]. MSCs probably display their action by modulating inflammatory response to the insult 

and providing trophic factors for neurons and regenerating fibers. Transplantation and intravenous 

injection of bone marrow cells, and especially MSCs, has been repeatedly shown to significantly 

improve locomotion and hindlimb sensitivity after contusion, hemisection, and compression SCI in 

mice and rats compared with controls, with an increase in spared white matter in treated animals. The 

mechanisms of action underlying these benefits are only beginning to be understood [218]. 

 In our experience, MSCs were able to survive for a long time into the injured spinal cord, 

promoting sprouting of raphespinal axons and functional recovery of motor behaviour, probably acting 

as biologic minipumps able to deliver trophic factors and immunomodulatory molecules [18]. 

Furthermore such ability could be exploited by transfecting MSCs to produce and release constantly 

neurotrophic factors, thus providing a continuous and in loco source with neuroprotective effects 

[9,70,153]. 

MSCs migrate toward injury-associated signals in vitro, attracted by cytokines and chemokines 

[136,156,188]. Notwithstanding the rather poor survival of MSCs following transplantation into the 

brain [41], endovenous administration of MSCs lead to significant functional improvement in a 

cerebral ischemia model [78], making unclear their mechanism of action. Nevertheless, the therapeutic 

potential of MSCs is currently being investigated in several clinical trials for neural diseases [58]. To 

this aim, accurate pre-transplantation analyses should be carried such as demonstration of a normal 

karyotype. In fact, even though MSCs are thought to be potentially free from side effects, malignant 

transformation has been found after extended culture in vitro both for mouse [138,202] and human 

[170,181]. Their uncontrolled proliferation could be further supported in vivo by their 

immunosuppressive properties [48,171,233].  
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Another bone marrow-derived stem cell population, called multipotent adult progenitor cells 

(MAPCs), has been described displaying greater potential than MSCs [84,161]. In vitro MAPCs can 

give rise to functional cell types from the three embryonic germ layers, including functional neuronal 

cells [168,179,181,228]. Zhao and coll. [232] have employed MAPCs in a rodent model of stroke, 

showing a behavioral function improvement, even if there is no evidence for their neural differentiation 

in vivo [25].  

In conclusion bone marrow-derived cells have been the focus of a significant debate in stem cell 

biology pertaining to whether stem cells can transdifferentiate. Some studies have shown MSC 

differentiation to oligodendrocytes after implantation, whereas others demonstrated the cells only to 

localize to Schwann and oligodendrocyte cells post-transplantation. Other studies detected no 

transdifferentiation, even though functional improvement was noted. In vivo differentiation to highly 

pure neural populations has not been clearly documented; however, some ex vivo bone marrow-derived 

cells have been shown to express neuronal and oligodendroglial markers [9,218]. 

 

EX-VIVO TRANSDIFFERENTIATED CELLS 

A recent innovative approach in regenerative medicine is represented by ex-vivo transdifferentiared 

cells, consisting in reprogramming somatic cells (e.g. fibroblasts) by inserting some transcription 

factors (OCT4, SOX2, KLF4 and MYC), thus obtaining the so-called induced pluripotent stem cells 

(iPSCs). These factors play a specific role in maintaining cellular pluripotency, assuring the typical 

morphology, growth properties and genetic features of ESCs, and allowing the differentiation into 

endoderm, mesoderm and ectoderm germ layers [196]. 

Moreover, there are both advantages and disadvantages relative to iPSCs: in fact, their use 

circumvents many ethical issues generally related to ESCs, but similarly to ESCs they can cause 

teratomas, specific embryonic tumors composed by different cell types [111]. Indeed this problem is 

related to their pluripotency, therefore the aim is now to induce a partial cell commitment: new 

techniques allow to reduce the number of employed transcriptional factors and chemicals, generating 

partially reprogrammed iPSCs able to self-renew and differentiate into specific cell lineages, or 

aberrantly reprogrammed cells that can only self-renew [225]. 

A valid alternative consists in differentiating in vitro iPSCs into neural precursors, successfully 

obtaining neurons and glial cells: when transplanted in the murine brain iPSCs gave rise to 

glutamatergic, GABAergic and catecholaminergic neurons [216]: in addition, to limit the teratoma 



14 
 

formation, authors have separated the undifferentiated cells, representing a limited contaminating 

population, from committed neural cells. 

Hence, before using iPSCs in clinical trials, it is fundamental to evaluate their safety and their 

efficacy. Tsuji and coll [204] have already transplanted neurospheres obtained from iPSCs into injured 

murine spinal cords, showing a consistent functional recovery due to remyelination and serotoninergic 

fiber regrowth. 

Finally a consistent advantage from iPSC use consists in that cells can be obtained directly from 

patients and expanded, eliminating graft rejection problems. 

 

CO-TRANSPLANTATION OF DIFFERENT STEM CELL TYPES 

As mentioned, every stem cell type entails both advantages and disadvantages: ESCs, even though 

totipotent, imply ethical problems and can give rise to tumors; on the other hand, adult stem cells are 

easily obtained from many tissues and are safe (e.g., MSCs are already employed in several clinical 

trial for hematological pathologies, heart/vascular diseases, osteogenesis imperfecta, amyotrophic 

lateral sclerosis), even though they are more restricted in their differentiation potential than ESCs 

[59,65]. 

A promising approach can consist in co-transplanting different stem cell types: in fact some 

authors have already demonstrated the synergistic effects obtained by combined graft of stem cells. 

For example, Zhang and coll. [231] co-transplanted in a rat transected spinal cord NSCs and 

Schwann cells transfected with adenoviral vectors carrying human NT-3, observing functional 

recovery due to axonal regeneration, remyelination and neuron survival. Similarly, Wang and 

coworkers [213] have employed a stem cell cocktail (NSCs and OECs) in a rat injured spinal cord, 

obtaining locomotor recovery, and NSC differentiation into neural cells and the regeneration of 

nerve fibers crossing the lesion site from OECs. Therefore, co-transplanted stem cells have a 

synergistic effect, mutually acting on neural regeneration and on behavioral recovery: indeed co-

transplantation seems more effective than a single cell type graft. It is also possible to exploit the 

MSC characteristics, in terms of homing, delivery of trophic factors, immunosuppressive properties, 

to enhance the integration of other stem cells, such as neural/embryonic stem cells into the injured 

CNS. 

Recently, MSCs have been injected with embryonic-derived oligodendrocyte progenitor cells 

(OPCs) in dysmyelinated mice, obtaining the enhancement of OPC survival and their 

oligodendroglial maturation, in addition to modulating neuroinflammation [43]. 
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Proteomics of stem cells 

Due to their enormous potential, stem cells are investigated in many molecular profiling studies in 

order to find new markers and regulatory pathways governing their self-renewal and differentiation. 

Neuroproteomics represents the most recent approach to study the nervous system proteome: in fact, 

techniques like microarrays, two-dimensional gel electrophoresis, mass spectrometry and protein arrays 

for proteomic analysis allow to monitor the changes in gene or protein expression of a variety of 

different molecules [11]. 

First of all, gene expression profiling stem cells at different stages of differentiation is very 

important to define and characterize the cells which are harvested, cultured, expanded and finally 

transplanted. Some “stemness” genes specifically expressed in ES cells and involved in maintaining 

pluripotency and self renewal, such as Oct-3/4, Sox-2 and UTF-1, can be identified [14]. On the other 

hand, Wang and Gao [211] identified 23 proteins with changing expression levels or phosphorylation 

states after neural differentiation of murine ESCs: in particular, translationally controlled tumor protein 

(TCTP) is downregulated and alpha-tubulin upregulated, suggesting a role of TCTP in modulating 

neural differentiation through binding to Ca(2+), tubulin and Na,K-ATPase. Differentiation of fetal 

NSCs into neural cells is accompanied by changes in the expression of proteins involved in DNA and 

RNA binding (hnRNPs A1, A2/B, and H), iron storage (Ferritin L subunit), redox regulation (Protein 

DJ-1), mRNA processing and transport (hnRNPH and hnRNP A1) [187]. Seven proteins increase their 

expression and one (HS90B, a tumor-specific transplantation antigen) decreases in the transition from 

ES cells to NS cells, whereas eight decrease their expression from NS cells to neurons [2]: therefore, 

protein synthesis and folding, oxidoreduction, signal transduction, and changes in the cytoskeleton are 

up-regulated in the transition from ES cells to NS cells, and protein synthesis and folding, 

oxidoreduction, and signal transduction are down-regulated in that from NS cells to neurons. 

Proteomics can represent a resource for the treatment of neurodegenerative diseases. 

Transplanted stem cells and the injured environment following ischemia or nerve injury can be 

analysed by i) studying the expression of growth and neurotrophic factors secreted at injury site, such 

as insulin growth factor-1, VEGF-A, transforming growth factor-beta1, brain derived neurotrophic 

factor, stromal derived factor-1alpha and NGF, and ii) evaluating the possible interaction between stem 

cells and the environment [30,42]. 

Stem cells, either constitutionally or upon stimulation by the injured environment, can change 

their pattern of expression and secrete neurotrophic and/or immunomodulatory molecules. MSCs 
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display immunological, reparative and anti-inflammatory properties, making them a promising tool in 

approaches of regenerative cell therapy. MSCs are able to secrete several bioactive molecules with 

trophic (stem cell factor SCF, leukemia inhibitory factor LIF, macrophage colony-stimulating factor M-

CSF, NGF, NT-3), immunomodulatory (prostaglandin E2 PGE-2, trasforming growth factor beta1 

TGF-β1, LIF), anti-apoptotic and angiogenetic (VEGF, bFGF, interleukin 6 IL-6, insulin-like growth 

factor-1 IGF-1) properties, fundamental in leading to tissue repair at sites of injury [122,125,134,142]. 

In a microarray study, the global transcriptional profile of mouse MSCs put in evidence secreted 

proteins that play a role within the HSC niche such as fibronectin-1 (Fn1), osteopontin (Spp1), 

chemokine C-X-C motif ligand- 12 (Cxcl12), thrombospondin-1 (Thbs1), thrombospondin- 2 (Thbs2), 

transforming growth factor-β2 (Tgfb2), angiopoietin-1 (Angpt1), insulin-like growth factor binding 

protein-4 (Igfbp4), fibroblast growth factor-7 (Fgf7), secreted frizzled-related protein-1 (Sfrp1), 

secreted frizzled-related protein-2 (Sfrp2), dickkopf-3 (Dkk3), vascular cell adhesion molecule-1 

(Vcam1), and bone morphogenetic protein receptor type 1a (Bmpr1a) [154]. Therefore, MSCs express 

a variety of genes, some of which they share with other cell types, and some are specific. The result is 

the expression of a cocktail of proteins that can modulate immune system, modulate microglia 

activation and astrogliosis, and provide trophic support for neuron survival and axonal growth. 

Neuroprotection can be provided also by neural stem/progenitor cells: they can interfere with 

production of free radicals and increase the expression of neuroprotective factors by secretion of ciliary 

neurotrophic factor and VEGF [123,128]. Neural stem cells show also immunomodulatory potential, 

determining a bystander inhibitory effect on T cell activation and proliferation in lymph nodes [12]. 

Finally embryonic stem cells are able to delivery several factors (hepatocyte growth factor, TGF 

beta, BDNF) that can act both locally and systemically, promoting biological repair and regeneration; 

moreover, when transplanted, they can establish synergistic interactions with endogenous adult stem 

cells, enhancing in this way tissue regeneration [74,117,119,230]. 

Indeed, the study of the reciprocal influences of the lesioned environment and the transplanted 

stem cells at a proteomic level is drawing an increasing interest: the functional roles of neuroproteoma 

can represent a powerful tool in regenerative medicine. 

 

Usage of genetically-modified stem cells 

Genetically-modified cells include fibroblasts, Schwann cells, macrophages, ES cells, OECs, MSCs 

and NSCs: i.e. all cell types tested for cell therapy have been genetically modified to enhance their 

therapeutic potential. For genetic modification, retroviral vectors provide a stable and safe means to 
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modify cells to express high levels of neurotrophic factors without the expression of wild-type viral 

genes [17]. 

Gene therapy can provide injured axons and neurons with a local source of trophic molecules, to 

stimulate neuronal survival and possibly axonal growth [17]. The expression of receptors for 

neurotrophic factors and their pleiotropic effects on different neuronal and glial cell types makes it 

necessary to target trophic molecules to either a specific subpopulation of neurons or to the injury site 

itself and its immediate proximity. 

NT-3-genetically modified-cells grafted into the lesioned spinal cord provide not only trophic 

molecules at the injury site, but also support axonal growth: moreover, they can provide “bridges” for 

growing axons to potentially connect injured spinal cord “stumps” [63]. 

Genetically modified cells producing BDNF and/or neurotrophin (NT)-4/5 have been 

investigated in several studies. After midthoracic dorsal hemisection lesions, increased growth of 

primary sensory, noradrenergic coerulospinal and motor axons into BDNF- and NT-4/5-secreting 

fibroblast grafts was observed. BDNF-mediated growth responses of sensory and cholinergic axons 

were also found after midthoracic contusion injuries [135]. 

Growth of raphespinal and coerulospinal axons following BDNF delivery have also been 

reported but its extent varies from study to study, perhaps depending on differences in the type or site 

of spinal cord injury, in the quality and extent of BDNF delivery, and in the cells which vehicle BDNF 

gene delivery [135]. Following complete transection at the midthoracic spinal cord, placement of 

Schwann cell grafts and infusions of BDNF and NT-3 induced some growth of coerulospinal and 

raphespinal axons [224]. Similar results were obtained using grafts of Schwann cells genetically 

modified to secrete BDNF [135]. Growth factors can also serve to coax sprouting axons to cross the 

gap across the lesion. Once regeneration is stimulated, molecules that provide directional cues are 

critical for routing axons to their correct targets [178]. 

When different growth factors were used in combination (for example BDNF and GDNF ), they 

resulted in significant reduction of motor dysfunction and spinal cord pathology. However, 

transplantation of fibroblasts genetically modified to produce neurotrophic factors BDNF or NT-3 onto 

rat spinal lesion did not show advantage in sensorimotor recovery to either grafting with gelfoam or 

gelfoam plus fibroblasts, in addition to increase termal hyperalgesia [77,102,167]. 

Genetically engineered fibroblasts secreting NGF can stimulate axons to regenerate into the 

center of an injury when implanted in this region [87,91,206], although this sprouting remains within 

the area of trophic support and does not lead to long distance functional regeneration. Intrathecally 
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delivered NT-3, NGF, and GDNF can promote axonal regeneration across the dorsal root entry zone 

[158,159], and glial overexpression of NGF can stimulate regeneration of nociceptive axons from the 

dorsal roots which in some circumstances may lead to thermal hyperalgesia [165,198]. 

More recently, in order to achieve axonal growth, Hamada’s group (2006) has transfected ES 

cells with the MASH1 gene, yielding purified spinal motoneuron precursors deficient in the expression 

of Nogo receptor: after graft on spinal cord injured mice, animals showed excellent improvement of the 

motor functions, confirmed by electrophysiological studies. 

Moreover, combination therapy such as treatment with NT-3 and cAMP together to stimulate 

neuronal cell bodies has been shown to allow regeneration beyond the lesion site of spinal injuries 

[120], suggesting that the use of multiple simultaneous approaches to this complex problem may prove 

important when constructing future strategies for improving rehabilitation and functional recovery. 

 

Implantable scaffolds 

As discussed above, the glial scar represents the main barrier to axon regeneration at the injury site 

[186]. Even though stem cells can penetrate the lesion cavity and establish a permissive environment to 

axonal growth, this potential is limited by many other inhibitory factors [129,177]. An innovative 

means for delivering stem cells to the injury site and promoting axonal growth consists in seeding stem 

cells into scaffolds which support regenerating axons. 

A variety of materials have been evaluated to this aim [124]. One consists in fibrin, due to its 

biocompatibility, biodegradability, flexibility and plasticity [201]. Alone, fibrin promotes regeneration 

and delays accumulation of reactive astrocytes at the lesion site [86]. Alternatively, fibrin, enriched 

with stem cells - usually bone marrow stem cells (BMSCs) or NP - and/or growth factors – such as NT-

3, NGF, platelet-derived growth factor-, improves survival, differentiation and migration of grafted 

cells, as well as it determines an increase in neural fiber density [82,85,234]. Others natural polymers 

find extensive use in SCI treatment, such as collagen and hyaluronic acid, due to their elasticity, 

support to cell adhesion and migration, and time of degradation: in fact, the implantation of these 

scaffolds with or without stem cells creates a favourable environment for nerve regeneration, 

significantly improving the recovery of locomotor and sensory functions [152,212]. NVR-N-Gel 

(biodegradable co-polymer neurotube containing viscous gel) is a crosslinked hyaluronic acid with the 

adhesive molecule laminin, and growth factors [164]. Time of degradation is important in order to be 

progressively replaced by the matrix produced from transplanted and host cells. When drug or 

neurotrophic factors were loaded in a polymer nanocarrier: this system can reduce neuroinflammation 



19 
 

in acute stage [36] and support the axonal outgrowth and the synaptic reconnection in the delayed 

phase [192]. 

In alternative to natural scaffolds, synthetic polymers allow a wider control of chemical and 

physical characteristics of the material, even succeeding to mimic the structure of white and grey 

matter found in the uninjured spinal cord. They consist of biodegradable hydrogels (polyester of lactic 

acid - PLA, polyester of glycolic acid - PGA and polyethylene glycol - PEG) or non-biodegradable 

hydrogels, methacrylate-based. The delivery of NSCs and Schwann cells via PGA scaffold enhances 

their growth promoting properties on axons across the transected spinal cord [149]. These results have 

been confirmed both by histological analysis in terms of reduction of lost tissue and diminished glial 

scarring, and behavioral assessment in terms of coordinated, weight-bearing and hindlimb stepping 

[200]. Moreover, other promising scaffolds such as poly(N-isopropylacrylamide)-co-poly(ethylene 

glycol) (PNIPAAm-PEG) and HPMA-RGD hydrogels [N-(2-hydroxypropyl)-methacrylamide with 

attached amino acid sequences-Arg-Gly-Asp], seeded with MSCs, have obtained positive results in SCI 

[37,73]. 

Finally, as reviewed by Madigan [124], the scaffolds seem to support stem cell differentiation, 

especially fibrin scaffolds. Therefore, combining scaffolds with cell transplantation represents a 

promising alternative to injection methods, since such scaffolds not only support regeneration but also 

enhance cell survival after transplantation and promote differentiation into desired phenotypes. On the 

other hand, non-biodegradable biomaterial-based treatment can cause a chronic compression of 

regenerating axons, and the transplant site can act as a sink, precluding sprouting to escape and 

reconnect with the host spinal cord. 

 

Clinical Trials 

Most in vivo studies relative to therapy of SCI are performed in rodents. There are, however, many 

species-specificities when compared to humans, for example in the anatomy of motor pathways and 

behavior. Therefore, although preliminary studies in animals are necessary and fundamental, research 

on SCI should aim to trials in humans. 

In a clinical trial in 2004, intravenous injection of autologous BMSCs resulted in a significant 

improvement, from American Spinal Injury Association score B to D, in only one over 9 SCI patients 

[160]; however, BMSCs were well tolerated during the observation period. A phase I study established 
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safety in acute complete SCI: of 8 enrolled ASIA A patients, 2 improved to ASIA C after 6 months and 

3 to ASIA C after 1 year, with some bladder recovery [97]. In the first cell-based therapy for acute 

complete SCI multicenter randomized controlled phase II study (ProCord), enrolling only patients with 

complete SCI, treated macrophages promoted recovery from SCI [97]. Phase II was stopped when 

Proneuron Biotechnologies, Inc. (Los Angeles, CA), the parent company, found that most patients had 

undergone surgery twice, a first time for biomechanical stabilization, and a second, approximately 2 

weeks postinjury, concomitantly with macrophage injection. In addition, surgeons had some difficulties 

to accurately identify the border of the lesion where activated macrophages were to be injected. 

It has also been suggested that delivery of autologous BM precursors via lumbar puncture or 

activated macrophages into the CNS might be an acceptable alternative to the intravenous 

administration [5,27,97]. A phase I/II nonrandomized study, using autologous BMCs injection into the 

perilesional area at different time points post injury (within 14 d, between 15 d and 8 wk, and after 8 

wk) in 35 patients with complete SCI, combined with administration of GMCS-F (granulocyte 

macrophage-colony stimulating factor), obtained an improvement in the American Spinal Injury 

Association Impairment Scale (AIS) impairment scale grade in 30% of patients (from A to B or C) 

compared to controls [227]. Whereas no side effects at a 10 month follow-up are reported, neuropathic 

pain during the treatment and tumor formation at the site of transplantation still remain to be 

investigated in the long term [227]. 

Other studies tested the inflammatory microenvironment before stem cell administration. 

Patients first underwent intravenous injection of autoimmune T cells. NSCs, trandifferentiated from 

BMSC in culture with autologous autoimmune T cells, were injected into the lesion site of two patients 

with chronic SCI, demonstrating some level of motor and sensory recovery [139]. In another 

preliminary safety trial in 2006, safety, feasibility, and good tolerance of HSC transplantation via 

lumbar puncture were demonstrated in a group of 10 patients [139]. 

Finally, olfactory mucosa autografts into the SCI lesion succeeded to fill the site and trigger 

some functional recovery [112]. In another study [80], olfactory bulb derived from aborted fetuses were 

transplanted, but the short follow up precluded any conclusion. 

Clinical trials basically showed the safety of the transplantation procedures. The benefit of cell 

replacement therapy however can only be established by further clinical phase II/III trials. Actually, the 

variable and sometimes inconclusive findings from human trials would argue that a better 

understanding of the biological mechanisms and potential of cell replacement therapies in animal injury 

models must be obtained before clinical translation. Even a stem cell-based therapeutic strategy 
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eventually successful in clinical trials still faces practical issues to be translated to the clinical practice. 

It must be made easily accessible for hospitals, and this ideally includes the availability of cell banks 

and the possibility to distribute stem cells. This is an exciting but not immediately actual scenario. 

Regulatory organizations such as Food and Drug Administration will guide the translation of stem cells 

therapy for SCI in animals to human trials. Companies, researchers, patients should be aware of the 

regulatory issues that must be addressed before starting human experimental trials, because of some 

special concerns: a) the spinal cord is a site sensitive and dangerous, b) stem cell therapy is a new 

treatment and entails a number of complex issues; such as toxicities, risk for tumorigenicity, 

interactions of cells with drugs, c) clinical deficit could be worsened by inappropriate stem cell 

differentiation. Operating procedures must be compiled to standardize: a) the inclusion criteria and 

potential benefits of participating in the trials with stem cells, since patients have done all therapeutic 

alternatives; b) informed consent; c) the methods in preparing and delivering cells; d) equipment and 

surgical approach; e) evaluation in the follow-up. 

 

CONCLUSION 

Although we may never be able to regrow  large areas of spinal cord injured, stem cell technology is a 

rapidly evolving field that will impact the future treatment of SCI, exploiting both limited CNS 

neurogenesis and exogenous stem cells complementary advantages. Transplantation of stem cells 

represents an important new approach to managing SCI. Improvements in molecular and microscopic 

techniques along with the availability of modified stem cell lines have accelerated research into stem 

cell transplantation. The fact that functional gains have been demonstrated in animal models after 

delivery of cells of both neural and non-neural origin in preclinical models of CNS injury is 

encouraging. Nevertheless, caution is necessary to ensure the highest standards of safety and scientific 

method as this exciting field moves forward. Cell-based therapy in SCI had the goal to: 1) replace new 

neurons that die within the first minutes to days after injury; 2) provide a source of cells to promote 

remyelination and axonal sprouting; and 3) delivery trophic molecules that can promote cellular 

protection and plasticity. 

In order to apply these techniques, however, it is critical that we continuously consider that 

patients might benefit from additional treatment. Work from multiple labs is suggesting that the cells 

microenvironment is important in establishing the sequence of what cells will and will not do, 



22 
 

particularly in vitro systems. With this combination of expertise, and with important links to national 

resources, the hope is to quickly translate basic science studies into clinical trials, avoiding the usual 

roadblock between the two areas of endeavor. 
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LEGENDS TO THE FIGURES 

 

FIGURE 1 

(a) After compression injury and transplantation, neural precursors (in green) are able to fill the lesion 

cavity, here well highlighted by glial fibrillary acidic protein (GFAP) immunostaining (in red). (b) In 

vitro neural precursor display heterogeneous morphology, frequently showing more or less elongated 

processes. (c) Also in vivo, when transplanted 2 weeks after hemisection injury, NPs are distributed in 

clusters, display variable aspect and emit processes of different lengths directed caudally and laterally 

with synaptic boutons in contact with local neurons (labeled in red labeled with anti-5HT antibody). 

Scale bar = 200 μm in a, 50 μm in b, 100 μm in c.  
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FIGURE 2 

 

Regenerative approach vs cell replacement strategy. 

 

Following an injury, spinal cord regeneration can be supported by stem cell transplantation. In 

particular, stem cells can stimulate a regenerative process, by delivering trophic factors (yellow dots) 

and immunomodulatory molecules (green triangles), which can enhance axon sprouting [see host 

surviving motoneurons (pink) with axonal growth cones]. Alternatively, stem cells can differentiate 

into neurons (N) and integrate into the host circuits, emitting axons able to bridge the lesion gap; 

moreover they can integrate the remaining functional glia, for example differentiating into astrocytes 

(A), or they may remain as undifferentiated precursors (P). 
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