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DIFFERENTIAL FORMS ON WASSERSTEIN SPACE AND

INFINITE-DIMENSIONAL HAMILTONIAN SYSTEMS

WILFRID GANGBO, HWA KIL KIM, AND TOMMASO PACINI

Abstract. Let M denote the space of probability measures on RD endowed with the
Wasserstein metric. A differential calculus for a certain class of absolutely continuous curves
in M was introduced in [5]. In this paper we develop a calculus for the corresponding class of
differential forms on M. In particular we prove an analogue of Green’s theorem for 1-forms
and show that the corresponding first cohomology group, in the sense of de Rham, vanishes.
For D = 2d we then define a symplectic distribution on M in terms of this calculus, thus
obtaining a rigorous framework for the notion of Hamiltonian systems as introduced in [3].
Throughout the paper we emphasize the geometric viewpoint and the role played by certain
diffeomorphism groups of RD.

1. Introduction

Historically speaking, the main goal of Symplectic Geometry has been to provide the
mathematical formalism and the tools to define and study the most fundamental class of
equations within classical Mechanics, Hamiltonian ODEs. Lie groups and group actions
provide a key ingredient, in particular to describe the symmetries of the equations and to
find the corresponding preserved quantities.

As the range of physical examples of interest expanded to encompass continuous media,
fields, etc., there arose the question of reaching an analogous theory for PDEs. It has
long been understood that many PDEs should admit a reformulation as infinite-dimensional
Hamiltonian systems. A deep early example of this is the work of Born-Infeld [9], [10] and
Pauli [41], who started from a Hamiltonian formulation of Maxwell’s equations to develop
a quantum field theory in which the commutator of operators is analogous to the Poisson
brackets used in the classical theory. Further examples include the wave and Klein-Gordon
equations (cf. e.g. [15], [32]), the relativistic and non-relativistic Maxwell-Vlasov equations
[8], [14], [33], and the Euler equations for incompressible fluids [7].

In each case it is necessary to define an appropriate phase space, build a symplectic or
Poisson structure on it, find an appropriate energy functional, then show that the PDE coin-
cides with the corresponding Hamiltonian flow. For various reasons, however, the results are
often more formal than rigorous. In particular, existence and uniqueness theorems for PDEs
require a good notion of weak solutions which need to be incorporated into the configuration
and phase spaces; the geometric structure of these spaces needs to be carefully worked out;
the functionals need the appropriate degree of regularity, etc. The necessary techniques can
become quite complicated and ad hoc.

The purpose of this paper is to provide the basis for a new framework for defining and
studying Hamiltonian PDEs. The configuration space we rely on is the Wasserstein space
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M of non-negative Borel measures on RD with total mass 1 and finite second moment. Over
the past decade it has become clear that M provides a very useful space of weak solutions
for those PDEs in which total mass is preserved. One of its main virtues is that it provides
a unified theory for studying these equations. In particular, the foundation of the theory
of Wasserstein spaces comes from Optimal Transport and Calculus of Variations, and these
provide a toolbox which can be expected to be uniformly useful throughout the theory.
Working in M also allows for extremely singular initial data, providing a bridge between
PDEs and ODEs when the initial data is a Dirac measure.

The main geometric structure on M is that of a metric space. The geometric and analytic
features of this structure have been intensively studied, cf. e.g. [5], [12], [13], [34], [40]. In
particular the work [5] has developed a theory of gradient flows on metric spaces. In this
work the technical basis for the notion of weak solutions to a flow on M is provided by the
theory of 2-absolutely continuous curves. In particular, [5] develops a differential calculus
for this class of curves including a notion of “tangent space” for each µ ∈ M. Applied to
M, this allows for a rigorous reformulation of many standard PDEs as gradient flows on
M. Overall, this viewpoint has led to important new insights and results, cf. e.g. [2], [5],
[13], [23], [40]. Topics such as geodesics, curvature and connections on M have also received
much attention, cf. [4], [28], [29], [43], [44].

In the case D = 2d, recent work [3] indicates that other classes of PDEs can be viewed
as Hamiltonian flows on M. Developing this idea requires however a rigorous symplectic
formalism for M, adapted to the viewpoint of [5]. Our paper achieves two main goals. The
first is to develop a general theory of differential forms on M. We present this in Sections 4
and 5. This calculus should be thought of as dual to the calculus of absolutely continuous
curves. Our main result here, Theorem 5.32, is an analogue of Green’s theorem for 1-forms
and leads to a proof that, in a specific sense, every closed 1-form on M is exact. The second
goal is to show that there exists a natural symplectic and Hamiltonian formalism for M
which is compatible with this calculus of curves and forms. The appropriate notions are
defined and studied in Sections 6 and 7.

Given any mathematical construction, it is a fair question if it can be considered “the
most natural” of its kind. It is well known for example that cotangent bundles admit a
“canonical” symplectic structure. It is an important fact, discussed in Section 7, that on
a non-technical level our symplectic formalism turns out to be formally equivalent to the
Poisson structure considered in [33], cf. also [24] and [28]. From the geometric point of view
it is clear that the structure in [33] is indeed an extremely natural choice. The choice of
M as a configuration space is also both natural and classical. The difference between our
paper and the previous literature appears precisely on the technical level, starting with the
choice of geometric structure on M. Specifically, whereas previous work tends to rely on
various adaptations of differential geometric techniques, we choose the methods of Optimal
Transport. The technical effort involved is justified by the final result: while previous studies
are generally forced to restrict to smooth measures and functionals, our methods allow us
to present a uniform theory which includes all singular measures and assumes very little
regularity on the functionals. Sections 5.2 through 5.4 are an example of the technicalities
this entails. Section 5.1 provides instead an example of the simplifications which occur when
one assumes a higher degree of regularity.

By analogy with the case of gradient flows we expect that our framework and results will
provide new impulse and direction to the development of the theory of Hamiltonian PDEs.
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In particular, previous work and other work in progress inspired by these results lead to
existence results for singular initial data [3], existence results for Hamiltonians satisfying
weak regularity conditions [25], and to the development of a weak KAM theory for the non-
linear Vlasov equation [20]. It is to be expected that in the process of these developments
our regularity assumptions will be even further relaxed so as to broaden the range of ap-
plications. We likewise expect that the geometric ideas underlying Symplectic Geometry
and Geometric Mechanics will continue to play an important role in the development of the
Wasserstein theory of Hamiltonian systems on M. For example, in a very rough sense the
relationship between our methods and those implicit in [33] can be thought of as analogous
to the relationship between [18] and [7]. A connection between the choice of using Lie groups
(as in [18] and [7]) or the space of measures as configuration spaces is provided by the process
of symplectic reduction, cf. [31], [32].

It is an interesting question to what extent our results can be generalized to spaces of
probability measures on other manifolds M . Regarding this issue, the situation is as follows.
Many of the analytic foundations of our paper are provided by the work [5], which is based
on the choice M := RD. In theory many results of [5] should be extendible to general
Riemannian manifolds, but at present such an extension does not exist. Assuming that this
extension will be obtained, we have written our paper in such a way as to make it clear
how one might then try to extend our own results. This partly explains our emphasis on
the geometric ideas and intuition underpinning our analytic definitions and results: exactly
the same ideas would continue to hold for general manifolds M . Section 5.6 discusses how
our results on cohomology depend on the choice M := RD. The situation regarding the
symplectic structure is similar: one should expect most results to continue to hold for general
symplectic manifolds M .

The above considerations make it worthwhile to stress the geometric viewpoint through-
out this paper, with particular attention to the role played by certain group actions. It is
important to emphasize, however, that we never try to use any form of infinite-dimensional
geometry to prove our results. The reason behind this is that the various existing rigor-
ous formulations of infinite-dimensional manifolds and Lie groups do not seem to be easily
adaptable to our needs, cf. Section 3.4 for details. The typical approach adopted throughout
our paper is thus as follows: (i) use geometric intuition to guide us towards specific choices
of rigorous definitions, within the framework of [5]; (ii) prove theorems using the methods
of [5] and Monge-Kantorovich theory; (iii) provide informal discussions of the geometric
consequences of our results.

In recent years Wasserstein spaces have also been very useful in the field of Geometric
Inequalities, cf. e.g. [1], [16], [17], [30]. Most recently, the theory of Wasserstein spaces has
started producing results in Metric and Riemannian Geometry, cf. e.g. [29], [35], [43], [44].
Thus there exist at least three distinct communities which may be interested in these spaces:
people working in Analysis/PDEs/Calculus of Variations, people in Geometrical Mechanics,
people in Geometry. Concerning the exposition of our results, we have tried to take this
into account in various ways: (i) by incorporating into the presentation an abundance of
background material; (ii) by emphasizing the general geometric setting behind many of our
constructions; (iii) by sometimes avoiding maximum generality in the results themselves. As
much as possible we have also tried to keep the background material and the purely formal
arguments separate from the main body of the article via a careful subdivision into sections
and an appendix.
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We now briefly summarize the contents of each section. Section 2 contains a brief introduc-
tion to the topological and differentiable structure (in the weak sense of [5]) of M. Likewise,
Appendix A reviews various notions from Differential Geometry including Lie derivatives,
differential forms, Lie groups and group actions. The material in both is completely stan-
dard, but may still be useful to some readers. Section 3 provides a bridge between these two
parts by revisiting the differentiable structure of M in terms of group actions. Although
this point of view is maybe implicit in [5], it seems worthwhile to emphasize it. On a purely
formal level, it leads to the conclusion that M should roughly be thought of as a stratified
rather than a smooth manifold, see Section 3.2. It also relates the sets RD ⊂ M ⊂ (C∞

c )∗.
The first inclusion, based on Dirac measures, shows that the theory on M specializes by
restriction to the standard theory on RD: this should be thought of as a fundamental test in
this field, to be satisfied by any new theory on M. The second inclusion provides background
for relating the constructions of Section 6.2 to the work [33]. Overall, Section 3 is perhaps
more intuitive than rigorous; however it does seem to offer a useful point of view on M,
providing intuition for the developments in the following sections. Section 4 defines the basic
objects of study for a calculus on M, namely differential forms, push-forward operations and
an exterior differential operator. It also introduces the more general notion of pseudo forms.
Pseudo forms are closely related to the group action: this is discussed in Section 4.3. Pseudo
forms reappear in Section 5 as the main object of study, mainly because it seems both more
natural and easier to control their regularity. The main result of this section is an analogue
of Green’s theorem for certain annuli in M, Theorem 5.32. Stating and proving this result
requires a good understanding of the differentiability and integrability properties of pseudo
1-forms. We achieve this in Sections 5.2 and 5.3. Our main application of Theorem 5.32 is
Corollary 5.34, which shows that the 1-form defined by any closed regular pseudo 1-form on
M is exact. Section 5.6 discusses the cohomological consequences of this result. In Section
6 we move on towards Symplectic Geometry, specializing to the case D = 2d. The main
material is in Section 6.2: for each µ ∈ M we introduce a particular subspace of the tan-
gent space TµM and show that it carries a natural symplectic structure. We also study the
geometric properties of this symplectic distribution and define the notion of Hamiltonian
systems on M, thus providing a firm basis to the notion already introduced in [3]. For-
mally speaking, this distribution of subspaces is integrable and the above defines a Poisson
structure on M. The existence of a Poisson structure on (C∞

c )∗ had already been noticed
in [33]: their construction is a formal infinite-dimensional analogue of Lie’s construction of
a canonical Poisson structure on the dual of any finite-dimensional Lie algebra. We review
this construction in Section 7 and show that the corresponding 2-form restricts to ours on
M. In this sense our construction is formally equivalent to the Kirillov-Kostant-Souriau
construction of a symplectic structure on the coadjoint orbits of the dual Lie algebra.

2. The topology on M and a differential calculus of curves

Let M denote the space of Borel probability measures on RD with bounded second moment,
i.e.

M := {Borel measures on RD : µ ≥ 0,

∫

RD

dµ = 1,

∫

RD

|x|2 dµ <∞}.

The goal of this section is to show that M has a natural metric structure and to introduce
a differential calculus due to [5] for a certain class of curves in M. We refer to [5] and [45]
for further details.
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2.1. The space of distributions. Let C∞
c denote the space of compactly-supported smooth

functions on RD. Recall that it admits the structure of a complete locally convex Hausdorff
topological vector space, cf. e.g. [42] Section 6.2. Let (C∞

c )∗ denote the topological dual of
C∞

c , i.e. the vector space of continuous linear maps C∞
c → R. We endow (C∞

c )∗ with the
weak-* topology, defined as the coarsest topology such that, for each f ∈ C∞

c , the induced
evaluation maps

(C∞
c )∗ → R, φ 7→ 〈φ, f〉

are continuous. In terms of sequences this implies that, ∀f ∈ C∞
c ,

φn → φ⇔ 〈φn, f〉 → 〈φ, f〉.

Then (C∞
c )∗ is a locally convex Hausdorff topological vector space, cf. [42] Section 6.16. As

such it has a natural differentiable structure.
The following fact may provide a useful context for the material of Section 2.2. We denote

by P the set of all Borel probability measures on RD. A function f on RD is said to be of
p-growth (for some p > 0) if there exist constants A,B ≥ 0 such that |f(x)| ≤ A + B|x|p.
Let Cb(R

D) denote the set of continuous functions with 0-growth, i.e. the space of bounded
continuous functions. As above we endow (Cb(R

D))∗ with its natural weak-* topology, de-
fined using test functions in Cb(R

D): this is also known as the narrow topology. Since P is
contained in both (Cb(R

D))∗ and (C∞
c )∗, it inherits two natural topologies. It is well known,

cf. [5] Remarks 5.1.1 and 5.1.6, that the corresponding two notions of convergence of se-
quences coincide, but that the stronger topology induced from (Cb(R

D))∗ is more interesting
in that it is metrizable.

2.2. The topology on M. Let C2(R
D) denote the set of continuous functions with 2-

growth, as in Section 2.1. We endow (C2(R
D))∗ with its natural weak-* topology, defined

using test functions in C2(R
D). As in Section 2.1, M is contained in both (C2(R

D))∗ and
(C∞

c )∗. We will endow M with the topology induced from (C2(R
D))∗. Notice that M

is a convex affine subset of (C2(R
D))∗. In particular it is contractible, so for k ≥ 1 all its

homology groups Hk and cohomology groups Hk, defined topologically, vanish. As in Section
2.1, it turns out that this topology is metrizable. A compatible metric can be defined as
follows.

Definition 2.1. Let µ, ν ∈ M. Consider

(2.1) W2(µ, ν) :=

(

inf
γ∈Γ(µ,ν)

∫

RD×RD

|x− y|2dγ(x, y)

)1/2

.

Here, Γ(µ, ν) denotes the set of Borel measures γ on RD × RD which have µ and ν as
marginals, i.e. satisfying π1

#(γ) = µ and π2
#(γ) = ν where π1 and π2 denote the standard

projections RD × RD → RD.
Equation 2.1 defines a distance on M. It is known that the infimum in the right hand side

of Equation 2.1 is always achieved. We will denote by Γo(µ, ν) the set of γ which minimize
this expression.

It can be shown that (M,W2) is a separable complete metric space, cf. e.g. [5] Proposition
7.1.5. It is an important result from Monge-Kantorovich theory that

(2.2) W 2
2 (µ, ν) = sup

u,v∈C(RD)

{

∫

RD

u dµ+

∫

RD

v dν : u(x) + v(y) ≤ |x− y|2 ∀x, y ∈ RD
}

.
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Recall that µ is absolutely continuous with respect to Lebesgue measure LD, written µ <<
LD, if it is of the form µ = ρLD for some function ρ ∈ L1(RD). In this case for any ν ∈ M
there exists a unique map T : RD → RD such that T#µ = ν and

(2.3) W 2
2 (µ, ν) =

∫

RD

|x− T (x)|2dµ(x),

cf. e.g. [5] or [19]. One refers to T as the optimal map that pushes µ forward to ν.

Example 2.2. Given x ∈ RD, let δx denote the corresponding Dirac measure on RD.
Consider the set of such measures: this is a closed subset of M isometric to RD. More
generally, let ai (i = 1, . . . , n) be a fixed collection of distinct positive numbers such that
∑

ai = 1. Then the set of measures of the form
∑

aiδxi
constitutes a closed subset of M,

homeomorphic to RnD.
If ai ≡ 1/n then the set of measures of the form µ =

∑

(1/n) δxi
can be identified with

RnD quotiented by the set of permutations of n letters. This space is not a manifold in the
usual sense; in the simplest case D = 1 and n = 2, it is homeomorphic to a closed half plane,
which is a manifold with boundary.

Example 2.3. The set of all absolutely continuous measures is dense in M. The set of all
discrete measures, as in Example 2.2, is also dense in M. Since these two sets are disjoint,
neither is open nor closed in M.

2.3. Tangent spaces and the divergence operator. Let Xc denote the space of compactly-
supported smooth vector fields on RD. Set ∇C∞

c := {∇f : f ∈ C∞
c } ⊂ Xc. For µ ∈ M let

L2(µ) denote the set of Borel maps X : RD → RD such that ||X||2µ :=
∫

RD |X|2dµ is finite.

Recall that L2(µ) is a Hilbert space with the inner product

(2.4) Ĝµ(X, Y ) :=

∫

RD

〈X, Y 〉 dµ.

Remark 2.4. If µ = ρLD for some ρ : Rd → (0,∞) such that
∫

ρdx = 1 then the natural
map Xc → L2(µ) is injective. But in general it is not: for example if µ is the Dirac mass
at x then two vector fields X, Y will be identified as soon as X(x) = Y (x). However, the
image of this map is always dense in L2(µ).

In [5] Section 8.4, a “tangent space” is defined for each µ ∈ M as follows.

Definition 2.5. Given µ ∈ M, let TµM denote the closure of ∇C∞
c in L2(µ). We call it

the tangent space of M at µ. The tangent bundle TM is defined as the disjoint union of all
TµM.

Definition 2.6. Given µ ∈ M we define the divergence operator

divµ : Xc → (C∞
c )∗, 〈divµ(X), f〉 := −

∫

RD

df(X) dµ.

Notice that the divergence operator is linear and that 〈divµ(X), f〉 ≤ ||∇f ||µ||X||µ. This
proves that the operator divµ extends to L2(µ) by continuity; we will continue to use the
same notation for the extended operator, so that Ker(divµ) is now a closed subspace of L2(µ).
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It follows from [5] Lemma 8.4.2 that, given any µ ∈ M, there is an orthogonal decompo-
sition

(2.5) L2(µ) = ∇C∞
c

µ
⊕ Ker(divµ).

We will denote by πµ : L2(µ) → ∇C∞
c

µ
the corresponding projection. Notice that each

tangent space has a natural Hilbert space structure Gµ, obtained by restriction of Ĝµ to

∇C∞
c

µ
.

Remark 2.7. Decomposition 2.5 shows that TµM can also be identified with the quotient
space L2(µ)/Ker(divµ): the map πµ provides a Hilbert space isomorphism between these two
spaces.

Example 2.8. Suppose that x1, · · · , xn are points in RD and µ =
∑n

i=1(1/n) δxi
. Fix

ξ ∈ L2(µ). Set 4r := minxi 6=xj
|xi − xj | and define

(2.6) ϕ(x) =

{

〈x, ξ(xi)〉 if x ∈ B2r(xi) i = 1, · · · , n
0 if x 6∈ ∪n

i=1B2r(xi).

Let η ∈ C∞
c be a symmetric function such that

∫

RD ηdx = 1, η ≥ 0 and η is supported
in the closure of Br(0). Then ϕ̄ := η ∗ ϕ ∈ C∞

c and ∇ϕ̄ coincides with ξ on ∪n
i=1Br(xi).

Consequently, L2(µ) = TµM and Ker(divµ) = {0}. In particular if the points xi are distinct
then L2(µ) can be identified with RnD. If on the other hand all the points coincide, i.e.
xi ≡ x, then µ = δx and L2(µ) ≃ RD.

Consider for example the simplest case D = 1, n = 2. As seen in Example 2.2 the
corresponding space of Dirac measures is homeomorphic to a closed half plane. We now
see that at any interior point, corresponding to x1 6= x2, the tangent space is R2. At any
boundary point, corresponding to x1 = x2, the tangent space is R. One should compare
this with the usual differential-geometric definition of tangent planes on a manifold with
boundary, cf. e.g. [21]: in that case the tangent plane at a boundary point would be R2.
We will come back to this in Section 3.2.

Remark 2.9. Decomposition 2.5 extends the standard orthogonal Hodge decomposition of a
smooth L2 vector field X on RD:

X = ∇u+X ′,

where u is defined as the unique smooth solution in W 1,2 of ∆u = div(X) and X ′ := X−∇u.
In particular, Decomposition 2.5 shows that ∇C∞

c

µ
∩ Ker(divµ) = {0}. The analogous

statement with respect to the measure LD is that the only harmonic function on RD in W 1,2

is the function u ≡ 0.

2.4. Analytic justification for the tangent spaces. Following [5] we now provide an
analytic justification for the above definition of tangent spaces for M. A more geometric
justification, using group actions, will be given in Section 3.2.

Suppose we are given a curve σ : (a, b) → M and a Borel vector field X : (a, b)×RD → RD

such that Xt ∈ L2(σt). Here, we have written σt in place of σ(t) and Xt in place of X(t). We
will write

(2.7)
∂ σ

∂t
+ divσ(X) = 0
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if the following condition holds: for all φ ∈ C∞
c ((a, b) × RD),

(2.8)

∫ b

a

∫

RD

(∂ φ

∂ t
+ dφ(Xt)

)

dσt dt = 0,

i.e. if Equation 2.7 holds in the sense of distributions. Given σt, notice that if Equation 2.7
holds for X then it holds for X + W , for any Borel map W : (a, b) × RD → RD such that
Wt ∈ Ker(divσt

).
The following definition and remark can be found in [5] Chapter 1.

Definition 2.10. Let (S, dist) be a complete metric space. A curve t ∈ (a, b) 7→ σt ∈ S

is 2-absolutely continuous if there exists β ∈ L2(a, b) such that dist(σt, σs) ≤
∫ t

s
β(τ)dτ for

all a < s < t < b. We then write σ ∈ AC2(a, b; S). For such curves the limit |σ′|(t) :=
lims→t dist(σt, σs)/|t− s| exists for L1-almost every t ∈ (a, b). We call this limit the metric
derivative of σ at t. It satisfies |σ′| ≤ β L1-almost everywhere.

Remark 2.11. (i) If σ ∈ AC2(a, b; S) then |σ′| ∈ L2(a, b) and dist(σs, σt) ≤
∫ t

s
|σ′|(τ)dτ for

a < s < t < b. We can apply Hölder’s inequality to conclude that dist2(σs, σt) ≤ c|t − s|

where c =
∫ b

a
|σ′|2(τ)dτ.

(ii) It follows from (i) that {σt| t ∈ [a, b]} is a compact set, so it is bounded. For instance,

given x ∈ S, the triangle inequality proves that dist(σs, x) ≤
√

c|s− a| + dist(σa, x).

We now recall [5] Theorem 8.3.1. It shows that the definition of tangent space given above
is flexible enough to include the velocities of any “good” curve in M.

Proposition 2.12. If σ ∈ AC2(a, b;M) then there exists a Borel map v : (a, b)×RD → RD

such that ∂ σ
∂t

+ divσ(v) = 0 and vt ∈ L2(σt) for L1-almost every t ∈ (a, b). We call v a
velocity for σ. If w is another velocity for σ then the projections πσt

(vt), πσt
(wt) coincide

for L1-almost every t ∈ (a, b). One can choose v such that vt ∈ ∇C∞
c

σt
and ||vt||σt

= |σ′|(t)
for L1-almost every t ∈ (a, b). In that case, for L1-almost every t ∈ (a, b), vt is uniquely
determined. We denote this velocity σ̇ and refer to it as the velocity of minimal norm, since
if wt is any other velocity associated to σ then ||σ̇t||σt

≤ ||wt||σt
for L1-almost every t ∈ (a, b).

The following remark can be found in [5] Lemma 1.1.4 in a more general context.

Remark 2.13 (Lipschitz reparametrization). Let σ ∈ AC2(a, b;M) and v be a velocity as-

sociated to σ. Fix α > 0 and define S(t) =
∫ t

a

(

α + ||vτ ||στ

)

dτ. Then S : [a, b] → [0, L] is
absolutely continuous and increasing, with L = S(b). The inverse of S is a function whose
Lipschitz constant is less than or equal to 1/α. Define

σ̄s := σS−1(s), v̄s := Ṡ−1(s)vS−1(s).

One can check that σ̄ ∈ AC2(0, L;M) and that v̄ is a velocity associated to σ̄. Fix t ∈ (a, b)

and set s := S(t). Then vt = Ṡ(t)v̄S(t) and ||v̄s||σs
=

||vt||σt

α+||vt||σt
< 1.

3. The calculus of curves, revisited

The goal of this section is to revisit the material of Section 2 from a more geometric
viewpoint. Many of the results presented here are purely formal, but they may provide some
insight into the structure of M. They also provide useful intuition into the more rigorous
results contained in the sections which follow. We refer to Appendix A for notation and
terminology.
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3.1. Embedding the geometry of RD into M. We have already seen in Example 2.2
that Dirac measures provide a continuous embedding of RD into M. Many aspects of the
standard geometry of RD can be recovered inside M, and various techniques which we will
be using for M can be seen as an extension of standard techniques used for RD.

One example of this is provided by Example 2.8, which shows that the standard notion of
tangent space on RD coincides with the notion of tangent spaces on M introduced by [5].

Another simple example concerns calculus on RD, as follows. Consider the space of volume
forms on RD, i.e. the smooth never-vanishing D-forms. Under appropriate normalization
and decay conditions, these define a subset of M. Given a vector field X ∈ Xc and a volume
form α, there is a standard geometric definition of divα(X) in terms of Lie derivatives:
namely, LXα is also a D-form so we can define divα(X) to be the unique smooth function
on RD such that

(3.1) divα(X)α = LXα.

In particular, it is clear from this definition and Lemma A.3 that X ∈ Ker(divα) iff the
corresponding flow preserves the volume form.

Cartan’s formula A.13 together with Green’s theorem for RD shows that divα is the neg-
ative formal adjoint of d with respect to α, i.e.

∫

RD

f divα(X)α = −

∫

RD

df(X)α, ∀f ∈ C∞
c .

In particular, divα(X)α satisfies Equation 2.6. In this sense Definition 2.6 extends the
standard geometric definition of divergence to the whole of M.

3.2. The intrinsic geometry of M. It is appealing to think that, in some weak sense, the
results of Section 2.4 can be viewed as a way of using the Wasserstein distance to describe
an “intrinsic” differentiable structure on M. This structure can be alternatively viewed as
follows.

Let φ : RD → RD be a Borel map and µ ∈ M. Recall that the push-forward measure
φ#µ ∈ M is defined by setting φ#µ(A) := µ(φ−1(A)), for any open subset A ⊆ RD. Let
Diffc(R

D) denote the Id-component of the Lie group of diffeomorphisms of RD with compact
support, cf. Section A.4. Choose any X ∈ Xc and let φt denote the flow of X. Given any
µ ∈ M, it is simple to verify that µt := φt#µ is a path in M with velocity X in the sense of
Proposition 2.12. Notice that in this case the velocity is defined for all t, rather than only
for almost every t. In particular the minimal velocity of µt at t = 0 is πµ(X) ∈ TµM. From
the point of view of Section A.2, this construction can be rephrased as follows. The map

(3.2) Diffc(R
D) ×M → M, (φ, µ) 7→ φ#µ

is continuous and defines a left action of Diffc(R
D) on M. The map

M → TM, µ→ πµ(X) ∈ TµM

then defines the fundamental vector field associated to X in the sense of Section A.2.
According to Section A.2, the orbit and stabilizer of any fixed µ ∈ M are:

Oµ := {ν ∈ M : ν = φ#µ, for some φ ∈ Diffc(R
D)},

Diffc,µ(R
D) := {φ ∈ Diffc(R

D) : φ#µ = µ}.
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Formally, Diffc,µ(R
D) is a Lie subgroup of Diffc(R

D) and Ker(divµ) is its Lie algebra. The
map

j : Diffc(R
D)/Diffc,µ(R

D) → Oµ, [φ] 7→ φ#µ

defines a 1:1 relationship between the quotient space and the orbit of µ. Lemma A.15 suggests
that Oµ is a smooth manifold inside the topological space M and that the isomorphism
∇j : Xc/Ker(divµ) → TµOµ coincides with the map determined by the construction of
fundamental vector fields. Notice that, up to L2

µ-closure, the space Xc/Ker(divµ) is exactly
the space introduced in Definition 2.5. This indicates that the tangent spaces of Section
2.3 should be thought of as “tangent” not to the whole of M, but only to the leaves of
the foliation induced by the action of Diffc(R

D). In other words M should be thought
of as a stratified manifold, i.e. as a topological space with a foliation and a differentiable
structure defined only on each leaf of the foliation. This point of view is purely formal but it
corresponds exactly to the situation already described for Dirac measures, cf. Example 2.8.

Recall from Proposition 2.12 the relationship between the class of 2-absolutely continuous
curves and these tangent spaces. This result can be viewed as the expression of a strong
compatibility between two natural but a priori distinct structures on M: the Wasserstein
topology and the group action.

Remark 3.1. The claim that the Lie algebra of Diffc,µ(R
D) is Ker(divµ) can be supported in

various ways. For example, assume φt is a curve of diffeomorphisms in Diffc,µ(R
D) and that

Xt satisfies Equation A.8. The following calculation is the weak analogue of Lemma A.3. It
shows that Xt ∈ Ker(divµ):

∫

df(Xt) dµ =

∫

df(Xt) d(φt#µ) =

∫

df|φt
(Xt|φt

) dµ =

∫

d/dt(f ◦ φt) dµ

= d/dt

∫

f ◦ φt dµ = d/dt

∫

f d(φt#µ) = d/dt

∫

f dµ

= 0.

It is also simple to check that Ker(divµ) is a Lie subalgebra of Xc, i.e. if X, Y ∈ Ker(divµ)
then [X, Y ] ∈ Ker(divµ). To show this, let f ∈ C∞

c . Then:

〈divµ([X, Y ]), f〉 = −

∫

RD

df([X, Y ]) dµ = −

∫

Rd

dg(X) dµ+

∫

Rd

dh(Y ) dµ

= 〈divµ(X), g〉 − 〈divµ(Y ), h〉

= 0,

where g := df(Y ) and h := df(X).
Finally, assume µ is a smooth volume form on a compact manifold M . In this situation

Hamilton [22] proved that Diffµ(M) is a Fréchet Lie subgroup of Diff(M) and that the Lie
algebra of Diffµ(M) is the space of vector fields X ∈ X (M) satisfying the condition LXµ = 0.
As seen in Section 3.1 this space coincides with Ker(divµ).

3.3. Embedding the geometry of M into (C∞
c )∗. We can also view M as a subspace

of (C∞
c )∗. It is then interesting to compare the corresponding geometries, as follows.

Consider the natural left action of Diffc(R
D) on RD given by φ · x := φ(x). As in Section

A.2, this induces a left action on the spaces of forms Λk and in particular on the space of
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functions C∞
c = Λ0, as follows:

Diffc(R
D) × C∞

c → C∞
c , φ · f := (φ−1)∗f = f ◦ φ−1.

By duality there is an induced left action on the space of distributions given by

Diffc(R
D) × (C∞

c )∗ → (C∞
c )∗, 〈(φ · µ), f〉 := 〈µ, (φ−1 · f)〉 = 〈µ, (f ◦ φ)〉.

Notice that we have introduced inverses to ensure that these are left actions, cf. Remark
A.9. It is clear that this extends the action already defined in Section 3.2 on the subset
M ⊂ (C∞

c )∗. In other words, the natural immersion i : M → (C∞
c )∗ is equivariant with

respect to the action of Diffc(R
D), i.e. i(φ#µ) = φ · i(µ).

As mentioned in Section 2.1, (C∞
c )∗ has a natural differentiable structure. In particular it

has well-defined tangent spaces Tµ(C∞
c )∗ = (C∞

c )∗. For each µ ∈ M, using the notation of
Section 3.2, composition gives an immersion

i ◦ j : Diffc(R
D)/Diffc,µ(R

D) → Oµ → (C∞
c )∗.

This induces an injection between the corresponding tangent spaces

∇(i ◦ j) : Xc/Ker(divµ) → Tµ(C∞
c )∗.

Notice that, using the equivariance of i,

〈∇(i ◦ j)(X), f〉 = 〈∇i(d/dt(φt#µ)|t=0), f〉 = 〈d/dt(i(φt#µ))|t=0, f〉 = 〈d/dt(φt · µ)|t=0, f〉

= d/dt 〈µ, f ◦ φt〉|t=0 = 〈µ, d/dt(f ◦ φt)|t=0〉 = 〈µ, df(X)〉

= −〈divµ(X), f〉.

In other words, the negative divergence operator can be interpreted as the natural identifi-
cation between TµM and the appropriate subspace of (C∞

c )∗.
More generally, we can compare the calculus of curves in M with the calculus of the

corresponding curves in (C∞
c )∗. Given any sufficiently regular curve of distributions t →

µt ∈ (C∞
c )∗, we can define tangent vectors τt := limh→0

µt+h−µt

h
∈ Tµt

(C∞
c )∗. Assume that µt

is strongly continuous, in the sense that the evaluation map

(a, b) × C∞
c → R, (t, f) 7→ 〈µt, f〉

is continuous. Notice that µ = µt defines a distribution on the product space (a, b) × RD:
∀f = ft(x) ∈ C∞

c ((a, b) × RD),

〈µ, f〉 :=

∫ b

a

〈µt, ft〉 dt.

One can check that d
dt
〈µt, ft〉 = 〈τt, ft〉 + 〈µt,

∂ft

∂t
〉, so

(3.3)

∫ b

a

〈µt,
∂ft

∂t
〉 + 〈τt, ft〉 dt = 0.

Equation 3.3 shows that if µt ∈ M and τt = −divµt
(Xt) then µt satisfies Equation 2.8. In

other words, the defining equation for the calculus on M, Equation 2.7, is the natural weak
analogue of the statement limh→0

µt+h−µt

h
= −divµt

(Xt).
Roughly speaking, the content of Proposition 2.12 is that if µt ∈ M is 2-absolutely

continuous then, for almost every t, τt exists and can be written as −divµt
(Xt) for some

t-dependent vector field Xt on RD.
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Remark 3.2. One should think of Equation 2.7, i.e. d/dt(µt) = −divµt
(Xt), as an ODE on

the submanifold M ⊂ (C∞
c )∗ rather than on the abstract manifold M, in the sense that the

right hand side is an element of Tµt
(C∞

c )∗ rather than an element of Tµt
M. Using ∇(i◦ j)−1

we can rewrite this equation as an ODE on the abstract manifold M, i.e. d/dt(µt) = πµt
(X).

3.4. Further comments. There exists an extensive literature concerning how to make
infinite-dimensional geometry rigorous. The first step is to provide rigorous definitions of
infinite-dimensional manifolds and of infinite-dimensional Lie groups. The works [18], [27],
[37] and [38] are examples of standard references in this field. In all these cases the starting
point is a notion of manifold built by gluing together charts which are open subsets of locally
convex vector spaces (plus some completeness condition). These references are often useful
when one wants to make a “formal” study of PDE rigorous; in particular, when the space of
solutions is, in some sense, an infinite-dimensional Lie group (as in [7]).

In this paper, however, we do not rely on the above frameworks. The main reason is, quite
simply, the fact that the “differentiable structure” on M introduced by [5] is not based on
the above notion of manifold: as discussed in Section 3.2, it uses a much weaker notion and
none of the results presented in this paper require anything more than this. It should also be
emphasized that the relationship, discussed in Chapters 2 and 3, between the Wasserstein
metric on M, group actions and the theory of [5] shows that the latter is extremely natural
within this context.

Another reason is that we want to keep regularity assumptions to a minimum. In par-
ticular, we want to avoid making unnecessary restrictions on the smoothness of measures
(required by [18]) and of velocity fields.

It may also be worthwhile to mention that it is not clear if the above references lead to
a general theory of “infinite-dimensional homogeneous spaces”, which is in some sense the
geometry underlying this paper. Specifically, Section 3.2 introduces the idea that M is a
“stratified manifold” and that each stratum is the orbit of a certain group action. These
orbits are of the form G/H , where G is the infinite-dimensional Lie group of diffeomorphisms
(as in the above references) and H is the subgroup of diffeomorphisms which preserve a given
measure. Thus our space of solutions M can be viewed as a collection of homogeneous spaces
G/H of varying dimension: some finite-dimensional, others infinite-dimensional. However,
except in the case of smooth measures discussed in [18], theseH are not known to be “infinite-
dimensional Lie groups” and, to our knowledge, the corresponding homogeneous spaces are
not known to be “infinite-dimensional manifolds” in the sense of the above references.

4. Tangent and cotangent bundles

We now define some further elements of calculus on M. As opposed to Section 3, the
definitions and statements made here are completely rigorous. We will often refer back to
the ideas of Section 3 and to the appendix, however, to explain the geometric intuition
underlying this theory.

4.1. Push-forward operations on M and TM. The following results concern the push-
forward operation on M.

Lemma 4.1. If φ : RD → RD is a Lipschitz map with Lipschitz constant Lip φ then φ# :
M → M is also a Lipschitz map with the same Lipschitz constant.
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Proof: Let µ, ν ∈ M. Note that if u(x) + v(y) ≤ |x− y|2 for all x, y ∈ RD then

u ◦ φ(a) + v ◦ φ(b) ≤ |φ(a) − φ(b)|2 ≤ (Lip φ)2|a− b|2.

This, together with Equation 2.2, yields

(4.1)

∫

RD

u dφ#µ+

∫

RD

v dφ#ν =

∫

RD

u ◦ φ dµ+

∫

RD

v ◦ φ dν ≤ (Lip φ)2W 2
2 (µ, ν).

We maximize the expression on the left hand side of Equation 4.1 over the set of pairs (u, v)
such that u(x)+v(y) ≤ |x−y|2 for all x, y ∈ RD. Then we use again Equation 2.2 to conclude
the proof. QED.

Lemma 4.2. For any µ ∈ M and φ ∈ Diffc(R
D), the map φ∗ : Xc → Xc has a unique

continuous extension φ∗ : L2(µ) → L2(φ#µ). Furthermore φ∗

(

Ker(divµ)
)

⊆ Ker(divϕ#µ).
Thus φ∗ induces a continuous map φ∗ : TµM → Tφ#µM.

Proof: Let µ ∈ M, φ ∈ Diffc(R
D), f ∈ C∞

c (RD) and let X ∈ Ker(divµ). If Cφ is the
L∞-norm of ∇φ we have ||φ∗X||φ#µ ≤ Cφ||X||µ. Hence φ∗ admits a unique continuous linear
extension. Furthermore
∫

RD

df(ϕ∗X) dϕ#µ =

∫

RD

df|ϕ(ϕ∗X|ϕ) dµ =

∫

RD

df|ϕ(∇ϕ ·X) dµ =

∫

RD

d(f ◦ ϕ)(X) dµ = 0.

QED.

Lemma 4.3. Let σ ∈ AC2(a, b;M) and let v be a velocity for σ. Let ϕ ∈ Diffc(R
D). Then

t→ ϕ#(σt) ∈ AC2(a, b;M) and ϕ∗v is a velocity for ϕ#σ.

Proof: If a < s < t < b then, by Lemma 4.1, W2(ϕ#σt, ϕ#σs) ≤ (Lip ϕ)W2(σt, σs). Since
σ ∈ AC2(a, b;M) one concludes that ϕ#(σ) ∈ AC2(a, b;M). If f ∈ C∞

c ((a, b)×RD) we have
∫ b

a

∫

RD

(∂ft

∂t
+ dft(φ∗vt)

)

d(ϕ#σt)dt =

∫ b

a

∫

RD

(∂ft

∂t
◦ ϕ+ (dft(φ∗vt)) ◦ ϕ

)

dσtdt

=

∫ b

a

∫

RD

(∂(ft ◦ ϕ)

∂t
+ d(ft ◦ ϕ)(vt)

)

dσtdt

= 0.

To obtain the last equality we have used that (t, x) → f(t, ϕ(x)) is in C∞
c ((a, b) × RD).

QED.

4.2. Differential forms on M. Recall from Definition 2.5 that the tangent bundle TM of
M is defined as the union of all spaces TµM, for µ ∈ M. We now define the pseudo tangent
bundle T M to be the union of all spaces L2(µ). Analogously, the union of the dual spaces
T ∗

µM defines the cotangent bundle T ∗M; we define the pseudo cotangent bundle T ∗M to

be the union of the dual spaces L2(µ)∗.
It is clear from the definitions that we can think of TM as a subbundle of T M. Decom-

position 2.5 allows us also to define an injection T ∗M → T ∗M by extending any covector
TµM → R to be zero on the complement of TµM in L2(µ). In this sense we can also think
of T ∗M as a subbundle of T ∗M. The projections πµ from Section 2.3 combine to define a
surjection π : T M → TM. Likewise, restriction yields a surjection T ∗M → T ∗M.
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Remark 4.4. The above constructions make heavy use of the Hilbert structure on L2(µ).
Following the point of view of Remark 2.7 and Section 3.2, i.e. emphasizing the differ-
ential, rather than the Riemannian, structure of M one could decide to define TµM as
L2(µ)/Ker(divµ). Then the projections πµ : L2(µ) → TµM would still define by duality
an injection T ∗M → T ∗M: this would identify T ∗M with the annihilator of Ker(divµ) in
L2(µ). However there would be no natural injection TM → TM nor any natural surjection
T ∗M → T ∗M.

Definition 4.5. A 1-form on M is a section of the cotangent bundle T ∗M, i.e. a collection
of maps µ 7→ Λµ ∈ T ∗

µM. A pseudo 1-form is a section of the pseudo cotangent bundle
T ∗M. Analogously, a 2-form on M is a collection of alternating multilinear maps

µ 7→ Λµ : TµM× TµM → R.

A pseudo 2-form is a collection of alternating multilinear maps

µ 7→ Λ̄µ : L2(µ) × L2(µ) → R.

It is natural (but in practice sometimes too strong) to further assume that each Λµ (or Λ̄µ)
satisfies a continuity assumption such as the following: there exists cµ ∈ R such that

|Λµ(X1, X2)| ≤ cµ‖X1‖µ · ‖X2‖µ.

For k = 1, 2 we let ΛkM (respectively, Λ̄kM) denote the space of k-forms (respectively,
pseudo k-forms). We define a 0-form to be a function F : M → R.

Notice that, for k = 1, continuity implies that any 1-form is uniquely defined by its values
on any dense subset of TµM, e.g. on the dense subset defined by smooth gradient vector
fields. The analogue holds also for pseudo forms and for k = 2, as long as the continuity
condition holds. As above, extension defines a natural injection

(4.2) ΛkM → Λ̄kM, Λ 7→ Λ̄,

i.e. to every k-form one can associate a canonical pseudo k-form. Conversely, restriction
defines a surjection Λ̄kM → ΛkM.

Since TµM is a Hilbert space, by the Riesz representation theorem every 1-form Λµ on
TµM can be written Λµ(Y ) =

∫

RD〈Aµ, Y 〉dµ for a unique Aµ ∈ TµM and all Y ∈ TµM.
The analogous fact is true also for pseudo 1-forms.

Example 4.6. Any f ∈ C∞
c defines a function on M, i.e. a 0-form, as follows:

F (µ) :=

∫

RD

fdµ.

We will refer to these as the linear functions on M, in that the natural extension to the
space (C∞

c )∗ defines a function which is linear with respect to µ.
Any Ā ∈ Xc defines a pseudo 1-form on M as follows:

(4.3) Λ̄µ(X) :=

∫

RD

〈Ā,X〉dµ.

We will refer to these as the linear pseudo 1-forms. Notice that if Ā = ∇f for some f ∈ C∞
c

then Λ̄ is actually a 1-form.
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Any bounded field B = B(x) on RD of D×D matrices defines a linear pseudo 2-form via

(4.4) B̂µ(X, Y ) :=

∫

RD

〈BX, Y 〉dµ.

Remark 4.7. When k = 1 Hölder’s inequality for the product of two functions shows that any
vector field Āµ ∈ Lp(µ), for p ∈ [2,∞], defines a continuous map L2(µ) → R as in Equation
4.3. When k = 2 Hölder’s inequality for the product of three functions shows that any field
of matrices Bµ ∈ L∞(µ) defines a continuous map L2(µ) × L2(µ) → R as in Equation 4.4.
However, for k ≥ 3 there do not exist analogous constructions of (non-trivial) continuous
k-linear maps L2(µ) × · · · × L2(µ) → R. It is for this reason that we restrict our attention
to the case k ≤ 2. In any case, this is sufficient for the applications of interest to us.

As in Section A.2, the action of Diffc(R
D) on M can be lifted to forms and pseudo forms

as follows.

Definition 4.8. For k = 1, 2, let Λ̄ be a pseudo k-form on M. Then any φ ∈ Diffc(R
D)

defines a pull-back k-multilinear map φ∗Λ̄ on M as follows:

(φ∗Λ̄)µ(X1, . . . , Xk) := Λ̄φ#µ(φ∗X1, . . . , φ∗Xk).

It follows from Lemma 4.2 that the push-forward operation preserves Decomposition 2.5.
This implies that the pull-back preserves the space of k-forms, i.e. the pull-back of a k-form
is a k-form.

Definition 4.9. Let F : M → R be a function on M. We say that ξ ∈ L2(µ) belongs to
the subdifferential ∂−F (µ) if

F (ν) ≥ F (µ) + sup
γ∈Γo(µ,ν)

∫∫

RD×RD

〈ξ(x), y − x〉 dγ(x, y) + o(W2(µ, ν)),

as ν → µ. If −ξ ∈ ∂−(−F )(µ) we say that ξ belongs to the superdifferential ∂+F (µ).
If ξ ∈ ∂−F (µ) ∩ ∂+F (µ) then, for any γ ∈ Γo(µ, ν),

(4.5) F (ν) = F (µ) +

∫∫

RD×RD

〈ξ(x), y − x〉 dγ(x, y) + o(W2(µ, ν)).

If such ξ exists we say that F is differentiable at µ and we define the gradient vector ∇µF :=
πµ(ξ). Using barycentric projections (cf. [5] Definition 5.4.2) one can show that, for γ ∈
Γo(µ, ν),

∫∫

RD×RD

〈ξ(x), y − x〉 dγ(x, y) =

∫∫

RD×RD

〈πµ(ξ)(x), y − x〉 dγ(x, y).

Thus πµ(ξ) ∈ ∂−F (µ)∩ ∂+F (µ)∩ TµM and it satisfies the analogue of Equation 4.5. It can
be shown that the gradient vector is unique, i.e. that ∂−F (µ) ∩ ∂+F (µ) ∩ TµM = {πµ(ξ)}.

Finally, if the gradient vector exists for every µ ∈ M we can define the differential or
exterior derivative of F to be the 1-form dF determined, for any µ ∈ M and Y ∈ TµM,
by dF (µ)(Y ) :=

∫

RD〈∇µF, Y 〉 dµ. To simplify the notation we will sometimes write Y (F )
rather then dF (Y ).

Remark 4.10. Assume F : M → R is differentiable. Given X ∈ ∇C∞
c (RD), let φt denote

the flow of X. Fix µ ∈ M.
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(i) Set νt := (Id + tX)#µ. Then

F (νt) = F (µ) + t

∫

RD

〈∇µF,X〉dµ+ o(t).

(ii) Set µt := φt#µ. If ||∇µF (µ)||µ is bounded on compact subsets of M then

F (µt) = F (µ) + t

∫

RD

〈∇µF,X〉dµ+ o(t).

Proof: The proof of (i) is a direct consequence of Equation 4.5 and of the fact that, if r > 0
is small enough,

(

Id × (Id + tX)
)

#
µ ∈ Γo(µ, νt) for t ∈ [−r, r].

To prove (ii), set
A(s, t) := (1 − s)(Id + tX) + sφt.

Notice that ||φt−Id −tX||µ ≤ t2||(∇X)X||∞ and that (s, t) → m(s, t) := A(s, t)#µ defines a
continuous map of the compact set [0, 1]×[−r, r] into M. Hence the range of m is compact so
||∇µF (µ)||µ is bounded there by a constant C. One can use elementary arguments to conclude
that F is C-Lipschitz on the range of m, cf. [25] for details. Let γt :=

(

(Id + tX) × φt

)

#
µ.

We have γt ∈ Γ(νt, µt) so W2(µt, νt) ≤ ||φt − Id − tX||µ = O(t2). We conclude that

|F (νt) − F (µt)| ≤ CW2(µt, νt) = O(t2).

This, together with (i), yields (ii). QED.

Example 4.11. Fix f ∈ C∞
c and let F : M → R be the corresponding linear function, as in

Example 4.6. Then F is differentiable with gradient ∇µF ≡ ∇f . Thus dF is a linear 1-form
on M. Viceversa, according to our definitions every linear 1-form Λ is exact. In other words,
if Λµ(X) =

∫

RD〈A,X〉dµ for some A = ∇f then Λ = dF for F (µ) :=
∫

RD f dµ.

Definition 4.12. Let Λ̄ be a pseudo 1-form on M. We say that Λ̄ is differentiable if the
following two conditions hold:

(i) For all X ∈ Xc, the function Λ̄(X) : M → R is differentiable. We can then define the
exterior derivative of Λ̄ on pairs X, Y ∈ Xc by setting

(4.6) dΛ̄(X, Y ) := XΛ̄(Y ) − Y Λ̄(X) − Λ̄([X, Y ]).

(ii) For all µ ∈ M, dΛ̄µ is continuous when restricted to ∇C∞
c , i.e. there exists cµ ∈ R such

that
|dΛ̄µ(∇f,∇g)| ≤ cµ‖∇f‖µ · ‖∇g‖µ, for all ∇f,∇g ∈ ∇C∞

c .

Notice that condition (ii) implies that dΛ̄µ has a unique extension to TµM× TµM.
Let Λ be a 1-form on M. Let Λ̄ denote the associated pseudo 1-form, as in Equation

4.2. We say that Λ is differentiable if Λ̄ is differentiable. We can then define its exterior
derivative by setting dΛ := dΛ̄.

Remark 4.13. The assumption that dΛ̄ satisfies the continuity assumption (ii) on ∇C∞
c

implies that some form of cancelling occurs to eliminate first-order terms as in Equation
A.11, cf. Remark A.7. Notice that dΛ̄, restricted to TµM × TµM, is a well-defined 2-
form. On the other hand, Example 4.15 shows that it is not natural to impose a continuity
assumption on Xc so dΛ̄ does not in general extend to a uniquely defined pseudo 2-form.

If Λ is differentiable in the above sense, it is natural to ask if dΛ̄µ(X, ·) = 0 for any
X ∈ Ker(divµ). It is not clear that this is the case.
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Remark 4.14. One could also define a notion of differentiability for 1-forms by testing Λ
only against gradient vector fields ∇f ∈ ∇C∞

c . This is clearly a weaker condition, which
would yield a very poor understanding of the differentiability of the associated pseudo 1-
form Λ̄. Indeed, assume Λ is differentiable in the weaker sense and choose X ∈ Xc. Then
Λ̄(X) = Λ(πµ(X)) and πµ(X) depends on µ. In particular, the differentiability of Λ̄ is now
related to the smoothness of the projection operators µ 7→ πµ. We will avoid this notion,
using instead the stronger definition given in Definition 4.12.

Example 4.15. Assume Λ̄ is a linear pseudo 1-form, i.e. Λ̄(·) =
∫

RD〈Ā, ·〉dµ for some
Ā ∈ Xc. Then Λ̄ is differentiable and, ∀X, Y ∈ Xc,

dΛ̄(X, Y ) =

∫

RD

< πµ(∇Ā
T · Y + ∇Y T · Ā), X > − < πµ(∇ĀT ·X + ∇XT · Ā), Y > dµ

−

∫

RD

< ∇Y ·X −∇X · Y, Ā > dµ.

If X, Y ∈ TµM then dΛ̄(X, Y ) =
∫

RD < (∇Ā−∇ĀT )X, Y > dµ.

Proof: Define FX : M → R by

FX(µ) := Λ̄(X) =

∫

RD

< Ā,X > dµ.

Let µ, ν ∈ M and γ ∈ Γo(µ, ν). Then

FX(ν) − FX(µ) =

∫

RD

< Ā,X > dν −

∫

RD

< Ā,X > dµ

=

∫∫

RD×RD

< Ā(y), X(y) > − < Ā(x), X(x) > dγ(x, y).

Set φ :=< Ā,X > . Then φ ∈ C∞
c (RD) so

FX(ν) − FX(µ) =

∫∫

RD×RD

φ(y) − φ(x)dγ(x, y)(4.7)

=

∫∫

RD×RD

(< ∇φ(x), y − x > +O(|x− y|2)dγ(x, y)

=

∫∫

RD×RD

< ∇φ(x), y − x > dγ(x, y) + o(W2(µ, ν)).

Equation 4.7 shows that FX : M → R is differentiable and that ∇µFX = πµ(∇φ). Thus

Y Λ̄(X) := dFX(Y ) =

∫

RD

< ∇µFX , Y > dµ(4.8)

=

∫

RD

< πµ(∇ĀT ·X + ∇XT · Ā), Y > dµ.
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Analogously,

XΛ̄(Y ) := dFY (X) =

∫

RD

< ∇µFY , X > dµ(4.9)

=

∫

RD

< πµ(∇ĀT · Y + ∇Y T · Ā), X > dµ.

We combine Equations 4.8 and 4.9 to get

dΛ̄(X, Y ) : = XΛ̄(Y ) − Y Λ̄(X) − Λ̄([X, Y ])

=

∫

RD

< πµ(∇ĀT · Y + ∇Y T · Ā), X > dµ(4.10)

−

∫

RD

< πµ(∇ĀT ·X + ∇XT · Ā), Y > dµ

−

∫

RD

< ∇Y ·X −∇X · Y, Ā > dµ.

If X, Y ∈ TµM then Equation 4.10 simplifies to

dΛ̄(X, Y ) =

∫

RD

< (∇ĀT · Y + ∇Y T · Ā), X > − < (∇ĀT ·X + ∇XT · Ā), Y > dµ

−

∫

RD

< ∇Y ·X −∇X · Y, Ā > dµ

=

∫

RD

< (∇Ā−∇ĀT )X, Y > dµ.

QED.

In Lemma 5.12 we will generalize this result to the class of regular pseudo 1-forms.

4.3. Discussion. As explained in Section 3.2, we can think of M as the union of smooth
manifolds O. Each tangent space TµM should then be thought of as the tangent space of
O at the point µ. Our notion of k-form Λ is defined in terms of the dual tangent spaces, so
each Λ|O is, at least formally, a k-form on a smooth manifold in the usual sense. The logic
behind our definition of the operator d on 1-forms is as follows. As seen in Section 3.2, any
X ∈ Xc defines a fundamental vector field on O (or on M). In particular we can think of
the construction of fundamental vector fields as a canonical way of extending given tangent
vectors X, Y at any point µ ∈ O to global tangent vector fields on O. Combining Remark
A.13 with Lemma A.19 shows that the construction of fundamental vector fields determines
a Lie algebra homomorphism Xc → X (O). Equation 4.6 thus mimics Equation A.11 for
k = 1. In Section 5.4 we will study the corresponding first cohomology group. We can think
of this as the de Rham cohomology of the manifold O.

The notion of pseudo k-form is less standard, but also very natural. The finite-dimensional
analogue of this notion is explained in Section A.3. Roughly speaking, i.e. up to L2

µ-
closure, if we restrict our space of pseudo k-forms to any manifold O we obtain the space of
maps O → Λk(g), where g = Xc. Our definition of the operator d, given in Equation 4.6,
should now be compared to Equation A.19. Notice that the sign discrepancy between these
equations is explained by the fact that the Lie bracket on g is the opposite of the usual Lie
bracket on Xc, cf. Lemma A.19. In this setting the key point is that each manifold O is
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actually the orbit of a group action. More specifically, we can identify it with a quotient of
the group Diffc(R

D). Proposition A.17 then shows that pseudo k-forms are actually k-forms
on the group, rather than on the manifold, endowed with a special “invariance” property.
In some sense the corresponding cohomology is more closely related to the orbit structure
of the manifold O than to its topological structure. However Proposition A.17 shows that,
at least in finite dimensions, there is a simple relation between this invariant cohomology
and the usual de Rham cohomology of the manifold: for k = 1, the latter is a subgroup of
the former. Proposition A.17 also shows that the operation of Equation 4.2 is very natural
from this point of view: up to the appropriate identifications, it coincides with the standard
pull-back operation from k-forms on the quotient of the group to k-forms on the group.

It may be useful to emphasize that the identification between the orbit O and the quotient
space is not canonical. The details involved in changing this identification are explained in
Section A.2.

5. Calculus of pseudo differential 1-forms

Given a 1-form α on a finite-dimensional manifold, Green’s formula relates the integral of
dα along a surface to the integral of α along the boundary curves. In Section 5.1 we show
that an analogous result for M is rather simple if both the form and the surface satisfy
certain regularity conditions. The conditions we need to impose on the form are rather mild:
we investigate these in Sections 5.2 and 5.3, developing a general theory of regular pseudo
1-forms. The conditions on the surface, instead, are very strong. In Section 5.4 we thus
prove a second version of Green’s formula, valid only for certain surfaces we call annuli. For
these surfaces we need no extra regularity conditions, and Green’s formula then leads to a
proof that every closed regular 1-form is exact.

5.1. Green’s formula for smooth surfaces and 1-forms. Let Λ be a differentiable 1-
form on M in the sense of Definition 4.12. Let Λ̄ denote the associated pseudo 1-form in
the sense of Equation 4.2. Set ||Λµ|| := supv{Λµ(v) : v ∈ TµM, ||v||µ ≤ 1}. We assume that,
for all compact subsets K ⊂ M,

(5.1) sup
µ∈K

||Λµ|| <∞.

We also assume that for all compact subsets K ⊂ M there exists a constant CK such that,
for all µ, ν ∈ K and u ∈ Cb(R

D,RD) such that ∇u is bounded,

(5.2) |Λ̄ν(u) − Λ̄µ(u)| ≤ CKW2(µ, ν)(||u||∞ + ||∇u||∞).

Set ||dΛµ|| to be the smallest nonnegative number cµ such that

|dΛµ(∇f,∇g)| ≤ cµ||∇f ||µ · ||∇g||µ, for all ∇f,∇g ∈ ∇C∞
c .

Now let S : [0, 1] × [0, T ] → M denote a map satisfying the following three regularity
conditions:

(i) For each s ∈ [0, 1], S(s, ·) ∈ AC2(0, T ;M) and, for each t ∈ [0, T ], S(·, t) ∈ AC2(0, 1;M).
(ii) Let v(s, ·, ·) denote the velocity of minimal norm for S(s, ·) and w(·, t, ·) denote the

velocity of minimal norm for S(·, t). We assume that v, w ∈ C2([0, 1] × [0, T ] × RD,RD)
and that their derivatives up to third order are bounded. We further assume that v and w
are gradient vector fields so that ∂sv and ∂tw are also gradients: this implies that Λ and Λ̄
coincide when evaluated on these fields.
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(iii) S takes values in the set of absolutely continuous measures. More specifically, S(s, t) =
ρ(s, t, ·)LD for some ρ ∈ C1([0, 1]× [0, T ]×RD) which is bounded with bounded derivatives.

Using Remark 2.11, Proposition 2.12 and the bound on v, w and on their derivatives, we
find that S is 1/2-Hölder continuous. Hence its range is compact so ||ΛS(s,t)|| is bounded.

We then use Equations 5.1, 5.2 and Taylor expansions for ws
t+h and vs+h

t to obtain that

(5.3) ∂t

(

ΛS(s,t)(w
s
t )

)

|s̄,t̄
= vs̄

t̄ (ΛS(s,t)(w
s̄
t̄ )) + ΛS(s̄,t̄)(∂tw

s
t ),

where we use the notation of Definition 4.9. Analogously,

(5.4) ∂s

(

ΛS(s,t)(v
s
t )

)

|s̄,t̄
= ws̄

t̄ (ΛS(s,t)(v
s̄
t̄ )) + ΛS(s̄,t̄)(∂sv

s
t ).

Lemma 5.1. For (s, t) ∈ (0, 1) × (0, T ) we have (∂tw
s
t − ∂sv

s
t

)

− [ws
t , v

s
t ] ∈ Ker(divS(s,t)).

Proof: We have, in the sense of distributions,

(5.5) ∂tρ
s
t + ∇ · (ρs

tv
s
t ) = 0, ∂sρ

s
t + ∇ · (ρs

tw
s
t ) = 0

and so
∇ · ∂s(ρ

s
tv

s
t ) = −∂s∂tρ

s
t = ∇ · (∂tρ

s
tw

s
t ).

We use that ρ, v and w are smooth to conclude that

∇ ·
(

vs
t∂sρ

s
t + ρs

t∂sv
s
t

)

= ∇ ·
(

ws
t∂tρ

s
t + ρs

t∂tw
s
t

)

.

This implies that if ϕ ∈ C∞
c (RD) then

(5.6)

∫

RD

〈∇ϕ, vs
t∂sρ

s
t + ρs

t∂sv
s
t 〉 =

∫

RD

〈∇ϕ,ws
t∂tρ

s
t + ρs

t∂tw
s
t 〉.

We use again that ρ, v and w are smooth to obtain that Equation 5.5 holds pointwise. Hence,
Equation 5.6 implies

∫

RD

〈∇ϕ,−vs
t∇ · (ρs

tw
s
t ) + ρs

t∂sv
s
t 〉 =

∫

RD

〈∇ϕ,−ws
t∇ · (ρs

tv
s
t ) + ρs

t∂tw
s
t 〉.

Rearranging, this leads to
∫

RD

〈∇ϕ, ∂sv
s
t − ∂tw

s
t 〉ρ

s
tdL

D =

∫

RD

〈

∇ϕ, vs
t

〉

∇ · (ρs
tw

s
t ) −

〈

∇ϕ,ws
t

〉

∇ · (ρs
tv

s
t ).

Integrating by parts and substituting ρs
tL

D with S(s, t) we obtain
∫

RD

〈∇ϕ, ∂sv
s
t − ∂tw

s
t 〉dS(s, t)

=

∫

RD

(

〈

∇2ϕws
t + (∇ws

t )
T∇ϕ, vs

t

〉

−
〈

∇2ϕvs
t + (∇vs

t )
T∇ϕ,ws

t

〉

)

dS(s, t)

=

∫

RD

〈

∇ϕ, [vs
t , w

s
t ]
〉

dS(s, t).

Since ϕ ∈ C∞
c (RD) is arbitrary, the proof is finished. QED.
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Proposition 5.2. For each t ∈ (0, T ) and s ∈ (0, 1) we have

∂t

(

ΛS(s,t)(w
s
t )

)

− ∂s

(

ΛS(s,t)(v
s
t )

)

= dΛS(s,t)(v
s
t , w

s
t ).

Proof: We use Definition 4.12 and Equations 5.3, 5.4 to find

dΛS(s̄,t̄)(v
s̄
t̄ , w

s̄
t̄ ) = dΛ̄S(s̄,t̄)(v

s̄
t̄ , w

s̄
t̄ )

= vs̄
t̄ (Λ̄S(s,t)(w

s̄
t̄ )) − ws̄

t̄ (Λ̄S(s,t)(v
s̄
t̄ )) − Λ̄S(s̄,t̄)([v

s̄
t̄ , w

s̄
t̄ ])

= vs̄
t̄ (ΛS(s,t)(w

s̄
t̄ )) − ws̄

t̄ (ΛS(s,t)(v
s̄
t̄ )) − Λ̄S(s̄,t̄)([v

s
t , w

s
t ])

= ∂t

(

ΛS(s,t)(w
s
t )

)

|s̄,t̄
− ΛS(s̄,t̄)(∂tw

s
t ) − ∂s

(

ΛS(s,t)(v
s
t )

)

|s̄,t̄

+ ΛS(s̄,t̄)(∂sv
s
t ) − Λ̄S(s̄,t̄)([v

s
t , w

s
t ])

= ∂t

(

ΛS(s,t)(w
s
t )

)

|s̄,t̄
− ∂s

(

ΛS(s,t)(v
s
t )

)

|s̄,t̄

+ Λ̄S(s̄,t̄)(∂sv
s
t − ∂tw

s
t − [vs

t , w
s
t ]).

We can now use Lemma 5.1 to conclude. QED.

Theorem 5.3 (Green’s formula for smooth surfaces). Let S be a surface in M satisfying
the above three conditions. Let ∂S denote its boundary, defined as the union of the negatively
oriented curves S(0, ·), S(·, T ) and the positively oriented curves S(1, ·), S(·, 0). Suppose that
µ→ ||dΛµ|| is also bounded on compact subsets of M. Then

∫

S

dΛ =

∫

∂S

Λ.

Proof: Recall that vs
t , w

s
t and their derivatives are bounded. This, together with Equa-

tions 5.1 and 5.2, implies that the functions (s, t) → ΛS(s,t)(v
s
t ) and (s, t) → ΛS(s,t)(w

s
t ) are

continuous. Hence, by Proposition 5.2, (s, t) → dΛS(s,t)(v
s
t , w

s
t ) is Borel measurable as it

is a limit of quotients of continuous functions. The fact that µ → ||dΛµ|| is bounded on
compact subsets of M gives that (s, t) → dΛS(s,t)(v

s
t , w

s
t ) is bounded. The rest of the proof

of this theorem is identical to that of Theorem 5.32 when we use Proposition 5.2 in place of
Corollary 5.30. QED.

The regularity conditions we have imposed on S to obtain Theorem 5.3 are very strong.
In particular, given an AC2 curve σ of absolutely continuous measures in M, it is not clear
if there exists any surface S satisfying these assumptions and whose boundary is σ. It is
thus difficult to use Theorem 5.3 to reach any conclusion about the de Rham cohomology of
M. Such conclusions will however be obtained in Section 5.4, based on a different version
of Green’s theorem.

5.2. Regularity and differentiability of pseudo 1-forms. The goal of this section is to
introduce a regularity condition for pseudo 1-forms which guarantees differentiability. It will
also ensure the validity of assumptions such as Equations 5.1 and 5.2.

Definition 5.4. Let Λ̄µ :=
∫

RD〈Āµ, ·〉dµ be a pseudo 1-form on M. We say that Λ̄ is regular

if for each µ ∈ M there exists a Borel field of D×D matrices Bµ ∈ L∞(RD × RD, µ) and a
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function Oµ ∈ C(R) with Oµ(0) = 0 such that

(5.7) sup
γ∈Γo(µ,ν)

{

∫

RD×RD

|Āν(y) − Āµ(x) − Bµ(x)(y − x)|2dγ(x, y)
}

≤W 2
2 (µ, ν) min{Oµ(W2(µ, ν)), c(Λ̄)}2.

where as usual Γo(µ, ν) denotes the set of minimizers in Equation 2.1 and c(Λ̄) > 0 is a
constant independent of µ. We also assume that ||Bµ||µ is uniformly bounded. Taking c(Λ̄)
large enough, there is no loss of generality in assuming that

(5.8) sup
µ∈M

||Bµ||µ ≤ c(Λ̄).

Let Λ be a 1-form on M. Let Λ̄ denote the associated pseudo 1-form, as in Equation 4.2.
We say that Λ is regular if Λ̄ is regular.

Remark 5.5. Some of the assumptions in Definition 5.4 could be weakened for the purposes
of this paper. We make these choices simply to avoid introducing more notation and to
shorten some computations.

Example 5.6. Every linear pseudo 1-form is regular. In other words, given Ā ∈ Xc, if
we define Λ̄µ(Y ) :=

∫

RD〈Ā, Y 〉dµ then Λ̄ is regular. Indeed, setting Bµ := ∇Ā one can
use Taylor expansion and the fact that the second derivatives of A are bounded to obtain
Equation 5.7.

Remark 5.7. Even if Equation 5.7 holds for Āµ, it does not necessarily hold for Aµ := πµ(Ā).
This implies that, in general, it is not clear what regularity properties might hold for the
1-form obtained by restricting a regular pseudo 1-form. This is true even in the simplest
case where Λ̄ is as in Example 5.6. The case in which Λ̄ is related to Λ as in Equation 4.2 is
an obvious exception: in this case, according to Definition 5.4, Λ̄ is regular iff Λ is regular.

From now till the end of Section 5 we assume Λ̄ is a regular pseudo 1-form on M and we
use the notation Āµ, Bµ as in Definition 5.4.

Remark 5.8. If µ, ν ∈ M, X ∈ L2(µ), Y ∈ L2(ν) and γ ∈ Γo(µ, ν) then

(5.9) Λ̄ν(Y ) − Λ̄µ(X) −

∫

RD×RD

(

〈Āµ(x), Y (y) −X(x)〉 + 〈Bµ(x)(y − x), Y (y)〉
)

dγ(x, y)

=

∫

RD×RD

〈Āν(y) − Āµ(x) − Bµ(x)(y − x), Y (y)〉dγ(x, y).

By Equation 5.7 and Hölder’s inequality,

(5.10)
∣

∣

∣

∫

RD×RD

〈Āν(y) − Āµ(x) −Bµ(x)(y − x), Y (y)〉
∣

∣

∣
≤W2(µ, ν)c(Λ̄) ||Y ||ν .

Similarly, Equation 5.8 and Hölder’s inequality yield

(5.11)
∣

∣

∣

∫

RD×RD

〈Bµ(x)(y − x), Y (y)〉
∣

∣

∣
≤ W2(µ, ν)c(Λ̄) ||Y ||ν.

We use Equations 5.10 and 5.11 to obtain

(5.12)
∣

∣

∣
Λ̄ν(Y ) − Λ̄µ(X) −

∫

RD×RD

〈Āµ(x), Y (y) −X(x)〉dγ(x, y)
∣

∣

∣
≤ 2c(Λ̄)W2(µ, ν) ||Y ||ν .
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Remark 5.9. Let Y ∈ C1
c (R

D) and define F (µ) := Λ̄µ(Y ). Then

|F (ν) − F (µ)| ≤W2(ν, µ)
(

||Āν ||ν||∇Y ||∞ + 2c(Λ̄)||Y ||∞
)

.

Proof: By Hölder’s inequality,
∣

∣

∣

∫

RD×RD

〈Āµ(x), Y (y) − Y (x)〉dγ(x, y)
∣

∣

∣
≤ ||Āµ||µ||∇Y ||∞W2(ν, µ).

We apply Remark 5.8 with Y = X and we exchange the role of µ and ν to conclude the
proof. QED.

Lemma 5.10. The function
M → R, µ 7→ ||Āµ||µ

is continuous on M and bounded on bounded subsets of M. Suppose S : [r, 1] × [a, b] → M
is continuous. Then

sup
(s,t)∈[r,1]×[a,b]

||ĀS(s,t)||S(s,t) <∞.

Proof: Fix µ0 ∈ M. For each µ ∈ M we choose γµ ∈ Γo(µ0, µ). We have
∣

∣ ||Āµ||µ − ||Āµ0 ||µ0

∣

∣ =
∣

∣ ||Āµ(y)||γµ
− ||Āµ0(x)||γµ

∣

∣ ≤ ||Āµ(y) − Āµ0(x)||γµ
.

This, together with Equations 5.7 and 5.8, yields
∣

∣

∣
||Āµ||µ − ||Āµ0 ||µ0

∣

∣

∣
≤ ||Bµ0(x)(y − x)||γµ

+ c(Λ̄)W2(µ0, µ) ≤ 2c(Λ̄)W2(µ0, µ).

To obtain the last inequality we have used Hölder’s inequality. This proves the first claim.
Notice that (s, t) → ||ĀS(s,t)||S(s,t) is the composition of two continuous functions and is

defined on the compact set [r, 1] × [a, b]. Hence it achieves its maximum. QED.

Lemma 5.11. Let Y ∈ C2
c (RD) and define F (µ) := Λ̄µ(Y ). Then F is differentiable with

gradient ∇µF = πµ(∇Y T (x)Āµ(x) +BT
µ (x)Y (x)).

Furthermore, assume X ∈ ∇C2
c (R

D) and let ϕt(x) = x+ tX(x) + tŌt(x), where Ōt is any
continuous function on RD such that ||Ōt||∞ tends to 0 as t tends to 0. Set µt := ϕ(t, ·)#µ.
Then

(5.13) F (µt) = F (µ) + t

∫

RD

[

〈Āµ(x),∇Y (x)X(x)〉 + 〈Bµ(x)X(x), Y (x)〉
]

dµ(x) + o(t).

Proof: Choose µ, ν ∈ M and γ ∈ Γo(µ, ν). As in Remark 5.8,

Λ̄ν(Y ) − Λ̄µ(Y ) −

∫

RD×RD

(

〈Āµ(x), Y (y) − Y (x)〉 + 〈Bµ(x)(y − x), Y (y)〉
)

dγ(x, y)

=

∫

RD×RD

〈Āν(y) − Āµ(x) − Bµ(x)(y − x), Y (y)〉dγ(x, y).

By Equation 5.7 and Hölder’s inequality,
∣

∣

∣

∫

RD×RD

〈Āν(y) − Āµ(x) − Bµ(x)(y − x), Y (y)〉
∣

∣

∣
≤ o(W2(µ, ν)) ||Y ||ν .
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Since Y ∈ C2
c (R

D) we can write Y (y) = Y (x) + ∇Y (x)(y − x) + R(x, y)(y − x)2, for some
continuous field of vector-valued 2-tensors R = R(x, y). In particular, R has compact support
and depends on the second derivatives of Y . Then

∫

RD×RD

〈Āµ(x), Y (y) − Y (x)〉dγ(x, y) =

∫

RD×RD

〈Āµ(x),∇Y (x)(y − x)〉dγ(x, y)

+

∫

RD×RD

〈Āµ(x), R(y − x)2〉dγ(x, y).(5.14)

We now want to show that the term in Equation 5.14 is of the form o(W2(µ, ν)) as ν tends
to µ. For any ǫ > 0, choose a smooth compactly supported vector field Z = Z(x) such that
‖Āµ − Z‖µ < ǫ. Then by transposing the matrix R(y − x) and using Hölder’s inequality we
obtain

|

∫

RD×RD

〈Āµ(x), R(y − x)2〉dγ(x, y)| ≤

∫

RD×RD

|〈(R(y − x))T (Āµ(x) − Z(x)), y − x〉|dγ(x, y)

+

∫

RD×RD

|〈Z(x), R(y − x)2〉|dγ(x, y)

≤ ǫ ‖(R(y − x))‖∞W2(µ, ν) + ‖Z‖∞‖R‖∞W
2
2 (µ, ν).

Since ǫ and ‖Z‖∞ are independent of ν, this gives the required estimate. Likewise,
∫

RD×RD

〈Bµ(x)(y − x), Y (y)〉dγ(x, y) =

∫

RD×RD

〈Bµ(x)(y − x), Y (y) − Y (x)〉dγ(x, y)

+

∫

RD×RD

〈Bµ(x)(y − x), Y (x)〉dγ(x, y)

=

∫

RD×RD

〈Bµ(x)(y − x), Y (x)〉dγ(x, y) + o(W2(µ, ν)).

Combining these results shows that

Λ̄ν(Y ) = Λ̄µ(Y ) +

∫

RD×RD

〈∇Y T (x)Āµ(x) +BT
µ (x)Y (x), y − x〉dγ(x, y) + o(W2(µ, ν)).

As in Definition 4.9, this proves that F is differentiable and that ∇µF = πµ(∇Y T (x)Āµ(x)+
BT

µ (x)Y (x)).
Now assume that φt is the flow ofX. Notice that the curve t→ µt belongs to AC2(−r, r;M)

for r > 0. We could choose for instance r = 1. Hence the curve is continuous on [−1, 1].
By Lemma 5.10, the composed function t → ||Āµt

||µt
is also continuous. Hence its range is

compact in R, so there exists C̄ > 0 such that ||Āµt
||µt

≤ C̄ for all t ∈ [−1, 1]. We may now
use Remark 4.10 to conclude.

The general case of φt as in the statement of Lemma 5.11 can be studied using analogous
methods. QED.

Lemma 5.12. Any regular pseudo 1-form Λ̄ is differentiable in the sense of Definition 4.12.
Furthermore, ∀X, Y ∈ TµM,

(5.15) dΛ̄µ(X, Y ) =

∫

RD

〈(Bµ −BT
µ )X, Y 〉dµ.
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Proof: The fact that, for each Y ∈ Xc, Λ̄(Y ) is a differentiable function on M follows from
Lemma 5.11. Lemma 5.11 also gives an expression for the gradient of this function. Using
this expression it is simple to check that, for X, Y ∈ ∇C∞

c ,

(5.16) XΛ̄(Y ) − Y Λ̄(X) − Λ̄([X, Y ]) =

∫

RD

〈(Bµ −BT
µ )X, Y 〉dµ.

This proves that Λ̄ is differentiable. By continuity, the same expression holds for any X, Y ∈
TµM. QED.

5.3. Regular forms and absolutely continuous curves. The goal of this section is to
study the regularity and integrability properties of regular pseudo 1-forms evaluated along
curves in AC2(a, b;M).

Lemma 5.13. Assume {µǫ}ǫ∈E ⊂ M and vǫ ∈ L2(µǫ) are such that C := supǫ∈E ||vǫ||L2(µǫ)

is finite. Assume {µǫ}ǫ∈E converges to µ in M as ǫ tends to 0 and that there exists v ∈ L2(µ)
such that {vǫµǫ}ǫ∈E converges weak-∗ to vµ as ǫ → 0. If γǫ ∈ Γo(µ, µǫ) then limǫ→0 aǫ = 0,
where aǫ =

∫

RD×RD〈Āµ(x), vǫ(y) − v(x)〉dγǫ(x, y).

Proof: It is easy to obtain that ||v||L2(µ) ≤ C. Let γǫ ∈ Γo(µ, µǫ) and ξ ∈ Xc. Then there
exists a bounded function Cξ ∈ C(RD × RD) and a real number M such that

(5.17) ξ(x) − ξ(y) = ∇ξ(y)(x− y) + |x− y|2Cξ(x, y), |Cξ(x, y)| ≤ M,

for x, y ∈ RD. We use the first equality in Equation 5.17 to obtain that

〈Āµ(x), vǫ(y) − v(x)〉 = 〈Āµ(x) − ξ(x), vǫ(y) − v(x)〉 + 〈ξ(y), vǫ(y)〉 − 〈ξ(x), v(x)〉

+ 〈∇ξ(y)(x− y) + |x− y|2Cξ(x, y), vǫ(y)〉.

Hence,

|aǫ| ≤ ||Āµ(x) − ξ(x)||L2(γǫ)||vǫ(y) − v(x)||L2(γǫ) + bǫ

+ |

∫

RD×RD

〈
(

∇ξ(y)(x− y) + |x− y|2Cξ(x, y)
)

, vǫ(y)〉dγǫ(x, y)|.(5.18)

Above, we have set bǫ := |
∫

RD×RD

(

〈ξ(y), vǫ(y)〉 − 〈ξ(x), v(x)〉
)

dγǫ(x, y)|. By the second in-
equality in Equation 5.17 and by Equation 5.18,

(5.19) |aǫ| ≤ 2C||Āµ − ξ||L2(µ) + bǫ + ||∇ξ||∞W2(µ, µǫ) +MW 2
2 (µ, µǫ).

By assumption {W2(µ, µǫ)}ǫ∈E tends to 0 and {bǫ}ǫ∈E tends to 0 as ǫ tends to 0. These facts,
together with Equation 5.19, yield lim supǫ→0 |aǫ| ≤ 2C||Āµ − ξ||L2(µ) for arbitrary ξ ∈ Xc.
We use that Xc is dense in L2(µ) to conclude that limǫ→0 aǫ = 0. QED.

Corollary 5.14. Assume {µǫ}ǫ∈E ⊂ M, µ, vǫ ∈ L2(µǫ) and v satisfy the assumptions of
Lemma 5.13. Then limǫ→0 Λ̄µǫ

(vǫ) = Λ̄µ(v).

Proof: Let γǫ ∈ Γo(µ, µǫ). Observe that

〈Āµǫ
(y), vǫ(y)〉 − 〈Āµ(x), v(x)〉 = 〈Āµ(x), vǫ(y) − v(x)〉 + 〈Bµ(x)(y − x), vǫ(y)〉

+
〈

Āµǫ
(y) − Āµ(x) −Bµ(x)(y − x), vǫ(y)

〉

.(5.20)
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We now integrate Equation 5.20 over RD ×RD and use Equations 5.7, 5.8 and the fact that
γǫ ∈ Γo(µ, µǫ). We obtain

|Λ̄µǫ
(vǫ) − Λ̄µ(v)| ≤ |aǫ| + ||Bµ||L∞(µ)W2(µ, µǫ)||vǫ||µǫ

+ o(W2(µ, µǫ))||vǫ||µǫ

≤ |aǫ| + C||Bµ||L∞(µ)W2(µ, µǫ) + C o(W2(µ, µǫ)).(5.21)

Letting ǫ tend to 0 in Equation 5.21 we conclude the proof of the corollary. QED.

Lemma 5.15 (continuity of Λ̄σt
(Xt)). Suppose σ ∈ AC2(a, b;M). If X ∈ C((a, b)×RD,RD)

then λ(t) := Λ̄σt
(Xt) is continuous on (a, b).

Proof: Fix t ∈ (a, b) so that t belongs to the interior of a compact set K∗ ⊂ (a, b). Let
ϕ ∈ Cc(R

D,RD) and denote by K a compact set containing its support. Observe that X is
uniformly continuous on K∗ ×K so
(5.22)

lim sup
h→0

|

∫

RD

〈ϕ(x), Xt+h(x) −Xt(x)〉dσt+h(x)| ≤ lim sup
h→0

||ϕ||∞ sup
x∈K

|Xt+h(x) −Xt(x)| = 0.

Since 〈Xt, ϕ〉 ∈ Cc and σ is continuous at t by Remark 2.11, we also see that

(5.23) lim
h→0

∫

RD

〈ϕ(x), Xt(x)〉dσt+h(x) =

∫

RD

〈ϕ(x), Xt(x)〉dσt(x).

Since ϕ ∈ Cc(R
D,RD) is arbitrary, Equations 5.22 and 5.23 show that {Xt+hσt+h}h>0 con-

verges weak-∗ to σtXt as h tends to zero. Corollary 5.14 yields that λ is continuous at
t.

QED.

Remark 5.16. Using the techniques of Lemma 5.29 one could further prove that if σ ∈
AC2(a, b;M) and X is sufficiently regular then λ(t) := Λ̄σt

(Xt) is Lipschitz and L1-almost
everywhere differentiable.

We now assume that ηǫ
D ∈ C∞(RD) is a mollifier : ηǫ

D(x) = 1/ǫDη(x/ǫ), for some bounded
symmetric function η ∈ C∞(RD) whose derivatives of all orders are bounded. We also
impose that η > 0,

∫

RD |x|2η(x)dx < ∞ and
∫

RD η = 1. We fix µ ∈ M and define f ǫ(x) :=
∫

RD η
ǫ
D(x− y)dµ(y). Observe that f ǫ ∈ C∞(RD) is bounded, all its derivatives are bounded

and
∫

RD f
ǫ = 1.

We suppose that ηǫ
1 ∈ C∞(R) is a standard mollifier: ηǫ

1(t) = 1/ǫη1(t/ǫ), for some bounded
symmetric function η1 ∈ C∞(R) which is positive on (−1, 1) and vanishes outside (−1, 1).
We also impose that

∫

R
η1 = 1 and assume that |ǫ| < 1.

Suppose σ ∈ AC2(a, b;M) and v : (a, b) × RD → RD is a velocity associated to σ so
that t → ||vt||σt

∈ L∞(a, b). Suppose that for each t ∈ (a, b) there exists ρt > 0 such that
σt = ρtLD.

We can extend σ and v in time on an interval larger than [a, b]. For instance, set σ̃t = σa

for t ∈ (a − 1, a) and set σ̃t = σb for t ∈ (b, b + 1). Observe that σ̃ ∈ AC2(a − 1, b + 1;M)
and we have a velocity ṽ associated to σ̃ such that ṽt = vt for t ∈ [a, b]. We can choose ṽ

such that ||ṽt||2σ̃t
= 0 for t outside (a, b). In particular,

∫ b−1

a−1
||ṽt||2σ̃t

dt =
∫ b

a
||vt||2σt

dt. In the
sequel we won’t distinguish between σ, σ̃ on the one hand and v, ṽ on the other hand. This
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extension becomes useful when we try to define ρǫ
t as it appears in Equation 5.24. The new

density functions are meaningful if we substitute σ by σ̃ and impose that ǫ ∈ (0, 1).
For ǫ ∈ (0, 1), set

(5.24) ρǫ
t(x) :=

∫

R

ηǫ
1(t− τ)ρτ (x)dτ, σ

ǫ
t := ρǫ

tL
D, ρǫ

t(x)v
ǫ
t (x) :=

∫

R

ηǫ
1(t− τ)ρτ (x)vτ (x)dτ.

Note that ρǫ
t(x) > 0 for all t ∈ (a, b) and x ∈ RD and ρǫ

t is a probability density. Also,
vǫ : (a, b) × RD → RD is a velocity associated to σǫ. In the sequel we set

C2 :=

∫

RD

|x|2η(x)dx, C1 =

∫

R

η1(τ)τdτ, Cv := sup
τ∈(a−1,b+1)

||vτ ||στ
.

Lemma 5.17. We assume that for each t ∈ (a, b) there exists ρt > 0 such that σt = ρtLD.
Then σǫ ∈ AC2(a, b;M). For a < s < t < b,

(i) W2(µ, f
ǫLD) ≤ ǫC, (ii) ||vǫ

t ||σǫ
t
≤ Cv and (iii) W2(σ

ǫ
t , σt) ≤ ǫC1Cv.

Proof: We denote by U the set of pairs (u, v) such that u, v ∈ C(RD) are bounded and
u(x) + v(y) ≤ |x − y|2 for all x, y ∈ RD. Fix (u, v) ∈ U . By Fubini’s theorem one gets the
well known identity

(5.25)

∫

RD

u(x)f ǫ(x)dx =

∫

RD

dµ(y)

∫

RD

u(x)ηǫ(x− y)dx.

Since v(y) =
∫

RD v(y)ηǫ(x− y)dx, Equation 5.25 yields that
∫

RD

u(x)f ǫ(x)dx+

∫

RD

v(y)dµ(y) =

∫

RD

dµ(y)

∫

RD

ηǫ(x− y)
(

u(x) + v(y)
)

dx

≤

∫

RD

dµ(y)

∫

RD

ηǫ(x− y)|x− y|2dx(5.26)

=

∫

RD

dµ(y)

∫

RD

1

ǫD
η(
z

ǫ
)|z|2dz = C2ǫ2.

To obtain Equation 5.26 we have used that (u, v) ∈ U . We have proven that
∫

RD u(x)f
ǫ(x) dx+

∫

RD v(y) dµ(y) ≤ C2ǫ2 for arbitrary (u, v) ∈ U . Thanks to the dual formulation of the
Wasserstein distance Equation 2.2, we conclude the proof of (i).

Notice that for each t ∈ (a, b) and x ∈ RD, ηǫ
1(t − τ)ρτ (x)/ρ

ǫ
t(x) is a probability density

on R. Hence, by Jensen’s inequality,

|vǫ
t(x)|

2 =
∣

∣

∣
1/ρǫ

t(x)

∫

R

ηǫ
1(t− τ)ρτ (x)vτ (x)dτ

∣

∣

∣

2

≤ 1/ρǫ
t(x)

∫

R

ηǫ
1(t− τ)ρτ (x)|vτ (x)|

2dτ.

We multiply both sides of the previous inequality by ρǫ
t(x). We then integrate the subsequent

inequality over RD and use Fubini’s theorem to conclude the proof of (ii).
We use (ii) and Remark 2.11 (i) to obtain that σǫ ∈ AC2(a, b;M). We have

∫

RD

u(x)dσǫ
t (x) =

∫

RD

u(x)dx

∫

R

ηǫ
1(τ)ρt−τ (x)dτ =

∫

R

ηǫ
1(τ)dτ

∫

RD

u(x)dσt−τ (x).
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Hence, using that v(y) =
∫

R
ηǫ

1(τ)v(y)dτ, we obtain
∫

RD

u(x)dσǫ
t(x) +

∫

RD

v(y)dσt(y) =

∫

R

ηǫ
1(τ)dτ

(

∫

RD

udσt−τ +

∫

RD

vdσt

)

≤

∫

R

ηǫ
1(τ)W

2
2 (σt−τ , σt)dτ(5.27)

≤

∫

R

ηǫ
1(τ)τ

2C2
vdτ = ǫ2C1C

2
v .(5.28)

To obtain Equation 5.27 we have used the dual formulation of the Wasserstein distance
Equation 2.2 and the fact that (u, v) ∈ U . We have used Remark 2.11 to obtain Equation
5.28. Since

∫

RD u dσ
ǫ
t +

∫

RD v dσt ≤ ǫCCv for arbitrary (u, v) ∈ U , we conclude that (iii)
holds.

QED.

Remark 5.18. Assume that for each t ∈ (a, b) there exists ρt > 0 such that σt = ρtLD. Let
φ ∈ Cc(R

D). Setting Iφ(t) :=
∫

RD〈φ, vt〉ρtdL
D, we have

(5.29) |

∫

RD

〈φ, vǫ
t〉ρ

ǫ
tdL

D| = |ηǫ
1 ∗ Iφ(t)| ≤ ||φ||∞ Cv.

Corollary 5.19. Suppose that for each t ∈ (a, b) there exists ρt > 0 such that σt = ρtLD.
Then, for each t ∈ [a, b], {σǫ

t}ǫ>0 converges to σt in M as ǫ tends to zero. For L1-almost
every t ∈ [a, b], {σǫ

tv
ǫ
t}ǫ>0 converges weak-∗ to σtvt as ǫ tends to zero.

Proof: By Lemma 5.17 (iii), {σǫ
t}ǫ>0 converges to σt in M as ǫ tends to zero.

Let C be a countable family in Cc(R
D). For each φ ∈ Cc(R

D), the set of Lebesgue points
of Iφ is a set of full measure in [a, b]. For these points ηǫ

1 ∗ Iφ(t) tends to Iφ(t) as ǫ tends to
zero. Thus there is a set S of full measure in [a, b] such that for all φ ∈ C and all t ∈ S,
ηǫ

1 ∗ Iφ(t) tends to Iφ(t) as ǫ tends to zero. Fix ϕ ∈ Cc(R
D) and choose δ > 0 arbitrary. Let

φ ∈ C be such that ||ϕ− φ||∞ ≤ δ. Note that

|ηǫ
1 ∗ Iϕ(t) − Iϕ(t)| ≤ |ηǫ

1 ∗ Iφ(t) − Iφ(t)| + |ηǫ
1 ∗ Iφ−ϕ(t)| + |Iφ−ϕ(t)|.

We use the inequality in Equation 5.29 to conclude that

|ηǫ
1 ∗ Iϕ(t) − Iϕ(t)| ≤ |ηǫ

1 ∗ Iφ(t) − Iφ(t)| + 2δCv.

If t ∈ S, the previous inequality gives that lim supǫ→0 |η
ǫ
1 ∗ Iϕ(t)− Iϕ(t)| ≤ 2δCv. Since δ > 0

is arbitrary we conclude that limǫ→0 |η
ǫ
1 ∗ Iϕ(t) − Iϕ(t)| = 0. QED.

Corollary 5.20. Suppose that σ ∈ AC2(a, b;M) for all a < b, v is a velocity associated to
σ and C := supt∈[a,b] ||vt||σt

<∞. Define

f r
t (x) :=

∫

RD

ηr
D(x− y)dσt(y), σr

t := f r
t L

D, f r
t (x)vr

t (x) :=

∫

RD

ηr
D(x− y)vt(y)dσt(y).

As in Equation 5.24, for 0 < ǫ < 1 we define

ρǫ,r
t (x) :=

∫

R

ηǫ
1(t− τ)f r

τ (x)dτ, σǫ,r
t := ρǫ,rLD, ρǫ,r

t (x)vǫ,r
t (x) :=

∫

R

ηǫ
1(t− τ)f r

τ (x)vr
τ (x)dτ.

Then:
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(i) vr is a velocity associated to σr and, for each t ∈ (a, b), {σr
t }r converges to σt in M as

r tends to zero. For L1-almost every t ∈ (a, b), ||vr
t ||σr

t
≤ C and {vr

tσ
r
t }r>0 converges weak-∗

to vtσt as r tends to zero.
(ii) vǫ,r is a velocity associated to σǫ,r and, for each t ∈ (a, b), {σǫ,r

t }ǫ converges to σr
t in

M as ǫ tends to zero. For every t ∈ (a, b), ||vǫ,r
t ||σǫ,r

t
≤ C while for L1-almost every t ∈ (a, b),

{vǫ,r
t σǫ,r

t }r>0 converges weak-∗ to vr
tσ

r
t as ǫ tends to zero.

(iii) The function t→ Λ̄σǫ,r
t

(vǫ,r
t ) is continuous while t→ Λ̄σt

(vt) is measurable on (a, b).
(iv) Suppose in addition that σ is time-periodic in the sense that σa = σb. Then σr

a = σr
b .

Proof: It is well known that ||vr
t ||σr

t
≤ ||vt||σt

≤ C (cf. [5] Lemma 8.1.10) so, by Remark
2.11 (i), σ ∈ AC2(a, b;M). One can readily check that vr is a velocity associated to σr.
Lemma 5.17 shows that, for each t ∈ (a, b), {σr

t }r converges to σt in M as r tends to zero.
Let ϕ ∈ Cc(R

D,RD). Set ϕr := ηr
D ∗ ϕ. Since {ϕr}r>0 converges uniformly to ϕ,

lim
r→0

∫

RD

〈ϕ, vr
t 〉dσ

r
t =

∫

RD

〈vt, ϕ〉dσt.

Thus {vr
tσ

r
t }r>0 converges weak-∗ to vtσt as r tends to zero. This proves (i).

We next fix r > 0. For a moment we won’t display the dependence in r. For instance we
write vǫ instead of vǫ,r

t as in Equation 5.24. Notice that ρǫ ∈ C1([a, b] × RD), ρǫ > 0 and ρǫ
t

is a probability density. Also vǫ
t ∈ C1([a, b] × RD,RD) and vǫ is a velocity associated to σǫ.

Fix t ∈ [ā, b̄] ⊂ (a, b). Lemma 5.17 gives that ||vǫ
t ||σǫ

t
≤ C for all ǫ > 0 small enough. By

Corollary 5.19, {vǫ
tσ

ǫ
t}ǫ>0 converges weak-∗ to vtσt as ǫ tends to zero. This proves (ii).

By Lemma 5.15, t→ Λ̄σǫ
t
(vǫ

t ) is continuous in (a, b).Hence by (ii) t→ Λ̄σr
t
(vr

t ) is measurable
as a pointwise limit of measurable functions. We then use (i) to conclude that t → Λ̄σt

(vt)
is measurable as a pointwise limit of measurable functions. This proves (iii). The proof of
(iv) is straightforward.

QED.

We can now prove that regular pseudo 1-forms can be integrated along absolutely contin-
uous curves, as follows.

Corollary 5.21. Let σ ∈ AC2(a, b;M) and let v be a velocity associated to σ. Suppose
t→ ||vt||σt

is square integrable on (a, b). Then t→ Λ̄σt
(vt) is measurable and square integrable

on (a, b).

Proof: Let σ̄ be the reparametrization of σ as introduced in Remark 2.13 and let v̄ be
the associated velocity. By Corollary 5.20 (iii), because sups∈[0,L] ||v̄s||σ̄s

≤ 1, we have that

s→ Λ̄σ̄s
(v̄s) is measurable. But Λ̄σt

(vt) = Ṡ(t)Λ̄σ̄S(t)
(v̄S(t)). Thus t→ Λ̄σt

(vt) is measurable.

By Corollary 5.10 there exists a constant Cσ independent of t such that ||Āσt
||σt

≤ Cσ for
all t ∈ [a, b]. Thus

|Λ̄σt
(vt)| =

∣

∣

∣

∫

RD

〈Āσt
, vt〉dσt

∣

∣

∣
≤ ||Āσt

||σt
||vt||σt

≤ Cσ||vt||σt
.

Since t→ ||vt||σt
is square integrable, the previous inequality yields the proof. QED.

Corollary 5.22. Suppose {σr}0≤r≤c ⊂ AC2(a, b;M), vr is a velocity associated to σr and
∞ > C := sup(t,r)∈E ||vr

t ||σr
t

where E := [a, b] × [0, c]. Suppose that, for L1-almost every
t ∈ (a, b), {vr

tσ
r
t }r>0 converges weak-∗ to vtσt and {σr

t }r>0 converges in M to σt as r tends
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to zero. If (t, r) → σr
t is continuous at every (t, 0) ∈ [a, b] × {0} then limr→0

∫ b

a
Λ̄σr(vr)dt =

∫ b

a
Λ̄σ(v)dt. Here we have set σt := σ0

t .

Proof: By Lemma 5.10 we may assume without loss of generality that ||Āσr
t
||σr

t
is bounded

on E by a constant C̄ independent of (t, r) ∈ E. We obtain

(5.30) sup
(t,r)∈E

|Λ̄σr
t
(vr

t )| ≤ sup
(t,r)∈E

||Āσr
t
||σr

t
||vr

t ||σr
t
≤ C̄C.

Corollary 5.14 ensures that limr→0 Λ̄σr
t
(vr

t ) = Λ̄σt
(vt) for L1-almost every t ∈ [a, b]. This,

together with Equation 5.30 shows that, as r tends to 0, the sequence of functions t→ Λ̄σr
t
(vr

t )

converges to the function t→ Λ̄σt
(vt) in L1(a, b). This proves the corollary. QED.

Definition 5.23. Let σ ∈ AC2(a, b;M) and let v be a velocity associated to σ. Suppose
t → ||vt||σt

is square integrable on (a, b). By Corollary 5.21, t → Λ̄σt
(vt) is also square

integrable on (a, b). It is thus meaningful to calculate the integral
∫ b

a
Λ̄σt

(vt)dt.

We will call
∫ b

a
Λ̄σt

(vt)dt the integral of Λ̄ along (σ, v). When v is the velocity of minimal

norm we will write this simply as
∫

σ
Λ̄ and call it the integral of Λ̄ along σ.

Remark 5.24. Suppose that r : [c, d] → [a, b] is invertible and Lipschitz. Define σ̄s =
σr(s). Then σ̄ ∈ AC2(c, d;M) and v̄s(x) = ṙ(s)vr(s)(x) is a velocity for σ̄. Furthermore,
∫ d

c
Λ̄σ̄t

(v̄t)dt =
∫ b

a
Λ̄σt

(vt)dt.

Proof: Let β ∈ L2(a, b) be as in Definition 2.10. Then

W2(σr(s+h), σr(s)) ≤
∣

∣

∣

∫ r(s+h)

r(s)

β(t)dt
∣

∣

∣
=

∣

∣

∣

∫ s+h

s

β̄(τ)dτ
∣

∣

∣
where β̄(s) := |ṙ(s)|β(r(s)).

Because β̄ ∈ L2(c, d) we conclude that σ̄ ∈ AC2(c, d;M). Direct computations give that, for
L1 − a.e. s ∈ (c, d),

lim
h→0

W2(σr(s+h), σr(s))/|h| = |ṙ(s)| |σ′|(r(s)).

Thus |σ̄′|(s) = |ṙ(s)| |σ′|(r(s)). Let φ ∈ C∞
c (RD) and let v be a velocity for σ (see Proposition

2.12). The chain rule shows that, in the sense of distributions,

d

ds

∫

RD

φdσr(s) = ṙ(s)〈∇φ, vr(s)〉σr(s)
= 〈∇φ, v̄s〉σ̄s

,

where v̄s(x) = ṙ(s)vr(s)(x). Thus v̄ is a velocity for σ̄. Using the linearity of Λ̄ we have

∫ d

c

Λ̄σ̄s
(v̄s)ds =

∫ d

c

ṙ(s)Λ̄σr(s)
(vr(s))ds =

∫ b

a

Λ̄σt
(vt)dt.

This concludes the proof. QED.
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5.4. Green’s formula for annuli. Let σ ∈ AC2(a, b;M). Given r ∈ (0, 1) and s ∈ [r, 1], let
Ds : RD → RD denote the map defined by Ds(x) := sx. Using this map we can canonically
associate to σ the surface

(5.31) σ(s, t) : [r, 1] × (a, b) → M, σ(s, t) = σs
t := Ds#σt.

We call such a surface an annulus. We now want to study its properties.
Let v denote the velocity of σ of minimal norm. Set

w(s, t, ·) = ws
t (x) :=

x

s
= D−1

s (x), v(s, t, ·) = vs
t := Ds∗vt.

According to Lemma 4.2, for each s ∈ [r, 1], σ(s, ·) ∈ AC2(a, b;M) admits v(s, ·) as a velocity.
For each t and φ ∈ C∞

c (RD), in the sense of distributions,

d

ds

∫

RD

φ dσs
t =

d

ds

∫

RD

φ(sx) dσt(x) =

∫

RD

dφ(sx)(x) dσt(x) =

∫

RD

dφ(ws
t ) dσ

s
t .

Thus w(·, t) is a velocity for σ(·, t).
We assume that

||σ′||∞ := sup
t∈[a,b]

||vt||σt
<∞.

By Remark 2.11,

c0σ := sup
t∈[a,b]

W2(σt, δ0) <∞.

By the fact that Ds#σt = σs
t we have

(5.32) W 2
2 (σs

t , δ0) = s2W 2
2 (σt, δ0) ≤ s2c0σ ≤ C̄σ,

where we are free to choose C̄σ to be any constant greater than c0σ.

Remark 5.25. Note that (1 + h/s)Id pushes σs
t forward to σs+h

t and is the gradient of a
convex function. Thus

γh :=
(

Id × (1 + h/s)Id
)

#
σs

t ∈ Γo(σ
s
t , σ

s+h
t ).

For γh-almost every (x, y) ∈ RD × RD we have y = (1 + h/s)x, so

(5.33) vs+h
t (y) = (s+ h)vt(

y

s+ h
) = (1 +

h

s
)vs

t (
sy

s+ h
) = (1 +

h

s
)vs

t (x).

Using the definition of σs
t and vs

t we obtain the identities

(5.34) ||Id ||σs
t

= s||Id ||σt
≤ sC̄σ, ||vs

t ||σs
t

= s||vt||σt
≤ s||σ′||∞.

We use the first identity in Equation 5.34 and the fact that (1 + h/s)Id pushes σs
t forward

to σs+h
t to obtain

(5.35) W 2
2 (σs

t , σ
s+h
t ) =

h2

s2
||Id ||2σs

t
= h2||Id ||2σt

= h2W 2
2 (σt, δ0) ≤ h2C̄2

σ.

Lemma 5.26. There exists a constant Cσ(r) depending only on σ and r such that ||Āσs
t
||σs

t
≤

Cσ(r), for all (s, t) ∈ [r, 1] × [a, b].
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Proof: By Remark 2.11 (i), σ : [a, b] → M is 1/2-Hölder continuous: there exists a constant
c > 0 such that W 2

2 (σt2 , σt1) ≤ c|t2 − t1|. Together with Lemma 4.1 and the fact that
Lip(Ds) = s ≤ 1, this gives that t→ σs

t is uniformly 1/2-Hölder continuous:

W 2
2 (σs

t2 , σ
s
t1) ≤W 2

2 (σt2 , σt1) ≤ c|t2 − t1|.

Remark 2.11 (ii) ensures that {σt| t ∈ [a, b]} is bounded and so there exists c̄ > 0 such that
W2(σt, δ0) ≤ c̄ for all t ∈ [a, b]. One can readily check that γ :=

(

Ds1 ×Ds2

)

#
σt ∈ Γ(σs1

t , σ
s2
t ),

so

W 2
2 (σs1

t , σ
s2
t ) ≤

∫

RD×RD

|x− y|2dγ =

∫

RD

|Ds1x−Ds2x|
2dσt(x) = |s2 − s1|

2

∫

RD

|x|2dσt(x)

≤ c̄|s2 − s1|
2.

Thus s → σs
t is 1-Lipschitz. Consequently (t, s) → σs

t is 1/2-Hölder continuous. This,
together with Lemma 5.10, yields the proof. QED.

Set
V (s, t) := Λ̄σs

t
(vs

t ), W (s, t) := Λ̄σs
t
(ws

t ).

The following proposition is extracted from [5] Theorem 8.3.1 and Proposition 8.4.6.

Proposition 5.27. Let σ ∈ AC2(a, b;M) and let v be its velocity of minimal norm. Let
N1 be the set of t such that vt fails to be in Tσt

M. Let N2 be the set of t ∈ [a, b] such that
(

π1×(π2−π1)/h
)

#
ηh fails to converge to (Id×vt)#σt in the Wasserstein space M(RD×RD),

for some ηh ∈ Γo(σt, σt+h). Let N be the union of N1 and N2. Then L1(N ) = 0.

We can now study the derivatives of V and W , as follows.

Lemma 5.28. For each t ∈ (a, b) \ N , the function V (·, t) is differentiable on (r, 1) and its
derivative is bounded by a constant L1(r) depending only on σ and r. Furthermore

∂sV (s, t) =

∫

RD

〈Āσs
t
(x),

vs
t (x)

s
〉dσs

t (x) +

∫

RD

〈Bσs
t
(x)ws

t (x), v
s
t (x)〉dσ

s
t (x).

Proof: Let Cσ(r) be as in Lemma 5.26 and let C̄σ be as in Equation 5.32. We use Equations
5.12, 5.33 and then Hölder’s inequality to obtain

(5.36) |V (s+ h, t) − V (s, t)| ≤
h

s
||Āσs

t
||σs

t
||vs

t ||σs
t
+ 2c(Λ̄)W2(σ

s
t , σ

s+h
t )||vs+h

t ||σs+h
t
.

We combine Equations 5.34, 5.35 and 5.36 to conclude that

(5.37) |V (s+ h, t) − V (s, t)| ≤ hCσ(r)||σ
′||∞ + 2hc(Λ̄)C̄σ(s+ h)||σ′||∞.

This proves that V (·, t) is Lipschitz on (r, 1) and that its derivative is bounded by a constant
L1(r). As in Remark 5.8,

lim
h→0

V (s+ h, t) − V (s, t)

h
= lim

h→0

∫

RD×RD

〈Āσs
t
(x),

vs+h
t (y) − vs

t (x)

h
〉dγh

+

∫

RD×RD

〈Bσs
t
(x)

y − x

h
, vs+h

t (y)〉dγh

+
1

h

∫

RD×RD

〈Āσs+h
t

(y) − Āσs
t
(x) − Bσs

t
(x)(y − x), vs+h

t (y)〉dγh,(5.38)
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where γh ∈ Γo(σ
s+h
t , σs

t ). By Equation 5.10, the last inequality in Equation 5.34 and Equation
5.35 we have

(5.39) lim
h→0

1

h

∫

RD×RD

〈Āσs+h
t

(y) − Āσs
t
(x) − Bσs

t
(x)(y − x), vs+h

t (y)〉γh(x, y) = 0.

We use Equations 5.33, 5.38, 5.39 and the fact that, for γh-almost every (x, y) ∈ RD × RD,
y = (1 + h/s)x to conclude that

lim
h→0

V (s+ h, t) − V (s, t)

h
=

∫

RD

〈Āσs
t
(x),

vs
t (x)

s
〉dσs

t + lim
h→0

∫

RD

〈Bσs
t
(x)

x

s
, (1 +

h

s
)vs

t (x)〉dσ
s
t

=

∫

RD

〈Āσs
t
(x),

vs
t (x)

s
〉dσs

t +

∫

RD

〈Bσs
t
(x)ws

t (x), v
s
t (x)〉dσ

s
t .

This proves the lemma. QED.

Lemma 5.29. For each s ∈ [r, 1] and t ∈ (a, b) \ N , the function W (s, ·) is differentiable at
t and its derivative is bounded by a constant L2(r) depending only on σ and r. Furthermore,

∂tW (s, t) =

∫

RD

〈Āσs
t
(x),

vs
t (x)

s
〉dσs

t (x) +

∫

RD

〈ws
t (x), Bσs

t
(x)vs

t (x)〉dσ
s
t (x).

Proof: As in the proof of Lemma 5.30, we have

|W (s, t+ h) −W (s, t)| ≤
||Āσs

t
||σs

t

s
W2(σ

s
t+h, σ

s
t ) + 2c(Λ̄)W2(σ

s
t+h, σ

s
t )||w

s
t+h||σs

t+h
.

This gives
|W (s, t+ h) −W (s, t)| ≤ h

(

1 + 2c(Λ̄)
)

C̄σ,

proving that W (s, ·) is Lipschitz on (a, b) and that its derivative is bounded by a constant
L2(r). For fixed s ∈ [r, 1] and t ∈ (a, b) \ N , let γs

h ∈ Γo(σ
s
t , σ

s
t+h). Then

lim
h→0

W (s, t+ h) −W (s, t)

h

= lim
h→0

∫

RD×RD

〈Āσs
t
(x),

ws
t+h(y) − ws

t (x)

h
〉dγs

h(x, y)

+

∫

RD×RD

〈Bσs
t
(x)

y − x

h
, ws

t+h(y)〉dγ
s
h(x, y)

+
1

h

∫

RD×RD

〈Āσs
t+h

(y) − Āσs
t
(x) − Bσs

t
(x)(y − x), ws

t+h(y)〉γ
s
h(x, y).

However,

lim
h→0

1

h

∫

RD×RD

〈Āσs
t
(y) − Āσs

t
(x) − Bσs

t
(x)(y − x), ws

t+h(y)〉γ
s
h(x, y) = 0.

We then use the fact that ws
t (z) = z/s to get

lim
h→0

W (s, t+ h) −W (s, t)

h
= lim

h→0

∫

RD×RD

〈Āσs
t
(x),

y − x

sh
〉dγs

h(x, y)(5.40)

+

∫

RD×RD

〈Bσs
t
(x)

y − x

h
,
y

s
〉dγs

h(x, y).
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To conclude the lemma it suffices to show that if t ∈ (a, b) \ N and γs
h ∈ Γo(σ

s
t , σ

s
t+h) then

(

π1 × (π2 − π1)/h
)

#
γs

h converges to (Id × vs
t )σs

t
in M(RD × RD) as h tends to 0. Set

γh :=
(

D−1
s ×D−1

s

)

#
γs

h.

Since
π1 ◦

(

D−1
s ×D−1

s

)

= D−1
s ◦ π1 and π2 ◦

(

D−1
s ×D−1

s

)

= D−1
s ◦ π2,

we conclude that γh ∈ Γ(σt, σt+h). By the fact that the support of γs
h is cyclically monotone

we have that the support of γh is also cyclically monotone. Hence γh ∈ Γo(σt, σt+h). We have

(

π1 ×
π2 − π1

h

)

#
γs

h =
(

Ds ×Ds

)

#

(

(π1 ×
π2 − π1

h
)#γh

)

→
(

Ds ×Ds

)

◦ (Id × vt)#σt

= (Id × vs
t )#σ

s
t .

This, together with Equation 5.40, gives

lim
h→0

W (s, t+ h) −W (s, t)

h

=

∫

RD

〈Āσs
t
(x),

vs
t (x)

s
〉dσs

t (x) +

∫

RD

〈Bσs
t
(x)vs

t (x),
x

s
〉dσs

t (x)

=

∫

RD

〈Āσs
t
(x),

vs
t (x)

s
〉dσs

t (x) +

∫

RD

〈Bσs
t
(x)vs

t (x), w
s
t (x)〉dσ

s
t (x).

QED.

Corollary 5.30. For each s ∈ (r, 1) and t ∈ (a, b) \ N we have

∂t

(

Λ̄σs
t
(ws

t )
)

− ∂s

(

Λ̄σs
t
(vs

t )
)

= dΛ̄σs
t
(vs

t , w
s
t ).

Proof: This corollary is a direct consequence of Lemmas 5.12, 5.28 and 5.29. QED.

Remark 5.31. Proposition 5.2 was a direct consequence of Equations 5.3 and 5.4. Those
equations depended strongly on the smoothness of vs

t and ws
t in all variables. In this section

we have removed all smoothness assumptions on vs
t . Specifically, now we do not know that

∇vs
t nor ∂tv

s
t exist. However, Equation 5.33 ensures that vs

t is differentiable with respect to
s, in particular establishing the inequality ||vs+h

t ◦π2 − vs
t ◦π

1||γh ≤ h||σ′||∞. This inequality
is crucial for the proof of Lemma 5.28.

Lemma 5.28 is the analogue of Equation 5.4. Notice that the first term (respectively,
the second term) on the right hand side of Lemma 5.28 corresponds to the second term
(respectively, the first term) on the right hand side of Equation 5.4. Likewise, Lemma 5.29
is the analogue of Equation 5.3.

Theorem 5.32 (Green’s formula on the annulus). Consider in M the annulus S(s, t) =
Ds#σt for (s, t) ∈ [r, 1] × [0, T ]. Let ∂S denote its boundary, defined as the union of the
negatively oriented curves S(r, ·), S(·, T ) and the positively oriented curves S(1, ·), S(·, 0).
Then

∫

S

dΛ̄ =

∫

∂S

Λ̄.
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Proof: We use Corollary 5.30 to obtain
∫

S

dΛ̄ =

∫ T

0

dt

∫ 1

r

dΛ̄S(s,t)(v
s
t , w

s
t )ds =

∫ T

0

dt

∫ 1

r

[

∂t

(

Λ̄S(s,t)(w
s
t )

)

− ∂s

(

Λ̄S(s,t)(v
s
t )

)]

ds

=

∫ 1

r

(

Λ̄S(s,T )(w
s
T ) − Λ̄S(s,0)(w

s
0)

)

ds−

∫ T

0

(

Λ̄S(1,t)(v
1
t ) − Λ̄S(r,t)(v

r
t )

)

dt =

∫

∂S

Λ̄.(5.41)

QED.

Corollary 5.33. If we further assume that Λ̄ is a closed pseudo 1-form and that σ0 = σT ,
then

∫

σ
Λ̄ = 0.

Proof: For s ∈ [r, 1] define

l(s) =

∫ T

0

Λ̄S(s,t)(v
s
t )dt, l̄(t) =

∫ 1

r

Λ̄S(s,t)(w
s
t )ds.

Since ws
T = ws

0 and σs
T = Ds#σT = Ds#σ0 = σs

0, we have l̄(T ) = l̄(0). This, together with

Equation 5.41 and the fact that dΛ̄ = 0, yields
∫ T

0
Λ̄σt

(vt)dt = l(1) = l(r). But
(5.42)

|l(r)| ≤

∫ T

0

|Λ̄S(s,t)(v
r
t )|dt ≤

∫ T

0

||ĀS(s,t)||S(s,t)||v
r
t ||S(s,t)dt ≤ r||σ′||∞

∫ T

0

||ĀS(s,t)||S(s,t)dt,

where we have used the last inequality in Equation 5.34. The first inequality in Equation
5.32 shows that, for r small enough, {S(s, t)}t∈×[0,T ]) is contained in a small ball centered at
δ0. But Lemma 5.10 gives that µ → ||Āµ||µ is continuous at δ0. Thus there exist constants
c and r0 such that ||ĀS(s,t)||S(s,t) ≤ c for all t ∈ [0, T ] and all r < r0. We can now exploit
Equation 5.42 to obtain

|l(1)| = lim inf
r→0

|l(r)| ≤ lim inf
r→0

rTc||σ′||∞ = 0.

QED.

Corollary 5.34. Let Λ̄ be a regular pseudo 1-form on M. Let Λ denote the corresponding
1-form on M, defined by restriction. Assume Λ̄ is closed, i.e. dΛ̄ = 0. Then Λ is exact, i.e.
there exists a differentiable function F on M such that dF = Λ.

Proof: Fix µ ∈ M. Let σ be any curve in AC2(a, b;M) such that σa = δ0 and σb = µ.
Assume that v is its velocity of minimal norm and that sup(a,b) ||vt||σt

< ∞. By Corollary

5.33,
∫

σ
Λ̄ depends only on µ, i.e. it is independent of the path σ. Also, Remark 5.24 ensures

that
∫

σ
Λ̄ is independent of a, b. It is thus meaningful to define

F (µ) :=

∫

σ

Λ̄.

We now want to show that F is differentiable. Fix µ, ν ∈ M and γ ∈ Γo(µ, ν). Define
σt := ((1 − t)π1 + tπ2)#γ. Then σ : [0, 1] → M is a constant speed geodesic between µ and
ν. Let vt denote its velocity of minimal norm. Clearly,

(5.43) F (ν) − F (µ) =

∫ 1

0

Λ̄σt
(vt)dt.
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Let γ̄ : RD → RD denote the barycentric projection of γ, cf. [5] Definition 5.4.2. Set
v := γ̄ − Id. Then γt := (π1, (1 − t)π1 + tπ2)#γ ∈ Γo(σ0, σt) and

Λ̄σt
(vt) − Λ̄σ0(v) =

∫

RD×RD

〈Āσ0(x), vt(y) − v(x)〉 + 〈Bσ(0)(x)(y − x), vt(y)〉dγt(x, y)

+

∫

RD×RD

〈Āσt
(y) − Āσ0(x) −Bσ0(x)(y − x), vt(y)〉dγt(x, y).

By Equation (5.7) and Hölder’s inequality,

∣

∣

∫

RD×RD

〈Āσt
(y) − Āσ0(x) −Bσ0(x)(y − x), vt(y)〉dγt(x, y)

∣

∣ ≤ o(W2(σ0, σt)) ||vt||σt
.

It is well known (cf. [5] Lemma 7.2.1) that if 0 < t ≤ 1 then there exists a unique optimal
transport map T 1

t between σt and σ1, i.e. Γo(σt, σ1) = {(Id× T 1
t )#σt}. One can check that

vt(y) =
T 1

t (y)−y

1−t
and ||vt||σt

= W2(σt, σ1)/(1 − t) = W2(σ0, σ1). Thus
∫

RD×RD

〈Āσ0(x), vt(y) − v(x)〉dγt(x, y) =

∫

〈Āσ0(x),
T 1

t (y) − y

1 − t
− (γ̄(x) − x)〉dγt(x, y)

=

∫

〈Āσ0(x),
z − ((1 − t)x+ tz)

1 − t
− (z − x)〉dγ(x, z)

= 0.

Similarly,
∫

RD×RD

〈Bσ0(x)(y − x), vt(y)〉dγt(x, y) = t

∫

RD×RD

〈Bσ0(x)(z − x), z − x〉dγ(x, y)

= o(W2(σ0, σ1)) = o(W2(µ, ν)).

Combining these equations shows that

Λ̄σt
(vt) − Λ̄σ0(v) = o(W2(µ, ν)).(5.44)

Notice that (5.44) is independent of t. Combining (5.43) and (5.44) we find

F (ν) = F (µ) + Λ̄σ0(v) +

∫ 1

0

Λ̄σt
(vt) − Λ̄σ0(v)dt

= F (µ) + Λ̄σ0(v) + o(W2(µ, ν))

= F (µ) +

∫

RD×RD

〈Āσ0(x), y − x〉dγ(x, y) + o(W2(µ, ν)).

As in Definition 4.9, this proves that F is differentiable and that ∇µF = πµ(Āµ). Thus
dF = Λ. QED.

Example 5.35. Assume Λ̄ is a linear pseudo 1-form, i.e. Λ̄(·) =
∫

RD〈Ā, ·〉dµ for some
Ā ∈ Xc. According to Example 4.15, if dΛ̄ = 0 then

∫

RD〈(∇Ā−∇ĀT ) ·, ·〉dµ = 0 on TµM.

Restricting to Dirac measures proves that ∇Ā is symmetric so Ā is a gradient vector field.
In other words, any closed linear pseudo 1-form is actually a linear 1-form.
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5.5. Example: 1-forms on the space of discrete measures. Fix an integer n ≥ 1.
Given x1, · · · , xn ∈ RD, set x := (x1, · · · , xn) and µx := 1/n

∑n
i=1 δxi

. Let M denote the
set of such measures and TM denote its tangent bundle, cf. Examples 2.2 and 2.8. Choose
a regular pseudo 1-form Λ̄ on M. By restriction we obtain a 1-form α on M , defined by
αx := Λ̄µx

. Let A : RnD → RnD be defined by

A(x) = (A1(x), · · · , An(x)) :=
(

Āµx
(x1), · · · , Āµx

(xn)
)

.

Notice that if X = (X1, · · · , Xn) ∈ RnD satisfies Xi = Xj whenever xi = xj then αx(X) =
1
n
〈A(x), X〉. Now define a nD × nD matrix B(x) by setting

(5.45) Bk+i,k+j :=
(

Bµx
(xk+1)

)

ij
, for k = 0, · · ·n− 1, i, j = 1, · · · , D,

(5.46) Bl,m := 0 if (l,m) 6∈ {(k + i, k + j) : k = 0, · · ·n− 1, i, j = 1, · · · , D}.

Proposition 5.36. The map A : RnD → RnD is differentiable and ∇A(x) = B(x) for
x ∈ RnD.

Proof: Let x = (x1, · · · , xn) ∈ RnD. Set r := minxi 6=xj
|xi − xj |. If y = (y1, · · · , yn) ∈

RnD and |y − x| < r/2 then Γo(µx, µy) has a single element γy = 1/n
∑n

i=1 δ(xi,yi) and
nW 2

2 (µx, µy) = |y − x|2. By Equation 5.7,

(5.47) |A(y) −A(x) −B(x)(y − x)|2 = n o(
|y − x|2

n
).

This concludes the proof. QED.

Lemma 5.37. Suppose x = (x1, · · · , xn) ∈ RnD and X = (X1, · · · , Xn), Y = (Y1, · · · , Yn) ∈
RnD are such that Xi = Xj, Yi = Yj whenever xi = xj . Then

dΛ̄µx
(X, Y ) = dαx(X, Y ).

Proof: We use Lemma 5.15 and Equations 5.45, 5.46 to obtain

dΛ̄µx
(X, Y ) =

n
∑

k=1

〈

(Bµx
(xk) −Bµx

(xk)
T )Xk, Yk

〉

= dαx(X, Y ).

QED.

Corollary 5.38. Suppose that r = (r1, · · · , rn) ∈ C2([0, T ],RnD) and set σt := 1/n
∑n

i=1 δri(t).
If Λ̄ is closed and σ0 = σT then

∫

σ
α = 0.

Proof: This is a direct consequence of Corollary 5.33. QED.

Remark 5.39. One can check by direct computation that, for a surface x = x(s, t) in M , the
familiar identity ∂t(αx(∂sx)) − ∂s(αx(∂tx)) = dαx(∂tx, ∂sx) holds. Together with Lemma
5.37, this is the analogue of Corollary 5.30 which we used to prove Theorem 5.32.

Remark 5.40. Notice that the assumption σ0 = σT is weaker than r(0) = r(T ).
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5.6. Discussion. As mentioned in Section 2.2, the space M is convex. This is true not only
for probability measures on RD but also for probability measures on any manifold M . It is
thus trivially true that all cohomology groups Hk(M; R) vanish if these groups are defined
purely in terms of the topology on M.

In this paper, however, we are concerned with the differentiable structure on M. As seen
in Section 3.2, from this point of view M is the union of smooth manifolds O, defined as
the orbits of the Diffc(R

D)-action on M. Given any such orbit O, it is then interesting to
define and calculate the first cohomology group H1(O; R). Notice that these orbits are in
general not convex, so the above reasoning does not apply. In the case M = RD, however,
Corollary 5.34 can intuitively be interpreted as a vanishing result for H1(O; R) if we think
of cohomology in the differentiable sense, i.e. in the sense of de Rham, as follows.

Let Λ be a regular 1-form on M. Recall from Definition 4.12 that Λ is closed iff Λ̄ is
closed. Then Corollary 5.34 shows that if Λ is closed then it is exact, i.e. Λ = dF for some
differentiable F : M → R. Now choose an orbit O. Given any µ ∈ O, recall from Section
3.2 that TµM can be thought of as the tangent space to O at the point µ. In this sense the
restriction of F to O is still differentiable and d(F|O) = (dF )|O so the restriction of Λ to O is
also exact. Roughly speaking, Corollary 5.34 thus shows that the first de Rham cohomology
group H1(O; R) of each orbit vanishes. It may be useful to point out that if µ is a Dirac
measure then Oµ = RD, so at least in this case the above vanishing result makes sense.

It is reasonable to expect that most of the theory of [5] can be extended to probability
measure spaces on other manifolds M . In this case, many of the results of this paper should
also extend. However the above example, where O is the space of Dirac measures on M ,
shows that one should not expect H1(O; R) to vanish in general. In this sense our results are
specific to the choice M = RD. Another way to see this is as follows. The proof of Corollary
5.34 relied on the construction of certain “annuli” built using maps Ds of RD. These maps
exist only because RD is contractible. Such a construction would not be possible on other
manifolds.

The following considerations also support the above interpretation of Corollary 5.34. Re-
call that, for a finite-dimensional manifold M , the first de Rham cohomology group is closely
related to the topology of M , as follows: H1(M ; R) = Hom(π1(M),R), where the latter de-
notes the space of group homomorphisms from the first fundamental group π1(M) to R. In
our case, an orbit O is generally not a manifold in any rigorous sense so it is not a priori
clear that there exists any relationship between our H1(O; R) and π1(O). However, we can
formally prove the topological counterpart of our vanishing result as follows.

Let G be a finite-dimensional Lie group and H be a closed subgroup. Recall that there
exists a homotopy long exact sequence

· · · → π1(H) → π1(G) → π1(G/H) → π0(H) → π0(G) . . . ,

cf. e.g. [11], VII.5. Now assume G is connected, i.e. π0(G) = 1. We can then dualize the
final part of this sequence obtaining a new exact sequence

(5.48) 1 → Hom(π0(H),R) → Hom(π1(G/H),R) → Hom(π1(G),R).

Now choose µ ∈ O and set G := Diffc(R
D) and H := Diffc,µ(R

D) so that G/H ≃ O. In many
cases it is known that π1(G) is finite: specifically, this is true at least for D = 1, 2, 3 and
D ≥ 12, cf. [6] for related results. Let us assume that H has a finite number of components
and that the homotopy long exact sequence is still valid in this infinite-dimensional setting.
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Sequence 5.48 then becomes

1 → 1 → Hom(π1(O),R) → 1,

so by exactness Hom(π1(O),R) must also be trivial.
To conclude, it is also interesting to examine the relationship between Corollary 5.34 and

invariant cohomology, in the sense of Section A.3. Recall from Proposition A.17 that the first
cohomology group of an orbit is a subgroup of the corresponding first invariant cohomology
group. The statement that the first invariant cohomology vanishes is thus stronger than
the statement that the first cohomology of the orbit vanishes. Now choose any orbit O in
M. According to Section 4.3, the corresponding invariant cohomology should be defined in
terms of regular pseudo 1-forms. To prove that the invariant cohomology vanishes would thus
require showing that dΛ̄ = 0 implies Λ̄ = dF , for some differentiable function F : M → R.
Since dF is a 1-form, such a result would imply that any closed pseudo 1-form is a 1-form.
Corollary 5.34 does not achieve this. On the other hand, it is not clear that such a result
should even be expected.

6. A symplectic foliation of M

In Section 3.2 we used the action of the group of diffeomorphisms Diffc(R
D) to build a

foliation of M: this allowed us to formally reconstruct the differential calculus on M. We
now specialize to the case D = 2d. In this case the underlying manifold R2d has a natural
extra structure, the symplectic structure ω. The goal of this section is to use this extra data
to build a second, finer, foliation of M; we then prove that each leaf of this foliation admits
a symplectic structure Ω. The foliation is obtained via a smaller group of diffeomorphisms
defined by ω, the Hamiltonian diffeomorphisms. Section 6.1 provides an introduction to this
group, cf. [36] or [32] for details.

6.1. The group of Hamiltonian diffeomorphisms. Recall that a symplectic structure
on a (possibly infinite-dimensional) vector space V is a 2-form ω : V × V → R such that

(6.1) ω♭ : V → V ∗, v 7→ ivω := ω(v, ·)

is injective. If V is finite-dimensional then ω♭ is an isomorphism; we will denote its inverse
by ω♯.

Let M be a smooth manifold of dimension D := 2d. A symplectic structure on M is a
smooth closed 2-form ω satisfying Equation 6.1 at each tangent space V = TxM ; equivalently,
such that ωd is a volume form on M . Notice that, since dω = 0, Cartan’s formula A.13 shows
that LXω = diXω. Throughout this section, to simplify notation, we will drop the difference
between compact and noncompact manifolds but the reader should keep in mind that in the
latter case we always silently restrict our attention to maps and vector fields with compact
support.

Consider the set of symplectomorphisms of M , i.e.

Symp(M) := {φ ∈ Diff(M) : φ∗ω = ω}.

This is clearly a subgroup of Diff(M). Using the methods of Section A.4 (see in particular
Remark A.21) one can show that it has a Lie group structure. Its tangent space at Id, thus
its Lie algebra, is by definition isomorphic to the space of closed 1-forms on M . Via ω♯
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and Formula A.13 this space is isomorphic to the space of symplectic or locally Hamiltonian
vector fields, i.e.

SympX := {X ∈ X (M) : LXω = 0}.

Remark 6.1. Equation A.9 confirms that SympX is closed under the bracket operation, i.e.
that it is a Lie subalgebra of X (M). Equation A.10 confirms that SympX is closed under
the push-forward operation, i.e. under the adjoint representation of Symp(M) on SympX ,
cf. Lemma A.19.

We say that a vector field X on M is Hamiltonian if the corresponding 1-form ξ := ω(X, ·)
is exact: ξ = df . We then write X = Xf . This defines the space of Hamiltonian vector fields
HamX . It is useful to rephrase this definition as follows. Consider the map

(6.2) C∞(M) → X (M), f 7→ df ≃ Xf := ω♯(df).

The Hamiltonian vector fields are the image of this map. This map is linear. It is not
injective: its kernel is the space of functions constant on M . In Section 7.1 we will start
referring to these functions as the Casimir functions for the map of Equation 6.2.

Remark 6.2. We can rephrase the properties of the map of Equation 6.2 by saying that there
exists a short exact sequence

(6.3) 0 → R → C∞(M) → HamX → 0.

As already mentioned, the function corresponding to a given Hamiltonian vector field is well-
defined only up to a constant. In some cases we can fix this constant via a normalization, i.e.
we can build an inverse map HamX → C∞(M). We then obtain an isomorphism between
HamX and the space of normalized functions. For example, if M is compact we can fix
this constant by requiring that f have integral zero,

∫

M
fωd = 0. If instead M = R2d and

we restrict our attention as usual to Hamiltonian diffeomorphisms with compact support,
we should restrict Equation 6.2 to the space R ⊕ C∞

c (R2d) of functions which are constant
outside of a compact set; by restriction we then get an isomorphism C∞

c (R2d) ≃ HamXc.

More generally, we say that a time-dependent vector field Xt is Hamiltonian if ω(Xt, ·) =
dft for some curve of smooth functions ft. We then say that the diffeomorphism φ ∈ Diff(M)
is Hamiltonian if it can be obtained as the time t = 1 flow of a time-dependent Hamiltonian
vector field Xft

, i.e. if φ = φ1 and φt solves Equation A.8.
Let Ham(M) denote the set of Hamiltonian diffeomorphisms. It follows from Lemma A.3

that all such maps are symplectomorphisms. It is not immediately obvious that Ham(M)
is closed under composition but it is not hard to prove that this is indeed true, cf. [36]
Proposition 10.2 and Exercise 10.3. Once again, the methods of Section A.4 and Remark
A.21 show that Ham(M) has a Lie group structure. Its tangent space at Id, thus its Lie
algebra, is isomorphic to the space of exact 1-forms, which via ω♯ corresponds to the space
of Hamiltonian vector fields.

It is a fundamental fact of Symplectic Geometry that ω defines a Lie bracket on C∞(M),
as follows:

{f, g} := ω(Xf , Xg) = df(Xg) = LXg
f.

This operation is clearly bilinear and anti-symmetric. The fact that it satisfies the Jacobi
identity, cf. Definition A.2, follows from the following standard result.
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Lemma 6.3. Let φ ∈ Symp(M). Then φ∗Xf = Xφ∗f and φ∗{f, g} = {φ∗f, φ∗g}. Applying
this to φt ∈ Symp(M) and differentiating, it implies:

(6.4) LXh
{f, g} = {LXh

f, g} + {f,LXh
g}.

Lemma 6.4. The map f 7→ Xf has the following property:

X{f,g} = −[Xf , Xg].

Proof: It is enough to check that dh(X{f,g}) = −dh([Xf , Xg]), for all h ∈ C∞(M). As
usual, it will simplify the notation to set X(f) := df(X). In particular Xf(h) = {h, f} and
dh([X, Y ]) = X(Y (h)) − Y (X(h)). Then:

X{f,g}(h) = {h, {f, g}} = −{f, {g, h}} − {g, {h, f}}

= −{{h, g}, f} + {{h, f}, g} = −Xf (Xg(h)) +Xg(Xf(h))

= −[Xf , Xg](h).

QED.

Recall from Section A.4 the negative sign appearing in the Lie bracket [·, ·]g on vector fields.
It follows from Lemma 6.4 that the map of Equation 6.2 is a Lie algebra homomorphism
between C∞(M) and the space of Hamiltonian vector fields, endowed with that Lie bracket.

Remark 6.5. Lemma 6.4 confirms that HamX is a Lie subalgebra of X (M). Lemma 6.3
confirms that it is closed under symplectic push-forward, so in particular it is closed under
the adjoint representation of Ham(M).

Remark 6.6. Notice that Ham(M) is connected by definition. If M satisfies H1(M,R) = 0,
i.e. every closed 1-form is exact, then every symplectic vector field is Hamiltonian. Now
assume that φ ∈ Symp(M) is such that there exists φt ∈ Symp(M) with φ0 = Id and φ1 = φ.
It then follows from Lemma A.3 that φ is Hamiltonian, i.e. that the connected component
of Symp(M) containing the identity coincides with Ham(M). In particular this applies to
M = R2d, so in later sections we could just as well choose to work with (the connected
component containing Id of) Sympc(R

2d) rather than with Hamc(R
2d). We choose however

not to do this, so as to emphasize the fact that for general M the two groups are indeed
different and that generalizing our constructions would require working with Ham(M) rather
than with Symp(M).

Remark 6.7. In many cases it is known that Symp(M) is closed in Diff(M) and that Ham(M)
is closed in Symp(M), see [36] and [39] for details.

6.2. A symplectic foliation of M. The manifold R2d has a natural symplectic structure
defined by ω := dxi ∧ dyi. Let J denote the natural complex structure on R2d, defined with
respect to the basis ∂x1, . . . , ∂xd, ∂y1, . . . , ∂yd by the matrix

J =

(

0 −I
I 0

)

.

Notice that ω(·, ·) = g(J ·, ·). It follows from this that Hamiltonian vector fields on R2d

satisfy the identity

(6.5) Xf = −J∇f.
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Set G := Hamc(R
2d), the group of compactly-supported Hamiltonian diffeomorphisms on R2d.

Let HamXc denote the corresponding Lie algebra, i.e. the space of compactly supported
Hamiltonian vector fields on R2d. The push-forward action of Diffc(R

2d) on M restricts to
an action of G. The corresponding orbits and stabilizers are

Oµ := {ν ∈ M : ν = φ#µ, for some φ ∈ G}, Gµ := {φ ∈ G : φ#µ = µ}.

Notice that this action provides a second foliation of M, finer than the one of Section 3.2.

Example 6.8. As in Example 2.2, let ai (i = 1, . . . , n) be a fixed collection of positive
numbers such that

∑

ai = 1 and x1, . . . , xn ∈ R2d be n distinct points. Set µ =
∑n

i=1 ai δxi
∈

M and

O =

{ n
∑

i=1

ai δx̄i
: x̄1, . . . , x̄n ∈ R2d are distinct

}

.

Since smooth Hamiltonian diffeomeorphisms are one-to-one maps of R2d it is clear that
Oµ ⊆ O. Given any x̄1 ∈ R2d \ {x2, . . . , xn} one can show that there exists a Hamiltonian
diffeomorphism φ with compact support such that φ(x1) = x̄1 and φ(xi) = xi for i 6= 1.
Thus, setting µ̄ := a1 δx̄1 +

∑n
i=2 ai δxi

, we see that µ̄ ∈ Oµ. Repeating the argument n − 1
times we conclude that O ⊆ Oµ, so O = Oµ.

Definition 6.9. Let µ ∈ M. Consider the L2(µ)-closure HamXc
µ

of HamXc. We can
restrict the operator divµ to this space; we will continue to denote its kernel Ker(divµ). We
define the symplectic tangent subspace at µ to be the space

TµO := HamXc
µ
/Ker(divµ) ⊆ L2(µ)/Ker(divµ).

Recall from Remark 2.7 the identification πµ : L2(µ)/Ker(divµ) → TµM. By restriction this

allows us to identify TµO with the subspace πµ(HamXc
µ
) ⊆ TµM. We define the pseudo

symplectic distribution on M to be the union of all spaces HamXc
µ
, for µ ∈ M. It is a

subbundle of T M. We define the the symplectic distribution on M to be the union of all
spaces TµO, for µ ∈ M. Up to the above identification, it is a subbundle of TM.

Remark 6.10. Recall that in general a Hilbert space projection will not necessarily map
closed subspaces to closed subspaces. Thus it is not clear that πµ(HamXc

µ
) is closed in

TµM. On the other hand, the space TµO of Definition 6.9 has a natural Hilbert space
structure. In other words, from the Hilbert space point of view the two notions of TµO
introduced in Definition 6.9 are not necessarily equivalent. This is in contrast with the two
notions of TµM, cf. Definition 2.5 and Remark 2.7.

Remark 6.11. Formally speaking the symplectic distribution is integrable because it is the
set of tangent spaces of the smooth foliation defined by the action of G.

Example 6.12. It is interesting to compare the space HamXc
µ

to the subspaces defined
by Decomposition 2.5. For example, let µ = δx. Recall from Example 2.8 that for any
ξ ∈ L2(µ) there exists ϕ̄ ∈ C∞

c such that ξ(x) = ∇ϕ̄(x). Thus ∇C∞
c

µ
= L2(µ). Now

choose any X ∈ L2(µ) and apply this construction to ξ := JX. Then X(x) = −J∇ϕ̄(x),
so HamXc

µ
= L2(µ). This is the infinitesimal version of Example 6.8. In particular,

HamXc
µ

= ∇C∞
c

µ
.

The “opposite extreme” is represented by the absolutely continuous case µ = ρL, for some
ρ > 0. In this case if a Hamiltonian vector field is a gradient vector field, e.g. −J∇v = ∇u,
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then the function u + iv is holomorphic on Cd, so u and v are pluriharmonic functions on
R2d in the sense of the theory of several complex variables. This is a very strong condition:
in particular, it implies that u and v are harmonic. Thus HamXc ∩ ∇C∞

c = {0}.
We can also compare HamXc

µ
with Ker(divµ). When µ = δx we saw in Example 2.8

that Ker(divµ) = {0}, so HamXc
µ
∩ Ker(divµ) = {0}. On the other hand, assume µ =

ρL for some ρ > 0. Then divµ(X) = ρdiv(X) + 〈∇ρ,X〉. Choose X = −J∇f . Then
div(X) = 0 so divµ(X) = 0 iff 〈∇ρ,−J∇f〉 = 0. Choosing in particular f = ρ shows that
HamXc ∩ Ker(divµ) 6= {0}.

We now want to show that each TµO has a natural symplectic structure; this will justify
the terminology of Definition 6.9. We rely on the following general construction.

Definition 6.13. Let (V, ω) be a symplectic vector space. Let W be a subspace of V .
In general the restriction of ω to W will not define a symplectic structure on W because
ω♭ : W → W ∗ will not be injective. However, set Z := {w ∈ W : ω(w, ·)|W ≡ 0}. Then ω
reduces to a symplectic structure on the quotient space W/Z, defined by

ω([w], [w′]) := ω(w,w′).

In our case we can set V := L2(µ) and W := HamXc
µ
. The 2-form

(6.6) Ω̂µ(X, Y ) :=

∫

R2d

ω(X, Y ) dµ

defines a symplectic structure on L2(µ). The restriction of Ω̂µ defines a 2-form

Ω̄µ : HamXc
µ
×HamXc

µ
→ R.

Notice that Ω̂µ is continuous in the sense of Definition 4.5, so Ω̄µ can also be defined as the
unique continuous extension of the 2-form

(6.7) Ω̄µ : HamXc × HamXc → R, Ω̄µ(Xf , Xg) :=

∫

ω(Xf , Xg) dµ.

Notice also that, for any X ∈ L2(µ),

(6.8)

∫

ω(X,Xf) dµ = −

∫

df(X) dµ = 〈divµ(X), f〉

so
∫

ω(X, ·) dµ ≡ 0 on HamXc
µ

iff X ∈ Ker(divµ). This calculation shows that the space Z

of Definition 6.13 coincides with the space Ker(divµ) ∩HamXc
µ
. We can now define Ωµ to

be the reduced symplectic structure on the space TµO = W/Z. In terms of the identification
πµ, this yields

(6.9) Ωµ : TµO × TµO → R, Ωµ(πµ(Xf), πµ(Xg)) :=

∫

ω(Xf , Xg) dµ.

Notice that Ωµ is not necessarily continuous in the sense of Definition 4.5.
Using Equation 6.5 we can also write this as

Ωµ(πµ(Xf), πµ(Xg)) =

∫

ω(J∇f, J∇g) dµ =

∫

g(J∇f,∇g) dµ.
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We now want to understand the geometric and differential properties of Ω̄. It is simple to
check that Ω̄ is G-invariant, in the sense that φ∗Ω̄ = Ω̄, for all φ ∈ G. Indeed, using Definition
4.8 and Lemma 6.3,

(φ∗Ω̄)µ(Xf , Xg) = Ω̄φ#µ(φ∗(Xf ), φ∗(Xg)) =

∫

R2d

ω(Xf◦φ−1 , Xg◦φ−1) dφ#µ

=

∫

R2d

{f ◦ φ−1, g ◦ φ−1} dφ#µ =

∫

R2d

{f, g} ◦ φ−1 dφ#µ

= Ω̄µ(Xf , Xg).

It then follows that Ω is also G-invariant.

Lemma 6.14. Given any X, Y, Z ∈ HamXc,

XΩ̄(Y, Z) − Y Ω̄(X,Z) + ZΩ̄(X, Y ) − Ω̄([X, Y ], Z) + Ω̄([X,Z], Y ) − Ω̄([Y, Z], X) = 0.

Proof: Notice that Ω̄(Y, Z) is a linear function on M in the sense of Example 4.6. It is
thus differentiable, cf. Example 4.11, and XΩ̄(Y, Z) =

∫

Xω(Y, Z) dµ. It follows that the
left hand side of the above equation reduces to

∫

dω(X, Y, Z) dµ, which vanishes because ω
is closed.

QED.

This shows that Ω̄ is differentiable and closed in the sense analogous to Definition 4.12, i.e.
using Equation A.19 (or Equation A.11) with k = 2 instead of k = 1. Using the terminology
of Section 4.2 we can say that Ω̄ is a closed pseudo linear 2-form defined on the pseudo
distribution µ→ HamXc

µ
of Definition 6.9.

Remark 6.15. As in Remark 6.10, it may again be useful to emphasize a possible misconcep-
tion related to the identification πµ : HamXc

µ
/Ker(divµ) ≃ πµ(HamXc

µ
). One could also

restrict Ω̂µ to the subspace W ′ := πµ(HamXc
µ
), obtaining a 2-form

Ω′
µ(πµ(Xf ), πµ(Xg)) =

∫

ω(πµ(J∇f), πµ(J∇g)) dµ.

It is important to realize that Ω′
µ does not coincide, under πµ, with Ωµ. Specifically, Ω′

µ

differs from Ωµ in that it does not take into account the divergence components of Xf , Xg.

In the framework of [5] it is more natural to work in terms of the space πµ(HamXc
µ
) ⊆

TµM than in terms of HamXc
µ
/Ker(divµ). From this point of view, the choice of Ωµ as a

symplectic structure on TµO may seem less natural than the choice of Ω′
µ. The fact that

Ωµ is even well-defined on TµO follows only from Equation 6.8. Our reasons for preferring
Ωµ are based on its geometric and differential properties seen above. Together with Remark
6.10, this shows that from a symplectic viewpoint the identification πµ is not natural.

We can now define the concept of a Hamiltonian flow on M as follows.

Definition 6.16. Let F : M → R be a differentiable function on M with gradient ∇F .
We define the Hamiltonian vector field associated to F to be XF (µ) := πµ(−J∇F ). A
Hamiltonian flow on M is a solution to the equation

∂ µt

∂t
= −divµt

(XF ).
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Let XF be a Hamiltonian vector field. Choose any Y ∈ TµO. We can then write Y =

πµ(−JỸ ), for some Ỹ ∈ ∇C∞
c

µ
. Notice that

Ωµ(XF , Y ) = Ω̂µ(∇F, Ỹ ) = Ĝµ(∇F,−JỸ ) = Ĝµ(∇F, Y ) = dF (Y ).

This shows thatXF satisfies the analogue of Equation 6.2 along O, justifying the terminology
of Definition 6.16. We refer to [3] and to [25] for specific results concerning Hamiltonian flows
on M.

6.3. Algebraic properties of the symplectic distribution. Regardless of Remarks 6.10
and 6.15, from the point of view of [5] it is interesting to understand the linear-algebraic
properties of the symplectic spaces (TµO,Ωµ), viewed as subspaces πµ(HamXc

µ
) ⊆ TµM.

Throughout this section we will use this identification. We will mainly work in terms of the
complex structure J on R2d and of certain related maps. This will also serve to emphasize
the role played by J within this theory. The key to this construction is of course the
peculiar compatibility between the standard structures g := 〈·, ·〉, ω and J on R2d, which we
emphasize as follows.

Definition 6.17. Let V be a vector space endowed with both a metric g and a symplectic
structure ω. Notice that there exists a unique injective A ∈ End(V ) such that ω(·, ·) =
g(A·, ·). Using the isomorphism g♯ : V ∗ → V induced by g, A = g♯ ◦ ω♭ so A is surjective iff
ω♭ is an isomorphism.

The fact that ω is anti-symmetric implies that A is anti-selfadjoint, i.e. A∗ = −A. We
say that (ω, g) are compatible if A is an isometry, i.e. A∗ = A−1. In this case A2 = −Id, i.e.
A is a complex structure on V . A subspace W ⊆ V is symplectic if the restriction of ω to
W defines a symplectic structure on W . In particular, if g and ω are compatible than any
complex subspace of V is symplectic.

The analogous definitions hold for a smooth manifold M endowed with a Riemannian met-
ric g and a symplectic structure ω. In general, given any function f on M , the Hamiltonian
vector field Xf is related to the gradient field ∇f as follows: Xf = A−1∇f . If g and ω are
compatible then Xf = −A∇f .

The standard structures g and ω on R2d are of course the primary example of compatible
structures. Given any µ ∈ M, Ĝµ and Ω̂µ (defined in Equations 2.4 and 6.6) are compatible
structures on L2(µ). In this case the corresponding automorphism is the isometry

J : L2(µ) → L2(µ), (JX)(x) := J(X(x)).

Example 6.18. Notice that HamXc
µ

= −J(TµM). Thus HamXc
µ

is J-invariant iff TµM
is J-invariant iff TµO = TµM. In this case, Ω̄µ = Ωµ = Ω′

µ. Example 6.12 shows that this
is the case if µ is a Dirac measure. Example 6.12 also shows that if µ = ρL for some ρ > 0
then the space ∇C∞

c is totally real, i.e. J(∇C∞
c ) ∩∇C∞

c = HamXc ∩∇C∞
c = {0}.

Our first goal is to characterize the orthogonal complement of the closure of TµO in TµM.
To this end, recall that any continuous map P : H → H on a Hilbert space H satisfies
Im(P )⊥ = Ker(P ∗), where P ∗ : H → H is the adjoint map. This yields an orthogonal

decomposition H = Im(P ) ⊕ Ker(P ∗).

Example 6.19. One example of such a decomposition is Decomposition 2.5, corresponding
to the map P := πµ defined on H := L2(µ): in this case Im(P ) is closed and πµ is self-adjoint
so Ker(P ∗) = Ker(πµ).
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Another example is provided by the map P := πµ ◦J , again defined on L2(µ). In this case
P ∗ = −J ◦πµ and Im(P ) = Im(πµ), Ker(P ∗) = Ker(πµ) so the decomposition corresponding
to P again coincides with Decomposition 2.5. On the other hand, Im(P ∗) = −J(Im(πµ))
and Ker(P ) = J−1(Ker(πµ)) = −J(Ker(πµ)) so the decomposition corresponding to P ∗ is
the (−J)-rotation of Decomposition 2.5, i.e.

L2(µ) = Im(P ∗) ⊕ Ker(P ) = −J(∇C∞
c

µ
) ⊕−J(Ker(divµ)).

In other words, there exists an orthogonal decomposition

(6.10) L2(µ) = HamXc
µ
⊕Ker(πµ ◦ J).

Lemma 6.20. For any µ ∈ M there exists an orthogonal decomposition

(6.11) TµM = TµO ⊕ Ker((πµ ◦ (−J))|TµM).

In particular, the restriction of πµ ◦ (−J) to TµO is injective.

Proof: We introduce the following notation: given any map P defined on L2(µ), let P ′

denote its restriction to the closed subspace TµM = Im(πµ).
Set P := πµ ◦ (−J). Then Im(P ′) ⊆ Im(πµ) so we can think of P ′ as a map P ′ : TµM →

TµM, yielding a decomposition TµM = Im(P ′) ⊕ Ker(P ′∗). It is simple to check that

P ′∗ = (πµ ◦ P ∗)′ = (πµ ◦ J ◦ πµ)′ = (πµ ◦ J)′.

In particular, P ′ is anti-selfadjoint. This implies that Ker(P ′∗) = Ker(P ′) so

TµM = Im(P ′) ⊕ Ker(P ′) = TµO ⊕ Ker(P ′).

QED.

It follows from Lemma 6.20 that any element X ∈ TµO can be uniquely written as

X = πµ(−JX̃), for some X̃ ∈ (Ker((πµ ◦ (−J))|TµM))⊥.

Remark 6.21. Let F be a differentiable function on M and let XF be the corresponding
Hamiltonian vector field. It follows from Lemma 6.20 that XF depends only on the compo-
nent of ∇F tangent to TµO. Intuitively, this suggests that the corresponding Hamiltonian
flow should depend only on the restriction of F to O.

Example 6.22. Let P ′ denote the restriction of πµ ◦(−J) to TµM. It follows from Example
6.12 that if µ = δx then the map P ′ is an isomorphism of TµM. If instead µ = ρL for some
ρ > 0 then P ′ is neither injective nor surjective.

Lemma 6.23. For any µ ∈ M the map

Ω♭
µ : TµO → (TµO)∗, X 7→ Ωµ(X, ·)

is a (non-continuous) isomorphism.

Proof: Given any X, Y ∈ TµO, we can write X = πµ(−JX̃), Y = πµ(−JỸ ) for some

X̃, Ỹ ∈ TµM. Then

Ωµ(X, Y ) = Ω̂µ(X̃, Ỹ ) = Ĝµ(X̃,−JỸ ) = Ĝµ(X̃, Y ) ≤ ‖X̃‖µ · ‖Y ‖µ.

This proves that Ω♭
µ is well-defined, i.e. that Ω♭

µ(X) ∈ (TµO)∗.

Assume Ωµ(X, Y ) = 0 for all Y ∈ TµO. Then, as above, Ĝµ(X̃, Y ) = 0 for all Y ∈ TµO
so X̃ ∈ (TµO)⊥. It follows from Lemma 6.20 that X = 0 so Ω♭

µ is injective.
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Now choose Λ ∈ (TµO)∗. Since (TµO)∗ = (TµO)∗, there exists X̃ ∈ TµO such that

Λ = Ĝµ(X̃, ·). Set X := πµ(−JX̃) ∈ TµO. Then

Λ(Y ) = Ĝµ(X̃, πµ(−JỸ )) = Ĝµ(X̃,−JỸ ) = Ω̂µ(X̃, Ỹ ) = Ωµ(X, Y ).

This shows that Ω♭
µ is surjective. QED.

Remark 6.24. Lemma 6.20 shows that the map πµ ◦ (−J) : TµO → TµO is invertible.
Its inverse is related to the notions introduced in Definition 6.17 as follows. We can use
the isomorphism (TµO)∗ ≃ TµO induced by Ĝµ to define a (non-continuous) isomorphism

A : TµO → TµO such that Ωµ(·, ·) = Ĝµ(A·, ·) on TµO. Notice that

Ĝµ(AX, Y ) = Ωµ(X, Y ) = Ω̂µ(X̃, Ỹ ) = Ĝµ(X̃, Y ),

where we use the notation introduced in the proof of Lemma 6.23. This shows that AX = X̃
so A−1 = πµ ◦ (−J).

If µ is a Dirac measure it is clearly the case that Gµ and Ωµ are a compatible pair in the
sense of Definition 6.17. This amounts to stating that (πµ ◦ (−J))2 = −Id on TµO. It is not
clear if this is true in general, even under the additional assumption that TµO = TµO.

7. The symplectic foliation as a Poisson structure

Most naturally occurring symplectic foliations owe their existence to an underlying Poisson
structure. The symplectic foliation described in Section 6.2 is no exception. The existence
of a Poisson structure on a certain space of distributions was pointed out in [33]. It stems
from the fact that the symplectic structure on R2d adds new structure into the framework of
Section 3.3. The goal of this section is to show that, reduced to M, this Poisson structure
coincides with the symplectic structure Ω defined in Section 6.2. We achieve this in Section
7.2 after briefly reviewing the relevant notions. We refer to [32] for many details.

7.1. Review of Poisson geometry. Recall from Section 6.1 that any symplectic structure
ω on a manifold M induces a Lie bracket on the space of functions C∞(M). Using the
Liebniz rule for the derivative of the product of two functions, we see that the corresponding
operators {·, h} have the following property:

{fg, h} = d(fg)(Xh) = df(Xh)g + dg(Xh)f = {f, h}g + {g, h}f.

This leads to the following natural “weakening” of Symplectic Geometry.

Definition 7.1. Let M be a smooth manifold. A Poisson structure on M is a Lie bracket
{·, ·} on C∞(M) such that each operator {·, h} is a derivation on functions, i.e.

{fg, h} = {f, h}g + {g, h}f.

A Poisson manifold is a manifold endowed with a Poisson structure.

On any finite-dimensional manifold it is known that the space of derivations on functions
is isomorphic to the space of vector fields. Thus on any Poisson manifold any function h
defines a vector field which we denote Xh: it is uniquely defined by the property that

df(Xh) = {f, h}, ∀f ∈ C∞(M).
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We call Xh the Hamiltonian vector field defined by h. As in Section 6.1, this process defines
a map

(7.1) C∞(M) → X (M), f 7→ Xf .

The kernel of this map includes the space of constant functions, but in general it will be
larger. We call these the Casimir functions of the Poisson manifold. Its image defines the
space Ham(M) of Hamiltonian vector fields. Lemma 6.4 applies with the same proof to show
that the map of Equation 7.1 is a Lie algebra homomorphism (up to sign).

At each point x ∈ M , the set of Hamiltonian vector fields evaluated at that point define
a subspace of TxM . The union of such subspaces is known as the characteristic distribution
of the Poisson manifold. This distribution is integrable in the sense that M admits a smooth
foliation such that each subspace is the tangent space of the corresponding leaf. In particular
each leaf has a well-defined dimension, but this dimension may vary from leaf to leaf. Each
leaf has a symplectic structure defined by setting

(7.2) ω(Xf , Xg) := {f, g}.

Remark 7.2. Notice that for any given Hamiltonian vector field Xf , the corresponding func-
tion f is well-defined only up to Casimir functions. It is however simple to check that ω is a
well-defined 2-form on each leaf, i.e. it is independent of the particular choices made for f
and g. It is also non-degenerate. The fact that ω is closed follows from the Jacobi identity
for {·, ·}.

Remark 7.3. Notice that the definition of a Poisson manifold does not include a metric. Thus
there is in general no intrinsic way to extend ω to a 2-form on M .

The following result is standard.

Proposition 7.4. Any Poisson manifold admits a symplectic foliation, of varying rank.
Each leaf is preserved by the flow of any Hamiltonian vector field. Any Casimir function
restricts to a constant along any leaf of the foliation.

Poisson manifolds are of interest in Mechanics because they provide the following gener-
alization of the standard symplectic notion of Hamiltonian flows.

Definition 7.5. A Hamiltonian flow on M is a solution of the equation d/dt(xt) = Xf (xt),
for some function f on M .

It follows from Proposition 7.4 that if the initial data belongs to a specific leaf, then the
corresponding Hamiltonian flow is completely contained within that leaf. It is simple to
check that if xt is Hamiltonian then f is constant along xt.

The theory of Lie algebras provides one of the primary classes of examples of Poisson
manifolds. To explain this we introduce the following notation, once again restricting our
attention to the finite-dimensional case. Let V be a finite-dimensional vector space, whose
generic element will be denoted v. Let V ∗ be its dual, with generic element φ. Let V ∗∗

be the bidual space, defined as the space of linear maps V ∗ → R. We will think of this as
a subspace of the space of smooth maps on V ∗, with generic element f = f(φ). We can
identify V with V ∗∗ via the map

(7.3) V → V ∗∗, v 7→ fv where fv(φ) := φ(v).

Now assume V is a Lie algebra. We will write V = g. Consider the vector space g
∗ dual to

g. We want to show that the Lie algebra structure on g induces a natural Poisson structure
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on g
∗. Let f be a smooth function on g

∗. Its linearization at φ is an element of the bidual:
df|φ ∈ g

∗∗. It thus corresponds via the map of Equation 7.3 to an element δf/δφ|φ ∈ g. We
can now define a Lie bracket on g

∗ by setting:

(7.4) {f, g}(φ) := φ([δf/δφ|φ, δg/δφ|φ]),

where [·, ·] denotes the Lie bracket on g. One can show that this operation satisfies the
Jacobi identity and defines a Poisson structure on g

∗.

Example 7.6. Assume f is a linear function on g
∗, f = fv (as in Equation 7.3). Then

δf/δφ ≡ v, so {fv, fw}(φ) = φ([v, w]).

We now want to characterize the Hamiltonian vector fields and symplectic leaves of g
∗.

Unsurprisingly, this is best done in terms of Lie algebra theory. Every finite-dimensional Lie
algebra is the Lie algebra of a (unique connected and simply connected) Lie group G. Recall
from Section A.2 the adjoint representation of G on g,

G→ Aut(g), g 7→ Adg.

Differentiating this defines the adjoint representation of g on g,

(7.5) ad : g → End(g), v = d/dt(gt)|t=0 7→ adv := d/dt(Adgt
)|t=0.

It follows from Lemma A.12 that adv(w) = [v, w].
By duality we obtain the coadjoint representation of G on g

∗,

G→ Aut(g∗), g 7→ (Adg−1)∗.

Notice that once again we have used inversion to ensure that this remains a group homo-
morphism, cf. Remark A.9. We can differentiate this to obtain the coadjoint representation
of g on g

∗, which can also be written in terms of the duals of the maps in Equation 7.5:

(7.6) ad∗ : g → End(g∗), v 7→ (−adv)
∗.

The following result is standard, cf. e.g. [32] Formula 10.7.4.

Lemma 7.7. The Hamiltonian vector field corresponding to a smooth function f on g
∗ is

Xf(φ) := (−adδf/δφ|φ
)∗(φ).

Thus the leaves of the symplectic foliation of g
∗ are the orbits of the coadjoint representation.

7.2. The symplectic foliation of M, revisited. Following [33] we now apply the ideas
of Section 7.1 to the case where g is the Lie algebra of Hamc(R

2d). Since this is an infinite-
dimensional algebra, the following discussion will be purely formal.

We saw in Remark 6.2 that g can be identified with the space of compactly-supported
functions:

(7.7) C∞
c (R2d) ≃ HamXc(R

2d), f 7→ Xf .

Its dual is then the distribution space (C∞
c )∗. Section 7.1 suggests that (C∞

c )∗ has a canon-
ical Poisson structure, defined as in Equation 7.4. We can identify the Poisson bracket,
Hamiltonian vector fields and symplectic leaves on (C∞

c )∗ very explicitly, as follows.
For simplicity let us restrict our attention to the linear functions on (C∞

c )∗ defined by
functions f ∈ C∞

c as follows:

(7.8) Ff : (C∞
c )∗ → R, Ff (µ) := 〈µ, f〉.
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Example 7.6 shows that the Poisson bracket of two such functions Ff and Fg can be written
in terms of the Lie bracket on C∞

c :

(7.9) {Ff , Fg}(C∞
c )∗(µ) = 〈µ, {f, g}R2d〉 = 〈µ, ω(Xf , Xg)〉.

Lemma 7.7 gives an explicit formula for the corresponding Hamiltonian vector fields XFf
:

at µ ∈ (C∞
c )∗, XFf

(µ) ∈ Tµ(C∞
c )∗ = (C∞

c )∗ is given by

〈XFf
(µ), g〉 = 〈(−adf)

∗(µ), g〉 = 〈µ,−adf(g)〉 = 〈µ,−{f, g}R2d〉 = 〈µ, dg(Xf)〉

= −〈divµ(Xf), g〉.

In other words, XFf
(µ) = −divµ(Xf).

Lemma 7.7 also shows that the leaves of the symplectic foliation are the orbits of the
coadjoint representation of Hamc(R

2d) on (C∞
c )∗. Let us identify the coadjoint representation

explicitly. Recall from Lemma A.19 that the adjoint representation of Hamc(R
2d) on HamXc

is the push-forward operation. Lemma 6.3 shows that, under the isomorphism of Equation
7.7, push-forward becomes composition. Thus the adjoint representation of Hamc(R

2d) on
HamXc corresponds to the following representation of Hamc(R

2d) on C∞
c (R2d):

(7.10) Ad : Hamc(R
2d) → Aut(C∞

c (R2d)), Adφ(f) := f ◦ φ−1.

The following calculation then shows that the coadjoint representation of Hamc(R
2d) on

(C∞
c )∗ is simply the natural action of Hamc(R

2d) introduced in Section 3.3:

〈(Adφ−1)∗(µ), f〉 = 〈µ,Adφ−1(f)〉 = 〈µ, f ◦ φ〉 = 〈φ · µ, f〉.

The symplectic structure on each leaf is given by Equation 7.2:

(7.11) ωµ(−divµ(Xf),−divµ(Xg)) := {Ff , Fg}(C∞
c )∗(µ) = 〈µ, ω(Xf , Xg)〉.

Remark 7.8. Notice that Poisson brackets and Hamiltonian vector fields are of first order
with respect to the functions involved. We can use this fact to reduce the study of general
functions F : (C∞

c )∗ → R to the study of linear functions on (C∞
c )∗, as presented above. For

example if ∇µF = ∇µFf , for some linear Ff as above, then XF (µ) = XFf
(µ).

Let us now restrict our attention to M ⊂ (C∞
c )∗. We want to show that the data defined

by the Poisson structure on (C∞
c )∗ restricts to the objects defined in Section 6.2. Firstly,

M is Hamc(R
2d)-invariant and the action of Hamc(R

2d) on (C∞
c )∗ restricts to the standard

push-forward action on M. This shows that the leaves defined above, passing through M,
coincide with the G-orbits of Section 6.2. Now recall from Section 3.3 that, given µ ∈ M,
the operator −divµ is the natural isomorphism relating the tangent planes of Definition 2.5
to the tangent planes of M ⊂ (C∞

c )∗. Equation 7.11 can thus be re-written as

ωµ(πµ(Xf ), πµ(Xg)) :=

∫

R2d

ω(Xf , Xg) dµ,

showing that the symplectic structure defined this way coincides with the symplectic form
Ωµ defined in Equation 6.9. To conclude, we want to show that the Hamiltonian vector
fields introduced in Definition 6.16 formally coincide with the Hamiltonian vector fields of
the restricted Poisson structure. Let F : M → R be a differentiable function on M. Fix
µ ∈ M. Up to L2

µ-closure, we can assume that ∇µF = ∇f , for some f ∈ C∞
c (R2d). Example

4.11 shows that ∇f = ∇µFf , where Ff is the linear function defined in Equation 7.8. Using
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Remark 7.8, the Hamiltonian vector of F at µ defined by the Poisson structure is thus
XF (µ) = XFf

(µ) = −divµ(Xf). In terms of the tangent space TµM, we can write this as

(7.12) XF (µ) = πµ(Xf) = πµ(−J∇f) = πµ(−J∇µF ).

It thus coincides with the vector field given in Definition 6.16.

Remark 7.9. The identification of (C∞
c )∗ with the dual Lie algebra of Hamc(R

2d) relied on
the normalization introduced in Remark 6.2. In turn, this was based on our choice to restrict
our attention to diffeomorphisms with compact support. In some situations one might want
to relax this assumption. This would generally mean losing the possibility of a normalization
so Equation 6.3 would leave us only with an identification HamX ≃ C∞(M)/R. Dualizing
this space would then, roughly speaking, yield the space of measures of integral zero: we
would thus get a Poisson structure on this space but not on M. However this issue is purely
technical and can be avoided by changing Lie group, as follows.

Consider the groupG of diffeomorphisms on R2d×R preserving the contact form dz−yidxi.
It can be shown that its Lie algebra is isomorphic to the space of functions on R2d × R
which are constant with respect to the new variable z: it is thus isomorphic to the space
of functions on R2d, so the dual Lie algebra is, roughly, the space of measures on R2d;
in particular, it contains M as a subset. This group has a one-dimensional center Z ≃ R,
defined by translations with respect to z. The center acts trivially in the adjoint and coadjoint
representations, so the coadjoint representation reduces to a representation of the group
G/Z, which one can show to be isomorphic to the group of Hamiltonian diffeomorphisms
of R2d. The coadjoint representation of G reduces to the standard push-forward action of
Hamiltonian diffeomorphisms, and the theory can now proceed as before.

Appendix A. Review of relevant notions of Differential Geometry

The goal of the first two sections of this appendix is to summarize standard facts concerning
Lie groups and calculus on finite-dimensional manifolds, thus laying out the terminology,
notation and conventions which we use throughout this paper. We refer to [26] and [32]
for details. The third section introduces the notion of invariant cohomology. The point of
view adopted here might be new. It provides useful analogies for the notion of “pseudo
forms” introduced in Section 4.2. The fourth section provides some basic facts concerning
the infinite-dimensional Lie groups relevant to this paper.

A.1. Calculus of vector fields and differential forms. Let M be a connected differen-
tiable manifold of dimension D, not necessarily compact. Let Diff(M) denote the group of
diffeomorphisms of M . Let C∞(M) denote the space of smooth functions on M . Let TM
denote the tangent bundle of M and X (M) the corresponding space of sections, i.e. the
space of smooth vector fields. Let T ∗M denote the cotangent bundle of M . To simplify
notation, ΛkM will denote both the bundle of k-forms on M and the space of its sections,
i.e the space of smooth k-forms on M . Notice that Λ0(M) = C∞(M) and Λ1M = T ∗M (or
the space of smooth 1-forms).

Let φ ∈ Diff(M). Taking its differential yields linear maps

(A.1) ∇φ : TxM → Tφ(x)M, v 7→ ∇φ · v,

thus a bundle map which we denote ∇φ : TM → TM . We will call ∇φ the lift of φ to
TM .
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By duality we obtain linear maps

(∇φ)∗ : T ∗
φ(x)M → T ∗

xM, α 7→ α ◦ ∇φ,

and more generally k-multilinear maps

(A.2) (∇φ)∗ : Λk
φ(x)M → Λk

xM, α 7→ α(∇φ ·, . . . ,∇φ ·).

This defines bundle maps (∇φ)∗ : ΛkM → ΛkM which we call the lift of φ to ΛkM .

Remark A.1. Notice the different behaviour under composition of diffeomorphisms: ∇(φ ◦
ψ) = ∇φ ◦ ∇ψ while (∇(φ ◦ ψ))∗ = (∇ψ)∗ ◦ (∇φ)∗. We will take this into account and
generalize it in Section A.2 via the notion of left versus right group actions.

We can of course apply these lifted maps to sections of the corresponding bundles. In doing
so one needs to ensure that the correct relationship between TxM and Tφ(x)M is maintained;
we emphasize this with a change of notation, as follows.

The push-forward operation on vector fields is defined by

(A.3) φ∗ : X (M) → X (M), φ∗X := (∇φ ·X) ◦ φ−1.

The corresponding operation on k-forms is the pull-back, defined by

(A.4) φ∗ : Λk(M) → Λk(M), φ∗α := ((∇φ)∗α) ◦ φ.

Definition A.2. Let V be a vector space. A bilinear anti-symmetric operation

V × V → V, (v, w) 7→ [v, w]

is a Lie bracket if it satisfies the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.

A Lie algebra is a vector space endowed with a Lie bracket.

The space of smooth vector fields has a natural Lie bracket. Given two vector fields X, Y
on M , we define [X, Y ] in local coordinates as follows:

[X, Y ] := ∇Y ·X −∇X · Y.

It is simple to show that this operation indeed satisfies the Jacobi identity. Let φt denote
the flow of X on RD, i.e. the 1-parameter group of diffeomorphisms obtained by integrating
X as follows:

(A.5) d/dt(φt(x)) = X(φt(x)), φ0(x) = x.

It is then simple to check that

(A.6) [X, Y ] = −d/dt(φt∗Y )|t=0 = d/dt(φ−t∗Y )|t=0 = d/dt((φ−1
t )∗Y )|t=0.

Equation A.6 gives a coordinate-free expression for the Lie bracket. It also suggests an
analogous operation for more general tensor fields. We will restrict our attention to the case
of differential forms.

Let α be a smooth k-form on M . Let X, φt be as above. We define the Lie derivative of
α in the direction of X to be the k-form defined as follows:

(A.7) LXα := d/dt(φ∗
tα)|t=0.

The fact that t 7→ φt is a homomorphism leads to the fact that d/dt(φ∗
tα)|t=t0 = φ∗

t0
(LXα).

Thus LXα ≡ 0 if and only if φ∗
tα ≡ α, i.e. φt preserves α. This can be generalized to

time-dependent vector fields as follows.
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Lemma A.3. Let Xt be a t-dependent vector field on M . Let φt = φt(x) be its flow, defined
by

(A.8) d/dt(φt(x)) = Xt(φt(x)), φ0(x) = x.

Let α be a k-form on M . Then d/dt(φ∗
tα)|t0 = φ∗

t0
(LXt0

α). In particular, φ∗
tα ≡ α iff

LXt
α ≡ 0.

Proof: For any fixed s, let ψs
t be the flow of Xs, i.e.

d/dt(ψs
t (x)) = Xs(ψ

s
t (x)), ψs

0(x) = x.

Then ψt0
t ◦ φt0(x) satisfies

d/dt(ψt0
t ◦ φt0(x))|t=0 = Xt0(φt0(x)), ψt0

0 ◦ φt0(x) = φt0(x)

so ψt0
t ◦ φt0(x) at t = 0 and φt at t = t0 coincide up to first order, showing that

d/dt(φ∗
tα)|t=t0 = d/dt((ψt0

t ◦ φt0)
∗α)|t=0 = φ∗

t0(d/dt((ψ
t0
t )∗α)|t=0) = φ∗

t0(LXt0
α).

QED.

Notice that if we define φ∗Y := (φ−1)∗Y and we define LXY := d/dt(φ∗
tY )|t=0, then

Equation A.6 shows that LXY = [X, Y ].

Remark A.4. Various formulae relate the above operations, leading to quick proofs of useful
facts. For example, the fact

(A.9) L[X,Y ]α = LX(LY α) −LY (LXα)

shows that if the flows of X and Y preserve α then so does the flow of [X, Y ]. Also,

(A.10) φ∗LXα = Lφ∗Xφ
∗α.

Remark A.5. Notice that LXY is not a “proper” directional derivative in the sense that it is
of first order also in the vector field X. In general the same is true for the Lie derivative of
any tensor. The case of 0-forms, i.e. functions, is an exception. In this case LXf = df(X)
is of order zero in X and coincides with the usual notion of directional derivative. We will
often simplify the notation by writing it as Xf .

We now want to introduce the exterior differentiation operator on smooth forms. Let α
be a k-form on M . Fix any point x ∈ M and tangent vectors X0, . . . , Xk ∈ TxM . Choose
any extension of each Xj to a global vector field which we will continue to denote Xj. Then,
at x,

dα(X0, . . . , Xk) :=

k
∑

j=0

(−1)jXjα(X0, . . . , X̂j, . . . , Xk)(A.11)

+
∑

j<l

(−1)j+lα([Xj, Xl], X0, . . . , X̂j, . . . , X̂l, . . . , Xk)

where on the right hand side the superscript ˆ denotes an omitted term and we adopt the
notation for directional derivatives introduced in Remark A.5.
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Lemma A.6. dα is a well-defined (k+1)-form, i.e. at any point x ∈M it is independent of
the choice of the extension. Exterior differentiation defines a first-order linear operator

(A.12) d : ΛkM → Λk+1M

satisfying d ◦ d = 0.

Remark A.7. It is not clear from the above definition that dα is tensorial in X0, . . . , Xk,
i.e. that it is independent of the choice of extensions. The point is that cancelling occurs
to eliminate the first derivatives of Xj which appear in Equation A.11. This is the main
content of Lemma A.6, which is proved by showing that Equation A.11 is equivalent to the
usual, local-coordinate, definition of dα. For example, let α =

∑D
i=1 αi(x)dx

i be a smooth

1-form on RD. Then dα =
∑

j<i

(

∂αi

∂xj −
∂αj

∂xi

)

dxj ∧ dxi. If we identify α with the vector field

x→ (α1(x), · · · , αD(x))T then dα(X, Y ) = 〈(∇α−∇αT )X, Y 〉.

Given a k-form α and a vector field X, let iXα denote the (k-1)-form α(X, ·, . . . , ·) obtained
by contraction. Then the Lie derivative and exterior differentiation are related by Cartan’s
formula:

(A.13) LXα = d iXα + iXdα.

A.2. Lie groups and group actions. Recall that a group G is a Lie group if it has the
structure of a smooth manifold and group multiplication (respectively, inversion) defines a
smooth map G×G→ G (respectively, G→ G). We denote by e the identity element of G.

Definition A.8. We say that G has a left action or acts on the left or, more simply, acts
on a smooth manifold M if there is a smooth map

G×M →M, (g, x) 7→ g · x

such that g ·(h ·x) = (gh) ·x. To simplify the notation we will often write gx rather than g ·x.
It is simple to see that if G has a left action on M then every g ∈ G defines a diffeomorphism
of M . More specifically, the action defines a group homomorphism G→ Diff(M).

We say that G has a right action or acts on the right on M if the opposite composition
rule holds: g · (h · x) = hg ·x. In this case it is standard to change the notation, writing x · g
rather than g ·x: this makes the composition rule seem more natural but does not affect the
substance of the definition, i.e. the fact that the induced map G→ Diff(M) is now a group
anti-homomorphism.

Remark A.9. Notice that any left action induces a natural right action as follows: x · g :=
g−1 · x. Conversely, any right action induces a natural left action: g · x := x · g−1.

For any group action we can repeat the constructions of Equations A.1 and A.2. For
example a left action of G on M induces a lifted left action of G on TM as follows:

G× TM → TM, g(x, v) := (gx,∇g · v).

However, we need to apply the trick introduced in Remark A.9 to obtain a coherent lifted
action on T ∗M or ΛkM . For example we can define a lifted left action by setting

G× ΛkM → ΛkM, g(x, α) := (gx, (∇g−1)∗α)

or a lifted right action by setting

G× ΛkM → ΛkM, g(x, α) := (g−1x, (∇g)∗α).
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We can also repeat the constructions of Equations A.3 and A.4. We thus find an induced
action of G on vector fields, defined by

(A.14) G× X (M) → X (M), g ·X := g∗X.

Likewise, there is an induced action of G on k-forms. On the other hand, with respect to
Section A.1 there now exists a new operation, as follows. Choose v = d/dt(gt)|t=0 ∈ TeG.
For any x ∈M we can define the tangent vector ṽ(x) := d/dt(gt ·x)|t=0. This defines a global
vector field ṽ on M , called the fundamental vector field associated to v. We have thus built
a map TeG→ X (M).

Let us now specialize to the case M = G. Any Lie group G admits two natural left
actions on itself. Studying these actions leads to a deeper understanding of the geometry of
Lie groups, thus of group actions. The first action is given by left translations, as follows:

L : G×G→ G, (g, h) 7→ Lg(h) := gh.

Let e ∈ G denote the identity element. Fix v = d/dt(gt)|t=0 ∈ TeG. The differential
∇Lg maps TeG to TgG. We may thus define a global vector field Xv on G by setting
Xv(g) := ∇Lg · v = d/dt(ggt)|t=0. This vector field has the property of being left-invariant
with respect to the action of G, i.e. Lg∗Xv = Xv. Viceversa, any left-invariant vector field
arises this way.

Lemma A.10. The set of left-invariant vector fields is a finite dimensional vector space
isomorphic to TeG. The Lie bracket of left-invariant vector fields is a left-invariant vector
field.

It follows from Lemma A.10 that TeG admits a natural operation [v, w] such that X[v,w] =
[Xv, Xw]. It follows from the Jacobi identity on vector fields that TeG equipped with this
structure is a Lie algebra: we call it the Lie algebra of G and denote it by g.

Remark A.11. Given any v ∈ TeG, we have now defined two constructions of a global vector
field on G associated to v: the fundamental vector field ṽ and the left-invariant vector field
Xv. It is simple to check that ṽ is invariant with respect to the right translations

R : G×G→ G, (g, h) 7→ Rg(h) := hg.

This implies that the space of fundamental vector fields coincides with the space of right-
invariant vector fields. The analogue of Lemma A.10 holds for right-invariant fields and can
be used to define a second Lie bracket on TeG. It can be checked that this new bracket is
simply the negative of the old one, i.e. the two brackets differ only by sign.

The second action of G on itself is the adjoint action defined by the inner automorphisms
Ig(h) := ghg−1. Each of these fixes the identity and thus defines a map

(A.15) Adg := ∇Ig : TeG→ TeG,

i.e. an automorphism of TeG. In other words the adjoint action of G on G induces a left
action of G on TeG called the adjoint representation of G.

The adjoint representation of G provides a useful way to calculate Lie brackets on g, as
follows.

Lemma A.12. Fix v, w ∈ g. Assume v = d/dt(gt)|t=0 for some gt ∈ G. Then [v, w] =
d/dt(Adgt

(w))|t=0.
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Proof: Assume w = d/ds(hs)|s=0. By definition,

(A.16) d/dt(Adgt
(w))|t=0 = d/dt d/ds(gthsg

−1
t )|t,s=0.

Notice that

(A.17) Xv(g) = ∇Lg(v) = d/dt(ggt)|t=0 = d/dt(Rgt
(g))|t=0.

In particular this shows that, for t = 0, Rgt
coincides with the flow of Xv up to first order.

Thus

[v, w] = (LXv
Xw)|e = d/dt((Rgt

)∗Xw)|e; t=0 = d/dt((Rg−1
t

)∗Xw)|e; t=0

= d/dt((∇Rg−1
t

)|gt
Xw|gt

)|t=0 = d/dt((∇Rg−1
t

)|gt
d/ds(gths)|s=0)t=0

= d/dt d/ds(gthsg
−1
t )|s,t=0.

QED.

Remark A.13. It is sometimes useful to distinguish the vector space TeG from the Lie algebra
g, so as to distinguish between maps or constructions which involve the Lie bracket and those
which do not. Our notation will sometimes reflect this.

For example, assume G has a left action on M . One can then show that the construction of
fundamental vector fields defines a Lie algebra anti-homomorphism g → X (M). Analogously
one can show that every Adg is an automorphism of g, i.e. it preserves the Lie algebra
structure: Adg([v, w]) = [Adg(v), Adg(w)].

Let us now return to the general case of a Lie group acting on a manifold M . We can apply
the above information on the geometry of Lie groups to develop a better understanding of
the geometric aspects of the group action.

Definition A.14. Assume G acts on M . Fix x ∈M . The orbit of x in M is the subset

Ox := {g · x : g ∈ G} ⊆M.

Notice that Ogx = Ox. The stabilizer of x in G is the closed subgroup

Gx := {g ∈ G : g · x = x} ⊆ G.

This is again a Lie group. We denote its Lie algebra gx: it is a subalgebra of g. It is simple
to check that Ggx = Ig(Gx) = g ·Gx · g−1 and that ggx = Adg(gx).

We say that a subset O ⊆M is an orbit of the action if O = Ox, for some x ∈M .

The differential geometry of an orbit can be studied via the theory of homogeneous man-
ifolds, i.e. manifolds obtained as quotients of Lie groups, as follows.

Lemma A.15. Let G be a Lie group and H be a closed subgroup. Then:

(1) The quotient space G/H has a natural smooth structure such that the projection
π : G→ G/H is a smooth map. The differential ∇π : TeG→ T[e](G/H) is surjective
with kernel TeH so it yields an identification T[e](G/H) ≃ TeG/TeH.

(2) Left multiplication defines a natural action of G on the manifold G/H such that π is
G-equivariant. Choose v ∈ TeG. Then the corresponding fundamental vector field on
G/H, evaluated at [e], coincides with ∇π(v).
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(3) Now assume G acts on a manifold M . Choose x ∈ M and set H := Gx. Then
the group action defines a smooth 1:1 equivariant immersion (not necessarily an
embedding)

j : G/H →M, j([g]) := g · x

with image Ox. Using this immersion we can thus identify Ox with G/Gx.

Lemma A.15 identifies the geometry of Ox with the geometry of the homogeneous space
G/Gx. The choice of point x plays an important role in this identification. However, given
an orbit O of G in M , the choice of x ∈ O is not canonical. Furthermore, given any other
point y ∈ O, the choice of g ∈ G such that y = gx is also not unique. The following lemma
shows how things change under different such choices.

Lemma A.16. Let G be a Lie group and H be a closed subgroup. Choose g ∈ G and let
Ig denote the corresponding inner automorphism of G. It is simple to check that setting
[Ig]([k]) := [Ig(k)] yields a well-defined commutative diagram

G
Ig

−−−→ G

π





y

π





y

G/H
[Ig]

−−−→ G/gHg−1

Now assume G acts on M . Choose an orbit O and points x, gx ∈ O. Set H := Gx so that
we can identify G/H ≃ Ox, G/gHg

−1 ≃ Ogx. In terms of these identifications, the map
[Ig] corresponds to the map g : Ox → Ogx. Taking the differential of the maps in the above
diagram thus leads to the commutative diagram

TeG
Adg

−−−→ TeG




y





y

TxO
∇g

−−−→ TgxO

where the vertical maps are those defined by the construction of fundamental vector fields.

Proof: Choose any k ∈ G. The identification j : G/Gx ≃ Ox implies [k] ≃ k · x. Using the
analogous identifications for gx we find

[Ig]([k]) = [gkg−1] ≃ gkg−1 · gx = g(k · x).

This proves that under these identifications [Ig] corresponds to g. Now choose v = d/dt(gt)|t=0 ∈
TeG. Then, using the identification G/Gx ≃ Ox,

∇π(v) = d/dt(π(gt))|t=0 = d/dt([gt])|t=0 = d/dt([gt · e])|t=0 = d/dt(gt · [e])|t=0

≃ d/dt(gt · x)|t=0.

This proves that ∇π(v) corresponds to ṽ(x), where ṽ is the fundamental vector field on Ox

defined by v. QED.
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A.3. Cohomology and invariant cohomology. Let M be a manifold. Recall that the
de Rham cohomology groups of M are defined as the quotient spaces

Hk(M ; R) :=
Ker(d : Λk(M) → Λk+1(M))

Im(d : Λk−1(M) → Λk(M))
.

Given an action of a group G on M , one can restrict one’s attention to the space of k-forms
which are invariant under the action of G. An analogous construction then leads to the
definition of the invariant de Rham cohomology groups of the pair (M,G), cf. e.g. [11]
Section V.12. For our purposes it is sufficient to only consider pairs of the form (G,H),
where H is a closed subgroup of G acting via right multiplication, i.e. Rh(g) := gh. The
construction is then as follows.

Consider the space of H-invariant k-forms on G,

Λk(GH) := {α ∈ Λk(G) : R∗
hα = α, ∀h ∈ H}.

Notice that the standard exterior differentiation operator d on Λk(G) is H-equivariant, i.e.
d(R∗

hα) = R∗
h(dα). It thus restricts to an operator

d : Λk(GH) → Λk+1(GH),

defining the invariant cohomology groups

Hk(GH ; R) :=
Ker(d : Λk(GH) → Λk+1(GH))

Im(d : Λk−1(GH) → Λk(GH))
.

There is a natural relationship between the invariant cohomology of the pair (G,H) and
the cohomology of the manifold G/H , as follows. The projection π : G → G/H satisfies
π ◦Rh = π. This implies that the pull-back operation induces injections

(A.18) π∗ : Λk(G/H) → Λk(GH).

Since π∗ commutes with d it defines homomorphisms between the corresponding cohomology
groups

π∗ : Hk(G/H ; R) → Hk(GH ; R), π∗[α] := [π∗α].

In the special case k = 1, this map is an injection. Indeed, given [α] ∈ H1(G/H ; R), assume
π∗[α] = 0. Then π∗α ∈ Λ1(GH) is exact, i.e. π∗α = df for some f ∈ Λ0(G/H). However it is
clear that Equation A.18 is an isomorphism for k = 0, i.e. f = π∗f ′ for some f ′ ∈ Λ0(G/H).
Thus π∗(α− df ′) = 0 so α = df ′, i.e. [α] = 0.

Now assume given a left action of G on a manifold M . Choose an orbit O of this action.
According to Lemma A.15, O is a smooth submanifold of M . Choosing x ∈ O allows us
to define the invariant cohomology of the pair (G,Gx). Using the point y = gx leads us
instead to the invariant cohomology of the pair (G,Gy). We can use Lemma A.16 to build
isomorphisms between these groups. In this sense, these cohomology groups depend only on
O. It thus makes sense to look for a construction of cohomology groups which is independent
of the choice of point. This can be done as follows.

Consider the set of smooth maps from O into the vector space Λk(g),

Λk(O; g) := C∞(O,Λk(g)).

Notice that, given α ∈ Λk(O; g) and v ∈ g, we obtain by contraction an element

ivα := α(v, ·, . . . , ·) ∈ Λk−1(O; g).
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Likewise, given v1, . . . , vk ∈ g, iterated contractions define an element

α(v1, . . . , vk) ∈ Λ0(O; g) = C∞(O,R).

For any given v0, . . . , vk ∈ g it thus makes sense to define

dα(v0, . . . , vk) :=

k
∑

j=0

(−1)j ṽjα(v0, . . . , v̂j , . . . , vk)(A.19)

+
∑

j<l

(−1)j+lα(−[vj , vl], v0, . . . , v̂j, . . . , v̂l, . . . , vk)

where [·, ·] denotes the Lie bracket on g, the superscript ˆ denotes an omitted term and ṽi

denotes the fundamental vector field associated to vi. One can check (or it follows from
Proposition A.17) that dα ∈ Λk+1(O; g) and that d(dα) = 0. We thus obtain cohomology
groups

Hk(O; g) :=
Ker(d : Λk(O; g) → Λk+1(O; g))

Im(d : Λk−1(O; g) → Λk(O; g))
.

Now recall that, for any x ∈ O, Lemma A.15 defines a projection g → TxO. Dually, this
implies that there exist natural injections Λk(TxO) → Λk(g). We can use these to define
injections

(A.20) Λk(O) → Λk(O; g), Λ 7→ Λ̄.

Proposition A.17. Given any x ∈ O and setting H := Gx, there exists a canonical iso-
morphism Λk(O; g) → Λk(GH) leading to a commutative diagram

Λk(O)
j∗

−−−→ Λk(G/H)




y





y
π∗

Λk(O; g) −−−→ Λk(GH)

where the vertical arrow on the left denotes the map of Equation A.20. This isomorphism
also leads to a canonical isomorphism between the corresponding cohomology groups, i.e. an
isomorphism Hk(O; g) → Hk(GH ; R). In particular, H1(O; R) can be canonically viewed as
a subgroup of H1(O; g).

Proof: Fundamental vector fields provide an identification TeG→ TgG for any g ∈ G, i.e. a
parallelization of G. Using this parallelization we can identify the space Λk(G) of all k-forms
on G with the space of smooth maps G → Λk(TeG). Restricting this identification gives
identifications

Λk(GH) ≃ {α : G→ Λk(TeG) : α(gh) = α(g), ∀h ∈ H}

≃ C∞(G/H,Λk(TeG))

= C∞(O,Λk(g))

= Λk(O; g).

It is simple to check that, up to these identifications, the above diagram commutes.



60 W. GANGBO, H. K. KIM, AND T. PACINI

Now choose α ∈ Λk(O; g). Let α′ denote the corresponding element of Λk(GH). As usual
let us denote by ṽ the fundamental vector field generated by v. We now want to prove that
d(α′) = (dα)′, i.e. that, for all v0, . . . , vk ∈ TeG,

(A.21) d(α′)(ṽ0, . . . , ṽk) = dα(v0, . . . , vk).

According to Equation A.11, we can calculate the left hand side using the usual bracket on

X (G). However, recall from Remark A.11 that [ṽi, ṽj] = −[̃vi, vj ]. The change of sign here is
cancelled by the choice of signs in Equation A.19. This proves the claim on d, thus on the
cohomology groups.

Clearly there also exists an identification j∗ : H1(O; R) ≃ H1(G/H ; R). We can now use
the injection π∗ : H1(G/H ; R) → H1(GH ; R) to prove the last claim. QED.

A.4. The group of diffeomorphisms. Let Diffc(R
D) denote the set of diffeomorphisms of

RD with compact support, i.e. those which coincide with the identity map Id outside of a
compact subset of RD. Composition of maps clearly yields a group structure on Diffc(R

D).
It is possible to endow Diffc(R

D) with the structure of an infinite-dimensional Lie group in
the sense of [37]. A local model is provided by the space Xc(R

D), endowed as in Section
2.1 with the structure of a topological vector space. More specifically, we can apply the
construction outlined in Remark A.21 below to build a local chart U for Diffc(R

D) near
the identity element Id. This yields by definition an isomorphism TIdDiffc(R

D) ≃ Xc(R
D).

We can then use right multiplication to build charts Uφ := {u ◦ φ : u ∈ U} around any
φ ∈ Diffc(R

D), leading to TφDiffc(R
D) ≃ {X ◦ φ : X ∈ Xc(R

D)}. Thoughout this article we
will generally restrict our attention to the connected component of Diffc(R

D) containing Id.

Remark A.18. It may be useful to emphasize that defining charts on Diffc(R
D) as above

leads to the following interpretation of Equation A.8: φt is a smooth path on Diffc(R
D) and

Xt ◦ φt ∈ Tφt
Diffc(R

D) is its tangent vector field.

As usual one can define the Lie algebra to be the tangent space at Id. The Lie bracket
[·, ·]g on this space can then be defined as in Section A.2, cf. [37].

Lemma A.19. The adjoint representation of Diffc(R
D) on Xc(R

D) coincides with the push-
forward operation: Adφ(X) = φ∗(X). Furthermore, the Lie bracket on Xc(R

D) induced by
the Lie group structure on Diffc(R

D) is the negative of the standard Lie bracket on vector
fields.

Proof: Assume that X integrates to φt ∈ Diffc(R
D). Then

Adφ(X) = d/dt(φ ◦ φt ◦ φ
−1)|t=0 = ∇φ|φ−1 ·X|φ−1 = φ∗(X).

As in Lemma A.12 we can calculate the Lie bracket by differentiating the adjoint represen-
tation. Thus:

[X, Y ]g = d/dt(Adφt
Y )|t=0 = d/dt(φt∗Y )|t=0 = −[X, Y ].

QED.

Remark A.20. Lemma A.19 explains why the map of Remark A.13 is an algebra anti-
homomorphism. Indeed, any left group action defines a homomorphism G → Diff(M),
thus a homomorphism between the corresponding Lie algebras. However, we now see that
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the bracket used for X (M) in Remark A.13 is the negative of the bracket induced by the Lie
group structure. Lemma A.19 is also related to Remark A.11.

Remark A.21. A similar construction proves that for any compact (respectively, noncompact)
manifold M the group of diffeomorphisms Diff(M) (respectively, Diffc(M)) is an infinite-
dimensional Lie group in the sense of [37]. Some care has to be exercised however in all
these constructions, specifically in the definition of the local chart near Id. The naive choice

X (M) → Diff(M), X 7→ φ1,

where φ1 is the time t = 1 diffeomorphism obtained by integrating X to the flow φt, is not
possible as it does not cover an open neighbourhood of Id, cf. [37] Warning 1.6. Instead, the
standard trick is to notice that diffeomorphisms near Id are in a 1:1 relationship (via their
graphs) with smooth submanifolds close to the diagonal ∆ ⊂ M ×M . These submanifolds
can then be parametrized as follows. Assume E → M is a vector bundle over M . Let Z
denote its zero section and U denote an open neighbourhood of Z. Assume one can find
a diffeomorphism ζ : U → M ×M sending Z to ∆. Then diffeomorphisms of M near Id
correspond to smooth submanifolds of E near Z, i.e. smooth sections. For example, to
construct a chart for diffeomorphisms close to Id we would use E := TM setting ζ to be the
Riemannian exponential map (with respect to a fixed metric on M).

Good choices of E and ζ for Diff(M) can yield as a by-product the fact that specific
subgroupsG of Diff(M) also admit Lie group structures such that the natural immersionG→
Diff(M) is smooth. For example, to prove this fact for the subgroups of symplectomorphisms
or Hamiltonian diffeomorphisms of a symplectic manifold (M,ω) (see Section 6.1) one can
choose E := T ∗M and the ζ defined by Weinstein’s “Lagrangian neighbourhood theorem”,
cf. [46] Section 6 or [36] Proposition 3.34.
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