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Abstract Purpose: To investigate
ventilator-induced lung injury (VILI),
several experimental models were
designed including different mam-
malian species and ventilator settings,
leading to a large variability in the
observed time-course and injury
severity. We hypothesized that the
time-course of VILI may be fully
explained from a single perspective
when considering the insult actually
applied, i.e. lung stress and strain.
Methods: Studies in which healthy
animals were aggressively ventilated
until preterminal VILI were selected
via a Medline search. Data on mor-
phometry, ventilator settings,
respiratory function and duration of
ventilation were derived. For each
animal group, lung stress (transpul-
monary pressure) and strain (end-
inspiratory lung inflation/lung resting
volume ratio) were estimated.
Results: From the Medline search
20 studies including five mammalian
species (sheep, pigs, rabbits, rats,

mice) were selected. Time to achieve
preterminal VILI varied widely
(18–2,784 min), did not correlate
with either tidal volume (expressed in
relation to body weight) or airway
pressure applied, but was weakly
associated with lung stress
(r2 = 0.25, p = 0.008). In contrast,
the duration of mechanical ventilation
was closely correlated with both lung
strain (r2 = 0.85, p \ 0.0001) and
lung strain weighted for the actual
time of application during each breath
(r2 = 0.83, p \ 0.0001), according to
exponential decay functions. When it
was normalized for the lung strain
applied, larger species showed a
greater resistance to VILI than smal-
ler species (medians, 25th–75th
percentiles: 690, 460–2,001 min vs.
16, 4–59 min, respectively;
p \ 0.001). Conclusion: Lung
strain may play a critical role as a
unifying rule describing the develop-
ment of VILI among mammals with
healthy lungs.
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Introduction

Although during respiratory failure mechanical ventila-
tion is essential for the maintenance of respiratory

function, it has been unequivocally observed to be asso-
ciated with deterioration of the underlying lung injury [1].
Hence, the existence of a lung injury directly caused by
aggressive ventilation, i.e. ventilator-induced lung injury
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(VILI), has constantly accompanied the development of
ventilation over the past 30 years [1–3]. Although most of
the information available has been obtained in experimental
settings, the clinical relevance of VILI has been clearly
demonstrated in patients affected by acute respiratory dis-
tress syndrome (ARDS), in which a more ‘‘gentle’’
ventilation has been shown to improve survival [4]. None-
theless, when looking at the bulk of data available on VILI, a
large variability in the findings observed and in the experi-
mental models employed (mammalian species, ventilatory
setting, severity of VILI) appears to hinder direct comparison
between different studies, thereby weakening the solidity of
the information obtained. Apparently, no unique rule has
been proposed so far to potentially unify all the information
obtained from a single and comprehensive perspective.

Traditionally VILI has been considered to be strictly
related, among other mechanisms [5–8], to the application of
excessive airway pressure (barotrauma) [2, 9, 10] and
excessive tidal volume (VT, volutrauma) [11]. More recently,
two different parameters describing the mechanical insult
associated with ventilation have been proposed as actual
determinants of VILI: lung stress, defined as the pressure
developing within the lung fibrous skeleton, which equals the
applied transpulmonary pressure [12], and lung strain, defined
as the ratio between the lung volume variation (due to both VT

and positive end-expiratory pressure, PEEP) and the lung
resting volume [13]. In ARDS, we have recently shown that
both VT expressed in relation to body weight and the airway
pressure applied are ‘‘inadequate surrogates’’ for the evalua-
tion of the actual lung stress and strain applied, due to a large
variability in lung resting volume (functional residual
capacity, FRC) and in chest wall mechanics [14]. Moreover,
we have recently reported [15] that different mechanisms,
such as the intratidal lung opening and closing, may be
responsible for the lung injury associated with ventilation in
ALI/ARDS, therefore questioning direct translation to
humans of findings obtained from experimental settings
regarding the role of an excessive VT and airway pressure.

We hypothesized that only the extent of the maximal stress
and strain actually applied may fully explain the time-course
of the development of VILI among different species, pro-
viding a unique rule describing this phenomenon. To test this
hypothesis, by retrospectively analysing data available in the
literature, and keeping constant the type of injury considered
(end-stage respiratory insufficiency), we investigated the
possible relationship between the time to achieve preterminal
VILI and the degree (and type) of the insult applied in in vivo
models of healthy animals of different mammalian species.

Materials and methods

Data selection

From a Medline search, updated until November 2009, arti-
cles on healthy animals ventilated until the achievement of

preterminal lung injury were selected. Such injury, denoting a
degree of VILI incompatible with survival, was defined as the
occurrence of at least one death explicitly related to ventila-
tion, or the development of at least one of the following
pathological conditions, as constantly associated with immi-
nent death: a decrease in the ratio between arterial partial
pressure of oxygen (PaO2) and inspiratory oxygen fraction
(FiO2) below 200, an increase in respiratory system elastance
greater than 150%, and the presence of lung oedema as shown
by an increase in either wet-to-dry ratio or extravascular lung
water greater than 150%. As the application of a relatively
high degree of PEEP is commonly considered protective
against VILI [2, 3, 16], we arbitrarily excluded articles in
which a PEEP value greater than 7 cmH2O was applied, or
articles (or groups of animals) in which the role of PEEP was
specifically investigated. We defined as ‘‘VILI groups’’ ani-
mals ventilated until the achievement of pre-terminal lung
injury, and as ‘‘control groups’’ animals ventilated without the
achievement of such injury.

Morphometric, ventilatory setting and respiratory
function data

From the selected articles, morphometric data from the
different animal species employed were obtained. Simi-
larly, data on the type of ventilation, as well as data on VT,
airway pressure, PEEP, respiratory rate, inspiratory to
expiratory ratio, PaO2, FiO2, and respiratory system
compliance were obtained from the selected articles.
Duration of mechanical ventilation was defined as the
average time until the achievement of preterminal lung
injury for animals included in the VILI groups, while it
equalled the time of exposure to mechanical ventilation
for animals included in the control groups.

Calculation of maximal lung stress and strain

Maximal pulmonary stress, i.e. the maximal transpulmonary
pressure applied at end-inspiration, was estimated based
upon data on the airway pressure recorded and measure-
ments of partitioned respiratory mechanics for each species,
as direct data on pleural pressures were not available [13]:

Lung stress ¼ Airway pressure

� ElastanceLung=ElastanceTotal

� �
½species�

ð1:1Þ
where ‘‘Airway pressure’’ denotes peak airway pressure
(or plateau airway pressure), and ‘‘(ElastanceLung/Elas-
tanceTotal)[species]’’ denotes the ratio between the lung
elastance and total elastance of the respiratory system
characterizing each species.

Maximal lung strain, i.e. the lung strain resulting at
end-inspiration, was estimated as previously reported



[13], assuming a monoalveolar lung model, thereby not
taking into account possible dishomogeneities developing
during inflation:

Lung strain ¼ VT þ PEEP volumeð Þ=FRC ð1:2Þ
where VT denotes the VT applied, and ‘‘PEEP volume’’ the
inflated lung volume due to the PEEP applied.

Finally, the average strain applied to the lung during
each breath was calculated according to the inspiratory–
expiratory time ratio:

Weighted lung strain ¼ VT þ PEEP volumeð Þ=FRC½
�Tinsp þ PEEP volume=FRCð Þ � Texp

�
= Tinsp þ Texp

� �

where VT denotes the VT applied, PEEP volume the
inflated lung volume due to the applied PEEP, Tinsp the
inspiratory time of each tidal breath, and Texp denotes the
expiratory time of each tidal breath.

Statistical analysis

The relationships between the duration of mechanical ven-
tilation and different ventilatory parameters were analysed
by applying the following exponential equation:
y = a 9 exp(-b 9 x), where y equals the duration of
mechanical ventilation, and x the ventilator parameter tested.
Statistical significance was defined as p \ 0.05. All data are
expressed as means ± SD, unless otherwise indicated.

Additional details on the methods employed and the
analyses performed are provided in the Electronic sup-
plementary material.

Results

Paper selection and study population

From the Medline search 20 original papers were selected
for analysis (see Table 1, as well as Tables 2 and 3 in the
Electronic supplementary material). From this selection
we were able to include five different mammalian species
(sheep, pigs, rabbits, rats and mice). As expected, body
weight varied widely across the species considered,
ranging from 0.023 kg (mice) to 29.9 kg (sheep). Of note,
time to achieve preterminal lung injury during mechanical
ventilation was markedly variable among the different
studies, ranging from 18 to 2,784 min.

Classical predictors of VILI: tidal volume and airway
pressure

As shown in Fig. 1a, in animals included in VILI groups, no
relationship was observed between the VT applied and the
duration of mechanical ventilation recorded (p = 0.73).

Moreover, the VT applied in animals of control groups
appeared to markedly overlap that applied in VILI groups.
Similarly, no association was observed between the airway
pressure applied and the duration of mechanical ventilation
in the overall population of mammalian species (p = 0.21,
Fig. 1b).

Novel predictors of VILI: maximal lung stress
and lung strain

Among animals included in the VILI groups, maximal
lung stress was inversely correlated with the duration of
mechanical ventilation (see Fig. 1 in the Electronic sup-
plementary material) according to an exponential decay
function, although the relationship did not appear to be
highly accurate (r2 = 0.25, p = 0.008). In contrast, the
duration of mechanical ventilation appeared to be closely
and inversely correlated with the maximal lung strain
applied (r2 = 0.85, p \ 0.0001; Fig. 2). Of note, data
from animals included in the control groups appeared to
be shifted mostly leftward and downward as compared to
the relationship observed in the VILI groups, suggesting
the importance of a threshold limit of time and strain for
the development of preterminal VILI. Moreover, when
considering lung strain weighted for the actual time of
application during each tidal breath (see Table 4 in the
Electronic supplementary material), a similar relationship
was observed (r2 = 0.83, p \ 0.0001; Fig. 3), although
there was a greater separation between animals ventilated
with a lung strain greater than 2.0, in which the devel-
opment of preterminal injury appeared to be almost
immediate, and animals ventilated with a lung strain
below 1.5, in which the time to achieve VILI exponen-
tially increased with the decrease of lung strain. Finally,
when the duration of mechanical ventilation was nor-
malized for either the maximal lung stress or lung strain
applied, larger animals showed a greater resistance to the
development of VILI than smaller species (medians,
25th–75th percentiles:: 46, 36–135 vs. 2, 1–9 min/
cmH2O, for lung stress, respectively; p \ 0.001; see
Fig. 3 in the Electronic supplementary material; and 690,
460–2,001 vs. 16, 4–59 min for lung strain, respectively;
p \ 0.0001; Fig. 4).

Discussion

When a mechanical force is applied to a material, two
phenomena occur as a reaction to the insult applied:
generation of a pressure with equal intensity and opposite
sign to the one actually applied, defined as ‘‘stress’’, and,
if the material is deformable enough, modification of its
resting shape, defined as ‘‘strain’’ [13]. If we consider the
pulmonary fibrous skeleton as the material stressed during



ventilation and the lung parenchyma as homogeneously
inflating during inspiration, lung stress equals the pressure
actually applied to the lung parenchyma, i.e. the trans-
pulmonary pressure, and lung strain equals the ratio
between the end-inspiratory inflated volume and the lung
resting volume, i.e. FRC [13]. Both lung stress and strain
have been recently investigated as possible parameters to
quantify the mechanical insult commencing the entire
cascade of VILI, whether is deemed to be either an
inflammatory or a pure mechanical process (or a combi-
nation of the two) [14, 17]. Considering VT as the most
commonly employed parameter in experimental VILI, we
did not observe any correlation between the time to
achieve preterminal lung injury and the VT/kg body
weight applied, while a strict and exponential correlation
was observed between the duration of mechanical venti-
lation and lung strain. It is, however, worth noting that the
use of VT/kg body weight as a surrogate for lung strain
holds true only if FRC is linearly correlated with body
mass among different mammals. Unfortunately, although

preliminary studies have indicated such a correlation [18],
FRC appears to be correlated rather with body weight to
the power 1.13 [19]. This indicates that in smaller ani-
mals, lung resting volume is smaller than in larger
animals, in proportion to their body mass, as also con-
firmed by our data (power 1.25 by allometric analysis,
r2 = 0.99, p = 0.0001, see Fig. 4a in the Electronic
supplementary material). It is therefore likely that the
poor value of VT/kg body weight and the firm validity of
lung strain in predicting the time to achieve preterminal
lung injury relies on the nonlinear correlation between the
lung resting volume receiving VT and body mass
throughout the species considered. Of note, no association
was observed between the VT/kg body weight applied and
the resulting lung strain (see Fig. 5 in the Electronic
supplementary material).

When lung strain reached a value around 2–3, the
mechanical ventilation time to achieve preterminal lung
injury exponentially decreased even down to relatively
few minutes. Several factors may provide a rationale for

Table 1 Study population (VILI group)

First author
[Reference]

Species Group
namea

Sample
size (no.
of animals)

Body
weight
(kg)

VT/kg body
weight
(ml/kg)

FRC
(ml)

Paw
(cmH2O)b

Lung
stress
(cmH2O)

Lung
strain

Time to
preterminal
lung injury
(min)

Kolobow [10] Sheepc B 7 26.00 58.9 643e 50.0 31.5 2.73 1,440
Tsuno [27] Sheepc B 8 29.90 22.0 833e 30.0 18.9 1.16 2,784
Tsuno [27] Sheepc C 11 29.90 30.8 703e 30.0 18.9 1.32 2,472
Mandava [20] Sheepc – 11 23.00 49.9 640e 50.0 31.5 2.76 720
Tsuno [28] Pigsc B 11 3.72 52.0 114f 40.0 32.6 1.91 1,320
Sinclair [29] Rabbitsd Eucapnia 6 3.30 25.0 25.8f 30 18.3 3.20 240
Webb [2] Ratsd HIPPB45/0 6 0.230 43.9 1.73f 45.0 35.6 5.83 25
Dreyfuss [9] Ratsc g4 8 0.323 40.0 2.43f 45.0 35.6 5.31 20
Dreyfuss [11] Ratsc HiP-HiV 6 0.300 40.0 2.26f 45.0 35.6 5.31 20
Dreyfuss [11] Ratsc LoP-HiV 7 0.300 44.0 2.26f Negative – 5.85 20
Sibilla [30] Ratsd g1 9 0.257 34.6 1.93f 56.2 44.4 5.52 39
Sibilla [30] Ratsd g2 9 0.257 32.5 1.93f 43.1 34.1 4.96 79
Sibilla [30] Ratsd g3 6 0.257 18.8 1.93f 34.7 27.4 4.01 253
Casetti [31] Ratsc iT = 1.0 10 0.350 51.5 2.63f 45.0 35.6 6.84 30
Casetti [31] Ratsc iT = 1.5 10 0.350 49.0 2.63f 45.0 35.6 6.51 30
Valenza [32] Ratsd ZEEP 5 0.235 42.0 1.77f 42.8 33.8 5.58 18
Valenza [32] Ratsd PEEP 3 5 0.235 34.0 1.77f 43.5 34.4 5.27 55
Valenza [32] Ratsd PEEP 6 5 0.235 25.0 1.77f 46.2 36.5 5.07 60
Walder [33] Ratsd g4 8 0.300 36.0 2.26f 29.7 23.5 5.32 338
Walder [33] Ratsd g5 6 0.300 45.0 2.26f 35.7 28.2 6.51 290
Valenza [34] Ratsd Supine 15 0.262 34.3 1.97f 28.8 22.8 4.56 73
DiRocco [35] Ratsd VILI 6 0.425 28.2 3.20f 40.0 31.6 3.75 78
Moriondo [36] Ratsd MV-4 5 0.345 32.0 2.60f 60.3 47.7 4.58 105
Villar [37] Ratsd HTV 20 0.325 20.0 2.66f 25.0 19.8 2.66 240
Wilson [38] Miced g1 12 0.0270 34.5 0.36f 39.0 34.0 2.57 156
Caironi [21] Miced HVt WT 15 0.0234 30.0 0.31f 21.9 19.1 2.38 540
Wilson [39] Miced WT 11 0.0292 38.5 0.39f 45.5 39.6 2.87 105
Pedreira [40] Miced VehiclePIP25 8 0.0350 30.5 0.47f 25.0 21.8 2.27 120

a Name of the animal group included in the current analysis as
reported in the original publication
b Airway pressure applied (either peak or plateau airway pressure,
if during pressure-controlled ventilation)
c Ventilated in pressure-controlled mechanical ventilation
d Ventilated in volume-controlled mechanical ventilation

e Values directly measured by the investigators and explicitly
reported in the original publication
f Values estimated from physiological studies in healthy animals of
the same species, as described in the ‘‘Materials and methods’’



the exponential shape of this relationship. Firstly, the
decrease in FRC with a reduction in body mass to a power
greater than 1 may provide per se a simple explanation for
this exponential association, suggesting that smaller spe-
cies may be positioned (as observed) in the flatter and
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Fig. 1 Relationship between the duration of mechanical ventilation
and the tidal volume (a) and the airway pressure applied (b), for
both animals included in the VILI groups (solid circles) and
animals included in the control groups (open circles). The duration
of mechanical ventilation was the time to achieve preterminal lung
injury in the VILI groups, and the time of application of mechanical
ventilation as experimentally set for animals included in the control
groups. Each point represents data obtained in a group of animals,
as reported in the studies included in the current analysis. For
detailed information regarding the cited articles, see Tables 1 and 3
in the Electronic supplementary material. For clarity, the species
studied is indicated only for animals included in the VILI groups. In
animals included in the VILI groups, no relationship was observed
between the tidal volume applied and the duration of mechanical
ventilation. Similarly, the time to achieve preterminal lung injury
did not appear to be related to the airway pressure applied. Of note,
data derived from the control groups appeared to markedly overlap
the data obtained from the VILI groups, both for the tidal volume
and the airway pressure applied
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circles). To describe the relationship (dashed line) an exponential
decay function was employed [y = a 9 exp(-b 9 x)]. Data from
animals in the control groups are also shown (open circles). Each
point represents data obtained in a group of animals, as reported in
the studies included in the current analysis. For clarity, the
mammalian species studied is indicated only for animals included
in the VILI groups. The duration of mechanical ventilation appears
to be highly and inversely correlated with the value of lung strain
applied throughout the species studied (r2 = 0.85, p \ 0.0001). Of
note, data from the control groups are shifted mostly leftward and
downward as compared to the relationship observed in the VILI
groups
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Fig. 3 Relationship between the time to achieve preterminal lung
injury and the lung strain applied as weighted for the actual time of
exposure during each tidal breath. To describe the relationship, an
exponential decay function (dashed line) was employed
[y = a 9 exp(-b 9 x)]. Each point represents data obtained in a
group of animals, as reported in the studies included in the current
analysis. The duration of mechanical ventilation appears to be
closely and inversely correlated with the weighted lung strain
applied (r2 = 0.83, p \ 0.0001). Of note, this relationship indicates
a critical threshold (around 1.5–2.0) of weighted lung strain
separating two different types of injury (see ‘‘Discussion’’ for more
details). For clarity, data from the control groups are not shown



rightward part of the relationship, in contrast to larger
species, as such species are always subjected to a greater
lung strain for a similar VT/kg body weight applied.
Secondly, it has been observed that the compliance of the
chest wall is higher in smaller animals, as shown by the
power laws reported among several mammal species
(b = 0.73 [19]), as well as the power law observed in the
species included in our study (b = 0.61, r2 = 0.92,
p = 0.009, see Fig. 4b in the Electronic supplementary
material). Consequently, the same lung stress applied at
the end of inflation may result, in smaller species, in a
higher lung strain, thereby inducing more severe and
rapid lung injury. Thirdly, based upon the pathological
alteration of the lung during the development of VILI, it is
likely that the initial lung strain applied does not remain
constant throughout the period in which mechanical
ventilation is applied, but it rather progressively increases.
In fact, as the interstitial oedema begins to develop as a
consequence of the altered permeability of the alveolar
capillary membrane, FRC will progressively shrink,
leading to a further increase in the lung strain actually
applied and therefore to the ‘‘avalanche’’ process often
characterizing the manifestation of VILI [9, 20, 21].

In contrast to what we expected, the estimated maxi-
mal lung stress appeared to be poorly correlated with the
duration of mechanical ventilation before the develop-
ment of preterminal lung injury (see Fig. 1 in the
Electronic supplementary material). Although we cannot
exclude some errors in estimating the transpulmonary
pressure applied (especially in larger animals), this find-
ing may suggest that the overall cascade of phenomena
leading to the manifestation of VILI is more associated

with the degree of the alveolar deformation rather than
with the resulting actual maximal stress. Moreover, these
findings may also indicate that for the same maximal
stress applied, the resulting alveolar deformation across
different species may be different, probably due to a
different composition of the force-bearing structure of the
lung. In support of this hypothesis, Mercer et al. [22]
observed that smaller species have a relatively lower
proportion of stress-bearing elements (collagen and elas-
tin fibres) within the lung than larger species.

The differential composition of the lung fibrous skel-
eton observed across mammalian species may also
provide a rationale for the difference in susceptibility to
VILI observed between smaller and larger animals, as
previously observed [23]. In fact, when we compared the
time to achieve preterminal lung injury per unit of lung
strain applied, smaller species showed a more rapid
development of VILI than larger species. Of note, a
similar distinction between these mammalian species has
been also observed when considering the relationship
between body mass and chest wall compliance [24], and
indirectly when looking at the variation in the propor-
tional amounts of collagen and elastin fibres within
alveolar septa with the increase in body mass [22].

Although our analysis was limited by its retrospective
nature and the small range of species considered, we think
it may provide some insights for clinical purposes. In fact,
the strict and exponential correlation between the time to
achieve preterminal lung injury and the lung strain or the
weighted lung strain applied may also indicate a critical
threshold suggesting two possible different mechanisms
for the development of VILI: (1) development of VILI
directly related to the excessive global stress and strain
applied (above a value of weighted lung strain of 2.0), and
(2) a less rapid time-course probably associated with
different mechanisms other than the pure application of
an excessive global stress and strain (below a value of
weighted lung strain of 1.5), such as a regional disho-
mogeneity in the stress/strain distribution [17], intratidal
alveolar opening and closing [5, 6], regional hypocapnia
[25] and regional areas of stress/strain amplification [26].
Such observations may have important consequences. In
fact, when adapting the relationship between the duration
of mechanical ventilation and the lung strain applied to
patients affected by ARDS, it is surprising that even a VT

equal to 12 ml/kg body weight leads to a lung strain
largely below the threshold of 1.5. In fact, if we consider a
man of 70 kg predicted body weight with an FRC of
about 900 ml [15], the application of a VT of 12 ml/kg
body weight and a PEEP level of 10 cmH2O will result in
a lung strain of about 1.3, which will even be reduced to
0.70 when corrected for the actual time of application
during each tidal breath! Although representing a rough
estimate, these data may suggest that the mechanisms by
which a low VT ventilation improves survival in ARDS
may hardly be explained only by the reduction in an
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presented as medians and means (solid lines within the boxes), as
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Smaller species showed a shorter duration of mechanical ventila-
tion per unit of lung strain applied than larger species (p \ 0.001)



excessive global lung stress and strain. On the contrary, it
is more likely that the reduction in the effects of other
mechanisms potentially related to VILI may play a criti-
cal role in such improvement, such as a reduction in
intratidal lung oscillation (or cycling lung opening and
closing) related to the driving pressure applied. Indeed, in
a relatively large population of ARDS patients, we
recently observed that lung strain was not associated with
mortality, in contrast to what we observed for the amount
of lung opening and closing, which appeared to be an
independent predictor of in-hospital mortality [15].

In conclusion, although some limitations of the anal-
ysis reported should be acknowledged (mainly its

retrospective nature, the necessity to estimate some
respiratory parameters not directly reported or measured,
and the assumption of an homogeneous alveolar inflation
during inspiration), we think that the data provided may
suggest the uniqueness of lung strain, and of lung strain as
weighted for the inspiratory/expiratory time, as a unifying
rule describing the development of VILI among mammals
with healthy lungs. Further studies would be greatly
welcomed to prospectively verify this hypothesis.
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