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Summary 

The role of endocytic proteins and the molecular mechanisms underlying epithelial cell cohesion 

and tumor dissemination are not well understood. Here, we report that the endocytic F-BAR-

containing CDC42-interacting protein 4 (CIP4) is upregulated in ERBB2-positive human breast 

cancer (BC), correlates with increased distant metastasis, and is an independent predictor of poor 

disease outcome in subsets of BC patients. Consistently, CIP4 is required for ERBB2- and TGF-ß1-

induced cell scattering, motility and invasion into 3D matrices by BC lines and for the conversion 

from ductal breast carcinoma in situ to invasive carcinoma in mouse xenograft models. In normal 

and tumorigenic derivatives of MCF10A breast epithelial cells, depletion of CIP4 induces cell 

compaction and impairs EGF-induced cell scattering, motility and invasion. These defects are not 

due to altered EGFR signaling or trafficking, but to impaired EGF-induced E-cadherin endocytosis 

and actomyosin contractility, which is required to generate tangential forces to break cell-cell 

junctions. At the molecular level, CIP4 promotes the formation of an E-cadherin-CIP4-SRC 

complex that controls SRC activation, E-cadherin endocytosis and localized phosphorylation of the 

myosin light chain kinase. Thus, CIP4 critically controls cell-cell cohesion and is required for the 

acquisition of an invasive phenotype in breast tumors. 
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Introduction  

 

Epithelial cells organize into polarized, coherent sheets of cells, whose architecture is dependent on 

the formation of cell-cell adhesion structures. A key component of epithelial junctions in vertebrates 

is the transmembrane protein E-cadherin, which defines the so-called adherens junction (AJ) 

(Reynolds and Roczniak-Ferguson, 2004; Zhurinsky et al., 2000). AJs undergo rapid assembly and 

disassembly to enable epithelial tissue morphogenesis and rearrangement, as well as the acquisition 

of cell motility during epithelial-mesenchymal transition (EMT) (Thiery et al., 2009). However, 

how cell-cell adhesion is disrupted during EMT is poorly understood. The key event in this process 

is the loss of E-cadherin-mediated cell-cell adhesion, mostly likely as a consequence of reduced E-

cadherin transcription, although alternative mechanisms might exist. 

A wealth of recent evidence points to a crucial role of E-cadherin endocytosis and recycling 

in tissue morphogenesis and EMT (Blankenship et al., 2007; Bryant and Stow, 2004; Langevin et 

al., 2005; Paterson et al., 2003; Shaye et al., 2008). Endocytic removal of E-cadherin from the cell 

surface is frequently and acutely induced by activation of receptor (Orlichenko et al., 2009) and 

non-receptor (Avizienyte et al., 2002) tyrosine kinases, as well as by stimulation with transforming 

growth factor-β (TGF-β) (Janda et al., 2006). In the case of epidermal growth factor (EGF)-induced 

E-cadherin downregulation and AJ disassembly, SRC has an important role. SRC forms complexes 

with E-cadherin and the EGF receptor (EGFR) (Shen et al., 2008), and, upon activation, promotes 

EMT by phosphorylating E-cadherin and triggering its ubiquitination-dependent endocytosis and 

degradation (Behrens, 1999; Fujita et al., 2002b). Cell-cell adhesion can, in turn, modulate growth 

factor signaling (Qian et al., 2004; Reshetnikova et al., 2007), suggesting that E-cadherin 

endocytosis and signal transduction from receptor tyrosine kinases (RTKs) are intimately 

intertwined in the maintenance of epithelial cell morphogenesis, as well as in controlling epithelial 

cell motility. Our understanding of the molecular circuitry involved in this crosstalk, however, is 

still incomplete. It is unclear how RTK activation induces E-cadherin dynamics and trafficking, 

what the key molecular determinants underlying this process are, and how E-cadherin endocytic 

machinery affects junctional tension. 

One set of proteins that is ideally positioned to control E-cadherin trafficking and junctional 

stability is the FCH-Bin-Amphiphysin-Rvs (F-BAR)-domain containing proteins. In mammals, F-

BAR proteins (hereafter referred to as the TOCA family) include three members: TOCA-1 

(Transducer of CDC42-dependent actin assembly), CIP4 (CDC42-interacting protein 4) and FBP17 

(formin-binding protein 17). These proteins are implicated in clathrin-mediated endocytosis (CME), 

during which they sense and promote membrane curvature through their F-BAR domain, and bind 

to key actin dynamics (e.g., the nucleation promoting factor N-WASP) and endocytic (e.g., 
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dynamin) regulators through their SH3 domain (Ho et al., 2004; Itoh et al., 2005; Tian et al., 2000). 

Furthermore, TOCA-1 and CIP4, through their HR1/CRIB (Homology Region1/CDC42 and Rac 

interacting binding motif)-like domain, act as effectors of the small GTPase CDC42 (Aspenstrom, 

1997; Ho et al., 2004; Itoh et al., 2005; Tian et al., 2000). We have recently shown that in C. 

elegans, TOCA family proteins localize at cell-cell junctions, where they regulate the organization 

of cortical F-actin and the levels of the junctional protein AJM-1(Giuliani et al., 2009). Similarly, 

the single Drosophila TOCA protein, dCIP4, contributes to E-cadherin trafficking by connecting the 

CDC42-dependent polarity complex, PAR-6/aPKC, with WASP and dynamin, ultimately regulating 

vesicle scission and internalization of E-cadherin (Balklava et al., 2007; Georgiou et al., 2008; 

Harris and Tepass, 2008; Leibfried et al., 2008). However, the functional role of this protein family 

in mammalian epithelial cell morphogenesis and epithelial tumor cell dissemination is unknown. 

Here, using a systematic RNAi approach to silence TOCA family proteins in normal and 

tumorigenic mammary epithelial cells, we show that CIP4, by regulating E-cadherin internalization 

and junctional actomyosin contractility, controls cell scattering, EMT and invasion in response to 

various motogenic signals. We further show that CIP4 elevated expression is selected in ERBB2+ 

and triple negative breast cancer tumors and correlates with increased risk of distant metastasis. 

Consistently, CIP4 is required for the conversion from ductal carcinoma in situ (DCIS) to invasive 

ductal carcinoma (IDC) in mouse xenograft models.  



 

 

5 

Results 

 

CIP4 controls MCF10A cell cohesion  

 To investigate the hypothesis that the TOCA family proteins are involved in epithelial 

morphogenesis also in mammals, we silenced each of the members of the family in normal human 

mammary epithelial cells MCF10A, either individually (CIP4-knockdown [KD] #1 and #2 obtained 

using two different lentiviruses; TOCA1-KD; FBP17-KD) or in combination (CIP4/TOCA-1 or 

CIP4/FBP17 double knockdown [2KD]; CIP4/TOCA-1/FBP17 triple knockdown [3KD]) (Fig. 1A). 

Phase contrast microscopy revealed that CIP4-depleted cells, but not scramble-control, TOCA1-KD 

or FBP17-KD cells, tended to cluster into cohesive colonies despite the presence of EGF in the 

medium, which is required for MCF10A growth and normally induces a scattered cell phenotype 

(Debnath et al., 2003; Singh et al., 2009) (Fig. 1B). We quantified these morphological phenotypes 

and confirmed that removal of CIP4 significantly increased the number of tightly compacted 

colonies and concomitantly reduced the number of single isolated cells (Fig. 1C). Notably, the 

simultaneous silencing of two or all three TOCA family proteins did not augment the proportion of 

compact colonies vs. single cells observed following depletion of CIP4 alone (Fig. 1C and Fig. 

S1A). In line with these data, reconstitution of CIP4 in CIP4-KD cells, using an RNAi-resistant 

GFP-CIP4 expressed at levels comparable to the endogenous protein, restored a scattered cell 

phenotype, with significantly fewer and less compact cell clusters than in CIP4-KD cultures (Fig. 

1D-F). Thus, removal of CIP4, but not of other TOCA family members, enhances cell cohesion and 

the formation of tightly adherent cell clusters.  

We next characterized the main structural and molecular features of the compact cell 

clusters. We investigated the status of cell-cell junctions after removal of CIP4, focusing on AJs. E-

cadherin displayed the expected localization at cell-cell contacts and in intracellular vesicular 

structures in all lines tested (Fig. S1B-C). However, CIP4-depletion caused a marked increase in 

junctional E-cadherin in clustered cells (Fig. S1B-C). Although E-cadherin participates in the 

regulation of cell growth by mediating homophilic cell-cell adhesion and contact inhibition of 

growth (Gumbiner, 2005), the increased levels of junctional E-cadherin in CIP4-depleted cells did 

not influence their rate of cell proliferation (Fig. S1D). The formation of compact colonies 

following CIP4 removal was also accompanied by a homogenous distribution of the Golgi complex 

that was oriented in the majority of clustered CIP4-KD cells (>70%) towards the free-facing surface 

of the cell (Fig. S2E). In contrast, control cells formed loosely adherent colonies, which displayed a 

randomly oriented Golgi complex, even in cells engaged in junctional contacts along three sides 

(compare insets in Fig. S1E). Additionally, CIP4-KD cell colonies displayed thick F-actin cables 

extending along the external cortex, while F-actin was reduced along cell-cell junctions as 
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compared to scramble-control or TOCA-1-KD and FBP17-KD cells (Fig. S1F). Collectively, these 

findings indicate that CIP4 is unique among the TOCA family members in that it regulates cell 

cohesion and junctional adhesion of MCF10A cells. 

 

CIP4 does not influence motility parameters of individual MCF10A cells, but indirectly 

controls the motility behavior 

The dynamic remodeling of cell-cell junctions is crucial for epithelial tissue plasticity and 

cell motility. Thus, we tested, by time-lapse microscopy, the motility of the different MCF10A 

TOCA family-KD cells. In the presence of EGF, control cells were scattered and highly motile, 

frequently coming into contact with each other and moving apart soon after. In contrast, CIP4-KD 

cells tended to aggregate into clusters and ceased migration (Movie S1). Indeed, quantification of 

motility parameters indicated that CIP4-KD cells displayed markedly reduced velocity once they 

encountered a cell cluster (Fig. S2A). However, isolated CIP4-KD cells moved at a similar speed to 

control cells (Fig. S2B), arguing that CIP4 has no major effect on the basic cell locomotion 

machinery. Similar migratory parameters and behavior were observed in the 2KD and 3KD cells 

(Fig. S2A-B), whereas, TOCA1-KD and FBP17-KD MCF10A cells resembled control cells, albeit 

removal of FBP17 reduced slightly, but not significantly, cell velocity (Fig. S2A-B and Movies S1). 

Thus, removal of CIP4 alone is responsible for the aberrant migratory phenotype. Notably, all cell 

lines eventually formed an epithelial monolayer and established stable cell-cell junctions. 

Additionally, the ability of MCF10A cells to migrate into a wound as a cohesive cohort was not 

affected by removal of CIP4 (Fig. S2C) or of other TOCA family members (data not shown). 

Together, these results suggest that CIP4 indirectly controls motility behavior, likely by stabilizing 

AJs, even under conditions in which junctional dynamics is enhanced by the activation of EGFR 

signaling.   

 

CIP4 is required for EGF-induced scattering of MCF10A cells, but does not affect EGFR 

signaling, trafficking and CDC42-N-WASP activation 

 MCF10A cells require EGF to maintain epithelial features (Petersen et al., 1992). In the 

presence of EGF, control MCF10A cells typically scattered over the available space and failed to 

form stable cell-cell contacts (Fig. S2D). Conversely, after EGF deprivation, control cells, as well as 

TOCA1-KD and FBP17-KD cells, aggregated forming compact cell clusters, with a prominent 

cortical actin ring and junction-restricted E-cadherin, reminiscent of the phenotypic behavior of 

CIP4-KD cells grown in the presence of EGF (Fig. S2D-E). These results suggest that CIP4-KD 

cells might be defective in responding to acute EGF stimulation. To test this possibility, we 

performed EGF-induced cell scattering assays. Control and CIP4-KD cells deprived of EGF form 
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compact clusters. Within a few minutes of EGF stimulation, control cells became very motile, 

extending elongated cell protrusions away from the cluster, and were almost completely scattered 2 

h after EGF addition (Movie S2). In contrast, CIP4-KD cells were immobile, poorly dynamic, and 

did not start to break away from the cluster until 4 h after EGF addition and only completed 

scattering 11 h after EGF stimulation (Fig. 1E and Movie S2). We further quantified cell scattering 

by measuring the total distance travelled by cells from their original position within a colony. 

Removal of CIP4 reduced the scattering distance by ~80% compared with control cells (Fig. 1H). 

The increased cell compaction and delayed EGF-induced scattering of CIP4-KD cells suggests that 

CIP4 might affect the ability of epithelial cells to invade into the ECM, particularly under 

chemotactic stimulation with EGF. Consistently, CIP4 removal significantly impaired the invasive, 

EGF-dependent, chemotaxis of MCF10A cells into Matrigel-coated transwells (Fig. 1I).  

To determine whether defective EGF-induced cell scattering of CIP4-KD cells was due to 

alterations in EGFR signaling or trafficking, we first evaluated the levels of EGFR expression. We 

detected no significant differences in total (in both sparse or confluent cells) or cell surface levels of 

EGFR among the cell lines tested (Fig. S2A and S2B). Similarly, CIP4 depletion did not 

significantly alter EGFR signaling as determined by measuring the levels of activated ERK1/2, 

AKT (Fig. S2C) and EGFR (Fig. S2F).  

TOCA family members have been shown to control early events of EGFR CME and 

trafficking (Itoh et al., 2005). However, CIP4 depletion did not significantly alter the rates of EGFR 

endocytosis (Fig. S3D), recycling (Fig. S3D-E) or the extent of EGFR degradation (Fig. S2F). Thus, 

CIP4 is dispensable for EGFR signaling, stability and intracellular trafficking. 

TOCA family members have also been shown to be essential for activation of N-

WASP/WASP downstream of CDC42 in mammalian cells, as well as in Drosophila. However, 

removal of CIP4 did not alter EGF-mediated activation of N-WASP, monitored by measuring its 

tyrosine phosphorylation (Torres and Rosen, 2003) (Fig. S2G), suggesting that this latter pathway is 

not responsible for the increased cell cohesion following CIP4 silencing. 

 

CIP4 controls cell scattering and cohesion by regulating EGF-induced actomyosin contraction 

Epithelial cell scattering critically depends on modulation of junctional-localized actomyosin 

contractility (de Rooij et al., 2005). Indeed, time-lapse recordings of EGFP-E-cadherin dynamics 

during MDCK cell scattering revealed that tensile, orthogonal stresses build up along cell-cell 

junctions, until cells are abruptly pulled apart (de Rooij et al., 2005). We observed a similar 

dynamic behavior of junctional EGFP-E-cadherin during EGF-mediated scattering of MCF10A 

cells (Movie S3). Conversely, in CIP4-depleted cells,  orthogonal tensile stress was insufficient to 

pull apart cell-cell junctions (Movie S3). This result suggests that CIP4 might regulate EGF-
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dependent contractility at junctions. To test this possibility, we investigated the phosphorylation of 

the myosin II regulatory light chain (MLC), which is the main regulatory event leading to 

actomyosin contractility (Bresnick, 1999). EGF stimulation increased total levels of phosphorylated 

MLC (pMLC) and promoted the accumulation of pMLC adjacent to cell-cell junctions in control 

cells. Both these events were markedly diminished following CIP4 depletion (Fig. 2A and Fig. 

S4A). To verify that CIP4 removal causes cell compaction, at least in part, by impairing the 

localized accumulation of pMLC, and thus actomyosin contractility, we performed three additional 

sets of experiments. In the first approach, we took advantage of recent observations indicating that 

junctional E-cadherins act as mechanosensor devices (Borghi et al., 2012). We used a next 

generation    rster resonance energy transfer (FRET)-based, E-cadherin tension sensor 

[EcadTSMod-CFP(E2)] to measure the magnitude of tensile forces transmitted through the 

cytoplasmic domain of E-cadherin in epithelial cells (Borghi et al., 2012) during scattering 

following stimulation with EGF. The EcadTSMod, is built by inserting in the cytoplasmic tail of E-

cadherin the monomeric, aggregation-free variant of CFP(E2) fused to the N terminus of a protein 

domain from spider silk that functions as a nanospring and EYFP (Venus, A206K) fused to the C 

terminus (Borghi et al., 2012). Under conditions of low tension, the CFP(E2) and Venus are close 

enough to undergo FRET; however, when orthogonal tensile force is applied, the distance between 

the two fluorescent proteins increases and FRET decreases (Fig. 2B). Thus, the FRET signal 

responds to mechanical tension across E-cadherin molecule, such as those that develop as a 

consequence of EGF-mediated scattering. We transiently express EcadTSMod-CFP(E2) in scr-CTR 

and CIP4-KD and verify that is properly localizes along junction (Fig 2C). We further express an 

EcadTSM dΔcyt -CFP(E2), as a control construct, which can no longer interact with the 

underlying actin cyt skelet n due t  the lack  f the β-catenin–binding domain, hence it is 

insensitive to actomyosin, tensile stresses (Borghi et al., 2012). Under EGF deprivation, both scr-

CTR and CIP4-KD cells were compact, and display similar elevated E-cadherin FRET index at cell-

cell junction. However, following EGF stimulation, the junctional FRET index significantly 

decreases in scr-CTR, but not in CIP4-KD (Fig. 2C-D and Movie S4). As expected, we detected no 

variation in  RET index when EcadTSM dΔcyt -CFP(E2) was used (Fig. 2D). Thus, Loss of CIP4 

prevents the accumulation of tension across junctional E-cadherin. As a second approach we 

exploited recent findings demonstrating that the mechanoresponse of E-cadherin is potentiated by 

vinculin, which is specifically recruited to anchor sites within AJs subjected to tensile stress in a 

myosin II- and actomyosin contractility-dependent fashion (le Duc et al., 2010). Consistently, we 

found that in control MCF10A cells, EGF induced accumulation of pMLC at adhesion sites, which 

was accompanied by the accumulation of vinculin (Fig. 2E). Conversely, little or no detectable 

vinculin accumulated at cell-cell junctions after removal of CIP4, mirroring the lack of pMLC 
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recruitment (Fig. 2E). Secondly, we reasoned that we should be able to rescue defective EGF-

induced accumulation of pMLC at adhesion sites and cell scattering in CIP4-KD cells by enhancing 

cell contractility. Actomyosin contractility is dependent on cell adhesion onto the underlying ECM 

(Choquet et al., 1997; Danen et al., 2005; Ren et al., 1999). Furthermore, increased cell adhesion 

strength correlates with increased cell scattering (de Rooij et al., 2005). Hence, we tested whether 

plating cells on ECM that is known to activate integrin-mediated adhesion and actomyosin 

contractility, rescued defective cell scattering of CIP4-KD cells. MCF10A cells rapidly adhere and 

spread when plated onto fibronectin, but poorly adhere to laminin and vitronectin (Fig. S5A). CIP4 

removal slightly delayed adhesion to fibronectin, but did not affect cell spreading, integrin-

dependent activation of focal adhesion kinase (FAK; Fig. S5A-C), or the surface levels of total and 

active β1 and of total α5β1 integrins (Fig. S5D), despite a reduction in the internalization of β1 

adhesion receptors (Fig. S5E). Remarkably, however, the cell scattering deficiency and cell 

cohesion of CIP4-KD cells were rescued upon plating cells onto fibronectin, but not onto laminin or 

vitronectin (Fig. 3A-B, Fig. S4B-D and Movie S5). This correlated with increased EGF-induced 

levels of total and junctional-localized pMLC (Fig. 3C and Fig. S4B). Collectively, these results 

suggest that CIP4 is required to promote optimal EGF-induced actomyosin contractility, which 

contributes to the generation of sufficient tension to break cell junctions apart and promote cell 

scattering.  

 

CIP4 is required for E-cadherin internalization upon EGF stimulation 

 EGF stimulation promotes E-cadherin mobilization and disassembly (Durer et al., 2007). 

The increased cell cohesion resulting from CIP4 removal could partly be explained by a direct 

effect of CIP4-KD on E-cadherin expression. However, E-cadherin levels were not significantly 

different between control and CIP4-KD MCF10A cells (Fig. 4A). Alternatively, CIP4 might 

influence E-cadherin trafficking (Le et al., 1999). We initially examined in detail the dynamics of 

EGFP-E-cadherin after acute stimulation with EGF. EGFP-E-cadherin expressed in control cells 

initially localized at cell-cell junctions and in vesicular intracellular structures, likewise the 

endogenous protein (Fig. 4B). Stimulation with EGF promoted the mobilization of E-cadherin into 

vesicles (Fig. 4B). Depletion of CIP4 impaired E-cadherin internalization and prevented EGF-

induced junctional disruption (Fig. 4B and Movie S3). Next, we sought to quantify E-cadherin 

internalization using a surface biotinylation and internalization assay. We observed, as expected, 

that a fraction of cell surface E-cadherin is rapidly internalized upon EGF addition to control 

MCF10A cells (Fig. 4C-D). Silencing of CIP4 (either alone or in conjunction with other TOCA 

family members) increase, instead, the levels of steady-state cell surface E-cadherin (Fig. 4C, lane 

‘M’), consistent with augmented cell compaction and increased junctional localization of this 
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protein. Furthermore, EGF-induced internalization of E-cadherin was markedly reduced in CIP4-

KD and 3KD cells compared to control MCF10A cells (Fig. 4C-D).  

To corroborate these latter observations, we also employed HECD-1, an antibody that 

recognizes the extracellular domain of E-cadherin, to monitor EGF-induced internalization of E-

cadherin (Fig. 4E and Fig. S6A). EGF induced a rapid internalization of E-cadherin, which was 

impaired by removal of CIP4. The extent and kinetics of E-cadherin endocytosis measured using 

the HECD-1 antibody were similar to those obtained using the biotinylation assay (compare Fig. 4E 

with 4D). Thus, CIP4 is required to promote EGF-induced E-cadherin endocytosis. 

Collectively, our data indicate that CIP4 is a pivotal regulator of epithelial morphogenetic 

events that controls the amount of junctional E-cadherin through endocytosis and growth factor-

induced, cell adhesion-dependent actomyosin contractility, thereby coordinating cell-cell adhesion 

in response to soluble stimuli. 

 

CIP4 interacts with E-cadherin and SRC in MCF10A cells after EGF stimulation  

 To gain clues as to the molecular mechanisms underlying the role of CIP4 in EGF-

dependent endocytosis of E-cadherin, we first assessed whether CIP4 intracellular localization was 

affected by EGF stimulation. Endogenous CIP4 is distributed primarily in the cytoplasm in EGF-

deprived MCF10A cells (Fig. 5A). EGF stimulation promoted CIP4 localization at membrane 

ruffles (Fig. 5A), and induced a marked redistribution of CIP4 from the cytoplasm to cell junctions, 

where it partially, but evidently, co-localized with E-cadherin, suggesting that the two proteins 

might associate in a growth factor-dependent manner (Fig. 5A). Consistently, we confirmed a 

physical interaction between CIP4 and E-cadherin by co-immunoprecipitation, and observed that 

this interaction was enhanced by stimulation with EGF (Fig. 5B).  

Another important regulator of E-cadherin signaling, trafficking and actomyosin 

contractility is the non-receptor tyrosine kinase SRC (Andreeva et al., 2014; Avizienyte et al., 2002; 

Fujita et al., 2002a; Palacios et al., 2005). Indeed, as previously shown (Canel et al., 2010), 

pharmacological inhibition of SRC family activity with PP2 or Dasatinib (Fig. S6B) significantly 

impaired E-cadherin endocytosis (Fig. S6C) and EGF-induced cell scattering (Fig S6D) both in 

control and CIP-KD cells. Interestingly, SRC has been shown to interact with and phosphorylate 

CIP4 (Dombrosky-Ferlan et al., 2003; Hu et al., 2011; Lock et al., 1998). Thus, we tested whether 

CIP4, in addition to interacting with E-cadherin, also interacts with SRC. We observed that 

endogenous SRC and CIP4 co-immunoprecipitated and that their interaction was enhanced by EGF 

stimulation (Fig. 5B), suggesting that CIP4 enters into a complex with E-cadherin and SRC. 

Removal of CIP4 significantly reduced the amount of E-cadherin co-immunoprecipitating with 

SRC following EGF stimulation, and inhibited EGF-induced SRC activation (Fig. 5C). Thus, CIP4 
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enters into and promotes the formation of an EGF-dependent E-cadherin/SRC complex, and 

controls SRC activation. We further characterized the nature of the SRC/CIP4 interaction using in 

vitro binding experiments. We found that the SH3 domain of SRC was sufficient to pull-down CIP4 

(Fig 5D). Since SH3 domains typically bind to proline-rich regions, we performed a sequence 

analysis of CIP4 and identified a potential SH3 binding site encompassing amino acids 485-505. 

Deletion of the central P492 and P493 residues (ΔP-CIP4) markedly reduced the binding of CIP4 to 

the SRC SH3 domain (Fig. 5D). Notably, the interaction between the SRC SH3 domain and CIP4 

was detectable only after stimulation of cells with EGF, confirming co-immunoprecipitation 

experiments (Fig. 5E). To demonstrate the functional relevance of the CIP4/SRC interaction, we 

reconstituted CIP4-KD cells either with siRNA-resistant WT- or ΔP-CIP4 mutant. Only the 

expression of WT-CIP4, but not of ΔP-CIP4 restored the cell compaction (not shown) and scattering 

phenotypes (Fig. 5F and Movie S6). 

 

CIP4 facilitates TGF-ß1-induced mesenchymal morphological conversion of MCF10A cells 

Endocytosis of E-cadherin also occurs during TGF-ß1-induced EMT (Miller and McClay, 1997). 

TGF-ß1 promotes permanent loss of cell adhesion by negatively regulating E-cadherin expression 

and by modulating dynamin-dependent endocytosis (Ogata et al., 2007; Zheng et al., 2009). We thus 

tested whether CIP4 is involved in TGF-ß1-induced scattering and junctional remodeling. TGF-ß1 

stimulation induced scattering of control MCF10A cells, accompanied by the acquisition of a 

mesenchymal morphology (Fig. 6A). Depletion of CIP4 inhibited both of these TGF-ß1-induced 

effects, with CIP4-KD cells remaining as compacted clusters in the presence of TGF-ß1 (Fig. 6A).  

To assess whether CIP4 is required for activation of the TGF-ß1-dependent transcriptional 

program that underlies EMT, we measured mRNA levels of the transcription factors, Snail1 and 

Snail2, which are hallmarks of EMT. The expression of these transcription factors was, as expected, 

regulated by TGF-ß1, and CIP4 removal had only a marginal effect on (Snail2), or delayed (Snail1), 

these responses, suggesting that CIP4 is not required for TGF-ß1 signaling leading to canonical 

EMT (Fig. 6B). Since TGF-ß1 also controls E-cadherin expression and promotes an E-cadherin/N-

cadherin switch (Peinado et al., 2004), we next determined the total levels of these junctional 

proteins. While removal of CIP4 did not affect E-cadherin levels, N-cadherin expression was 

reduced in untreated CIP4-KD cells compared to control cells (Fig. 6C). However, stimulation with 

TGF-ß1 increased N-cadherin expression in both cell types to a similar extent, further suggesting 

that CIP4-depletion does not affect TGF-ß1 signaling (Fig. 6C). We therefore assessed whether 

removal of CIP4 influences TGF-ß1-induced E-cadherin endocytosis and found that this response 

was delayed in CIP4-KD cells (Fig. 6E-F). Notably, TGF-ß1 also caused a transient elevation of 

CIP4 mRNA that was accompanied by an increase in CIP4 protein (Fig. 6C-D), at a time coincident 
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with the onset of cell scattering. The delayed and transient peak of E-cadherin internalization 

observed after removal of CIP4 suggests that alternative and possibly redundant mechanisms of 

endocytosis might partially compensate for CIP4 deficiency. CIP4 depletion was also accompanied 

by impaired TGF-ß1-dependent SRC activation, which was short-lived compared with controls, 

suggesting that the CIP4-SRC axis is also involved in TGF-ß1-induced cell scattering (Fig. 6G).  

Finally, since EMT is invariably associated with increased migratory and invasive 

properties, we pre-treated control and CIP4-KD cells with TGF-ß1 and determined their invasive 

ability through Matrigel
TM

-coated transwells. Removal of CIP4 significantly impaired TGF-ß1-

induced invasion both in the presence and absence of EGF (Fig. 6H). This result corroborates the 

importance of CIP4 in the remodeling of junctional E-cadherin required for epithelial cell plasticity.  

 

Deregulation of CIP4 in human breast cancer 

The critical role of CIP4 in the control of cell cohesion and cell invasion suggests that aggressive 

and invasive human breast cancers might positively select for elevated levels of this protein. To test 

this hypothesis, we analyzed formalin-fixed paraffin-embedded tissue samples of human breast 

cancer (BC) assembled on tissue microarrays (TMAs). These TMAs comprised 349 primary breast 

cancer samples from patients operated at the European Institute of Oncology (IEO) between 1994 

and 1997 (Fig. S7A). CIP4 expression was evaluated by immunohistochemistry (IHC) using the 

anti-CIP4 antibody (Fig. 7A), the specificity of which was confirmed using control and CIP4-KD 

MCF10A cells (Fig. S7B). The level of CIP4 was significantly increased in BCs characterized by 

clinically aggressive prognostic factors (Fig. 7B), most notably negative estrogen receptor (ER; P > 

0.001) and progesterone receptor (PgR; P = 0.0014) status, and positive ERBB2 status (P = 0.0104). 

In keeping with a role of CIP4 in the regulation of cell cohesion and cell invasion, its elevated 

expression was significantly associated (P = 0.0046) with disease relapse (distant metastasis, local 

relapse or death from breast cancer). Notably, in ER- and PgR-positive, as well as in ERBB2-

negative tumors, which usually have a good prognosis, elevated expression of CIP4 was still 

significantly associated with disease recurrence (Fig. 7C). Moreover, in Grade 2 (G2) breast tumors, 

which are associated with an intermediate risk of recurrence, CIP4 overexpression was associated 

with poor outcome (P = 0.0146). Multivariate analysis corroborated this finding revealing that CIP4 

expression is an independent predictor of poor prognosis, with an odds ratio (OR) of 2.413 (CI: 

1.007-6.021, P = 0.0482) of disease relapse (Fig. 7D). Although an analysis of a larger cohort of 

primary, and possibly metastatic, tumors is necessary to gain a complete picture of the clinical 

significance of CIP4 overexpression, our TMA analysis provides statistically significant evidence in 

support of our conclusion that CIP4 is positively associated with highly aggressive, metastatic, 

ERBB2-positive breast cancers. 
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CIP4 is required for ERBB2-induced invasive outgrowth of mammary epithelial cells and for 

the conversion from breast ductal carcinoma in situ to invasive carcinoma 

 

To test whether CIP4 is involved in promoting invasive behavior and local dissemination, 

we employed various in vitro and in vivo model systems of breast cancer invasion. CIP4 levels are 

elevated in aggressive ERBB2-positive tumors. Thus, we generated stable CIP4-KD MCF10A cells 

expressing inducible ERBB2 [MCAF10A.ERBB2; (Muthuswamy et al., 2001)]. Removal of CIP4 

did not affect ERBB2 levels or activation, rather it slightly increased ERBB2 phosphorylation after 

stimulation with the dimerizer AP1510 (Fig. 8A). However, CIP4 removal diminished Matrigel 

invasion by more than 3-fold in response to ERBB2 activation (Fig. S8A).  

Next, we tested the effect of CIP4 depletion on invasion of MCF10A.ERBB2 cells into a 

three-dimensional basement membrane matrix. Consistent with published data (Seton-Rogers et al., 

2004), untreated MCF10A.ERBB2 cells formed acini with disrupted (multi-acinar) morphology 

(Fig. 8B). Following activation of either ERBB2 or TGF-β1 receptors, MCF10A.ERBB2 cells 

extended rare and poorly invasive protrusions, which, however, became more frequent and highly 

invasive upon concomitant stimulation of both receptors (Fig. 8B). Removal of CIP4 robustly 

prevented both the formation of rare protrusions in single agent-treated cells, and severely reduced 

invasive growth of activated MCF10A.ERBB2 in the presence of TGF-β1. In constrast, in the 

absence of stimuli, CIP4 depletion had no obvious effects on acini formation and morphology or 

growth rates (Fig. 8B and data not shown), consistent with its primary role in controlling cell 

cohesion and growth factor-dependent cell-cell junctional dynamics. We also stably silenced CIP4 

in HCC-1954 cells, which are poorly differentiated, highly metastatic ERBB2-positive breast cancer 

cells (Gazdar et al., 1998) that display elevated endogenous levels of CIP4 (Fig. S8B). Removal of 

CIP4 in these cells increased cell compaction (Fig. S8C-D) and reduced cell invasion (Fig. S8E).  

  Finally, we investigated whether CIP4 is required for the initial local dissemination, 

invasion and conversion from a DCIS to IDC. To this end, we stably removed CIP4 in a MCF10A 

cell derivative, MCFA10.DCIS.com (Fig. 8C). These cells have been extensively characterized as 

an experimental model of human DCIS, which forms comedo DCIS-like lesions that spontaneously 

progress to IDC (Hu et al., 2008; Miller et al., 2000). Depletion of CIP4 in these cells had no effect 

on cell growth (data not shown), but promoted cell compaction (Fig. 8D), impaired HGF-induced 

invasive outgrowth into a three-dimensional basement membrane matrix (Fig. 8E), and severely 

delayed the DCIS-to-IDC conversion in immunocompromised mice (Fig. 8F). Indeed, 

MCFA10.DCIS.com control cells formed typical in situ carcinoma surrounded by a well-defined 

and continuous layer of myoepithelial cells (positive for alpha smooth muscle actin), which 

however was lost 3 weeks after injection, indicative of the acquisition of a highly invasive 
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phenotype (Fig. 8F). Depletion of CIP4 impaired this DCIS-to-IDC conversion (Fig. 8F), but had 

no effect on tumor size or growth (data not shown). Thus, CIP4 is required for invasion of ERBB2-

positive breast cancer and its removal delays DCIS-to-IDC conversion.    
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Discussion 

Regulation of epithelial morphogenesis, differentiation and function critically depend on the 

dynamic remodeling of E-cadherin–mediated adhesion (Halbleib and Nelson, 2006). Perturbation of 

epithelial cell-cell junctions and cell-ECM adhesion results in acquisition of mesenchymal 

characteristics, with increased proliferation and motility (D'Souza-Schorey and Chavrier, 2006; 

Lozano et al., 2003). Thus, appropriate control of cell adhesion is important for many aspects of 

epithelial function in health and disease. Our findings unveil a specific, non-redundant role of the 

TOCA family member, CIP4, in the regulation of cell-cell junction stability and cell-ECM adhesion 

during mammalian epithelial morphogenetic events.  

 Endocytosis is a coordinated, spatio-temporal process that requires deformation of the 

plasma membrane. Through their SH3 and F-BAR domains, members of the TOCA family have the 

potential to act in a diverse range of internalization processes. Indeed, all the members of this 

family have been shown to promote actin assembly and to regulate CME, in a redundant fashion, in 

different model systems (Fricke et al., 2009; Giuliani et al., 2009; Ho et al., 2004). However, there 

is growing evidence for unique functions of individual TOCA family members. For example, using 

CIP4 knockout mice, a recent study revealed a unique role of CIP4 in macropinocytosis, indicating 

that CIP4 is not restricted to CME, but also affects other modes of endocytosis (Feng et al., 2010). 

In addition, novel roles of CIP4 have recently been described in neuronal development 

(Saengsawang et al., 2012) and in B cell lymphomas (Malet-Engra et al., 2013). In neurons, where 

other TOCA family members are also expressed (Wakita et al., 2011; Wu et al., 2010), CIP4 has no 

effect on endocytosis, but rather inhibits neurite extension by promoting the formation of 

lamellipodial protrusions.(Malet-Engra et al., 2013) CIP4 has also been shown to regulate the 

formation of podosomes in primary macrophages (Linder et al., 2000) and invadosomes in breast 

tumor cells (Hu et al., 2011; Pichot et al., 2010). Together, these studies point to a critical role of 

CIP4 as a regulator of cell invasion. Our findings support in part this notion, by establishing that 

CIP4 controls migration of epithelial cells indirectly by modulating cell cohesion through its 

“can nical” end cytic functi n, rather than by impairing migratory parameters. This endocytic role 

is uniquely exerted by CIP4 and not by the other members of the TOCA family, despite their 

involvement in CME (Frost et al., 2008; Itoh et al., 2005; Taylor et al., 2011; Wu et al., 2010), 

indicating that functional specificity is likely determined by the type of cargo being internalized. It 

is noteworthy that we found that EGF stimulation, which acts as a potent motogenic factor in 

mammary epithelial cells, promotes the relocalization of CIP4 to E-cadherin junctions, where 

internalization of this latter protein is initiated. We also observed that EGF causes the re-localization 

of the protein to extending lamellipodia and ruffles along the protrusive leading edges, similarly to 

what has been reported in neurons (Saengsawang et al., 2012). Hence, CIP4 might be critical to 
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coordinate junction disassembly, through endocytosis, with the formation of migratory protrusions, 

leading ultimately to a mesenchymal mode of motility and cell invasion. This latter contention is 

consistent with our observation that the expression of CIP4, but not TOCA-1 or FBP17, is increased 

in invasive breast cancer cell lines in comparison with weakly or non-invasive breast cancer cell 

lines (Hu et al., 2011; Pichot et al., 2010). 

Several mechanisms that regulate the availability of E-cadherin for the formation of cell-cell 

junctions have been proposed over the years. A focal event is the endocytosis and sorting of 

internalized E-cadherin to either degradation or recycling pathways (Bryant and Stow, 2004). In this 

respect, Rho family GTPases, and most notably CDC42, regulate not only the formation of AJs 

(Kim et al., 2000), but also their dynamic remodeling during tissue rearrangement by controlling 

multiple steps of E-cadherin trafficking (Baum and Perrimon, 2001). In the neuroectodermal 

epithelium of Drosophila, for example, CDC42 and PAR proteins were shown to regulate the 

trafficking of AJ components and apical polarity proteins to maintain AJ stability in the face of cell 

rearrangements (Harris and Tepass, 2008). In this system, CDC42, together with the PAR complex, 

is required to decrease the endocytic uptake of apical proteins and to promote the progression of 

apical cargo from the early to the late endosome. Conversely, in the developing pupal notum or 

dorsal thorax of the fly, CDC42 functions with PAR6/aPKC and CIP4/N-WASP to regulate early 

events in E-cadherin endocytosis, mimicking the phenotype obtained after loss-of-function of the 

GTPase dynamin (Georgiou et al., 2008; Leibfried et al., 2008). Therefore, in most epithelial tissues 

of the fly, the apical polarity complex CDC42–PAR6–aPKC seems to induce the local activation of 

TOCA family proteins to drive dynamin-mediated endocytosis of AJ material and the recycling of 

E-cadherin complexes. In mammary epithelial cells, however, CIP4 is fully dispensable in 

mediating the activation of a CDC42/N-WASP, a function likely fulfilled by the other members of 

the family. CIP4 is, instead, essential for the formation of a macromolecular complex that includes 

E-cadherin and SRC. SRC is a central regulator of signaling downstream of EGFR and has been 

shown to regulate EMT by disrupting AJs (Canel et al., 2013). Mechanistically, SRC can alter E-

cadherin trafficking by redirecting E-cadherin from a recycling pathway to a lysosomal-targeting 

pathway. This rerouting can be achieved by direct, SRC-mediated tyrosine phosphorylation of E-

cadherin cytoplasmic tails, which marks E-cadherin for ubiquitination and subsequent delivery to 

lysosomal degradation (Fujita et al., 2002b). However, we showed that CIP4 removal, despite 

diminishing EGF-induced activation of SRC and its association with E-cadherin, does not affect E-

cadherin phosphorylation (data not shown) or its rate of degradation, suggesting that CIP4 is not 

essential for this late trafficking step. CIP4 may, instead, act during the early events of endocytosis, 

where its ability to curve the plasma membrane might facilitate the invagination of newly formed, 

presumably clathrin-coated, pits. How SRC fits into this scenario remains, however, to be firmly 
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established. Interestingly, (Avizienyte et al., 2002; Canel et al., 2013; Canel et al., 2010; Wang et al., 

2011)one pathway that is activated downstream of SRC involves ROCK kinase and leads to the 

regulation of actomyosin-dependent junctional contractility (Andreeva et al., 2014), Furthermore, 

evidence is accumulating of tight interplay between actomyosin contractility and E-cadherin 

endocytosis during epithelial morphogenesis (Levayer et al., 2011). Within this context, CIP4 may 

serve as key molecular hub in interconnecting the two processes, which ultimately impact on 

epithelial cell cohesion, motility and invasion.    

In summary, while further work is required to address the precise molecular mechanisms 

underlying CIP4 function in cell:ECM adhesion, our data establish the unique relevance of this 

endocytic F-BAR-containing protein in mediating, through regulation of cell cohesion, epithelial 

cell motility and invasive ability.(Lodhi et al., 2007). It is therefore not surprising that CIP4 

elevation is associated with increased disease relapse of ERBB2-positive breast cancer. In this 

setting, high levels of CIP4 may have been selected to reduce cell cohesion and cell-cell interaction 

and promote dissemination. Remarkably this pro-metastatic role of CIP4 is not limited to this subset 

of breast cancer, pointing to a key and essential role of this F-BAR protein in the regulation of 

breast cancer metastasis. 
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Experimental Procedures  

Cell motility and adhesion assays 

Random migration of MCF10A cells was monitored under normal growth conditions. Briefly, cells 

were seeded (1x10
4 

cells/well) in a 6-well plate and maintained in complete medium for 2 days. Cell 

motility was monitored at 37°C over a 24-hour period. Pictures taken every 15 minutes, from 20 

different positions using an Olympus ScanR system equipped with a Hamamatsu ER camera. Cell 

tracking was perf rmed by using the “Manual tracking” and “Chem taxis and migrati n t  l” plug-

in distributed by ImageJ software.  

EGF-induced MCF10A cell scattering. Cells (1x10
5
 cells/well, in a 6-well plate) were EGF-starved 

for 24 hours and stimulated with 100 ng/ml EGF to initiate cell scattering. Scattering was monitored 

for 24-hour. Alternatively, EGF-induced scattering assay was monitored by taking pictures at fixed 

time points. 

Statistical analysis  

Cell biology: differences between experimental groups were examined for statistical significance 

using the paired Student’s t-test (*P<0.05, **P<0.01 and ***P<0.001). Data are expressed as mean 

± s.e.m.. 

TMA tumor sections: differences between experimental groups were examined for statistical 

significance using the paired Student’s t-test. Where applicable, data are expressed as average ± 

s.e.m. TMA data analysis were performed using JMP 10.0 statistical software (SAS Institute, Inc). 

The association between CIP4 expression and clinicopathological parameters was evaluated using 

the Pearson chi-square test. For univariate and multivariate analysis, Odds ratio (OR) and 95% 

Confidence Intervals were obtained from the logistic regression model. 

 

MTT proliferation assay 

Cells were seeded at 1x10
3 

cells/well in 96-well plates and cultured for 36 hours in complete 

medium. Cells were then washed with PBS and 500 μg/ml MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide; Sigma-Aldrich) was added to each well. After 2 hours of incubation 

at 37°C, the MTT s luti n was rem ved and 100 μl  f DMSO was added t  each well. The 

absorbance was measured at 570 nm using a VICTOR3™ V Multilabel Counter model 1420 from 

PerkinElmer. 

 

E-cadherin internalization 

Scr-CTR and CIP4-KD MCF10A cells were transfected with human E-cadherin-GFP (addgene) 

using Amaxa® Nucleofector® (Lonza) and seeded (1x10
5
) in glass bottom 22 mm diameter dishes 

(WillCo-dish®). After 24 hours, cells were EGF-starved for a further 24 hours before stimulating 

with 100 ng/ml EGF. E-cadherin-GFP internalization was then monitored for 4 hours at 37°C. 

Fluorescence microscopy was performed on an UltraVIEW VoX (Perkin Elmer) spinning disk 

confocal unit, equipped with an EclipseTi inverted microscope (Nikon), a C9100-50 emCCD 

camera (Hamamatsu) and driven by Volocity software (Improvision, Perkin Elmer). GFP signals 

and DIC (differential interference contrast) images were acquired with a 60X oil immersion 

objective (NA 1.4) as Z-stacks (0.7 micron step). 

For HECD-1 anti-E-cadherin internalization, cells were grown on glass coverslips and EGF-starved 

for 24 hours before experiments. Samples were then incubated for 1 hour at 4°C with anti-E-

cadherin (HECD-1) IgG diluted in PBS solution. Where appropriate, cells were pre-treated for 12 

hours with 10 µM PP2 inhibitor before incubation with the HECD-1 antibody. Coverslips were 

washed with ice-cold PBS to remove the unbound antibody and the media was replaced with pre-

warmed culture medium containing 100 ng/ml EGF and 5% horse serum. After incubation at 37°C 
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for various lengths of time, cells were washed with PBS and returned to 4°C. The residual surface-

bound antibody was removed by acid washing (0.5 M acetic acid, 0.5 M NaCl). Cells were washed 

with PBS before fixation with 4% paraformaldehyde for 10 minutes at room temperature. Indirect 

immunofluorescence staining was performed on permeabilized cells by incubating with CY3-

conjugated anti-mouse antibody and FITC-conjugated phalloidin. Internalization of E-cadherin was 

quantified using the particle analysis tool of ImageJ software. 

 

Surface biotinylation assays 

The cell surface was labeled for 30 minutes on ice with 0.5 mg/ml biotin (EZ-Link
T
M Sulfo-NHS-

SS-Biotin) in PBS pH 7.4. After quenching with 0.15% glycine in PBS pH 7.4 for 5 minutes, cells 

were incubated in complete growth medium supplemented with 100 ng/ml EGF at 37°C for 2 hours. 

At different time points, cells were removed from the incubator, put on ice, washed with cold 

MESNA buffer (150 mM NaCl, 1 mM EDTA, 0.2% BSA, 20 mM Tris –HCl pH 8.6, 50 mM 

MESNA) to remove cell surface biotin and lysed. For surface E-cadherin level determination, 

labeled cells were directly lysed after the quenching step (designated as M). As a negative control (-

), cells were directly treated with MESNA buffer after the quenching step without incubation at 

37°C. Biotin-labeled proteins were then precipitated using streptavidin-agarose beads and subjected 

to immunoblotting with the anti-E-cadherin antibody. Actin levels were used to normalize input 

protein amounts between different conditions and cell lines.  

 

Internalization and recycling assays 
125

I-EGF surface levels, internalization and recycling assays were performed exactly as 

described(Sorkin and Duex, 2010)  

Internalization of total and active β1 integrin was assessed as in (Roberts et al., 2001)

Additional details are in the Supplemental Experimental Procedures.  

 

FRET live microscopy and analysis 

EGF-deprived scr-CTR and CIP4-KD MCF10A cells microinjected with either EcadTSModWT or 

EcadTSM d∆Cyt  c nstructs, were stimulated with EG  (100 ng/ml) t  induce scattering.  RET 

imaging was performed on a Delta Vision Elite system (Applied Precision) equipped with a 

Photometrics CoolSNAP HQ2 CCD Camera and an UPLSApo 60x (1.42 NA) oil immersion 

objective (Olympus). The system is coupled with an environmental chamber maintained at 37°C in 

an atmosphere of 5% CO2. To monitor the biosensor FRET changes a simple ratiometric approach 

was used, as previously described (Aoki and Matsuda, 2009). Briefly, CFP(E2) (ex: 438/24nm, em: 

470/24nm), FRET (ex: 438/24nm, em: 559/38nm) and Venus (ex: 513/17nm, em: 528/38nm) 

channels were collected in sequence. Using an in-house macro in ImageJ, images were background 

corrected, realigned, converted in 32 bits, smoothed and the Venus channel was thresholded and 

used as a binary mask as described in (Kardash et al., 2011)The average FRET/CFP ratio was then 

calculated over the cell-cell contacts. 

 

Wound healing assays 

MCF10A scr-CTR and CIP4-KD cells were seeded at 5x10
5
 cells/well in 6-well plates and cultured 

until a uniform monolayer had formed. Wound area was made using a sterile 10 µl pipette tip, and 

washed extensively with PBS. The closure of the wound was then monitored at 37°C and 5% CO2 

by time-lapse analysis over a 24-hour period, with pictures taken every 5 minutes. Images were 

taken of 5 fields of views, for duplicate samples, with an inverted microscope Olympus ScanR 

using the 10X objective. Cell-free area was calculated for each cell line using ImageJ software.  

 

Flow cytometric analysis 

Expression of the integrins at the cell surface was analysed by flow cytometry as follow. Briefly, 5 x 

10
5 

were incubated with mouse anti-integrin a5β1 or β1 for 1 h on ice, and then incubated with the 

secondary antibody for 1 h on ice.  After the incubation cells were fixed with 4% PFA for 10 min on 

http://www.sciencedirect.com/science/article/pii/S1534580708002530#app2


 20 

ice. FACS data were acquired with the FACSCanto (Becton Dickinson) flow cytometer. Analysis 

were performed using FlowJo version 4.6.2 (Treestar).   

 

Three-Dimensional morphogenesis of mammary epithelial cell. 

The details of 3D morphogenesis assay were described previously in (Debnath et al., 2003).  

 

DCIS-to-IC conversion in NOD SCID gamma mice. 

All animal experiments were performed in accordance with national and international laws and 

policies. Mice were bred and housed under pathogen-free conditions in our animal facilities at 

Cogentech Consortium at the FIRC Institute of Molecular Oncology Foundation and at the 

European Institute of Oncology in Milan.  

DCIS-to-IC conversion in NOD SCID gamma mice. Scr-CTR and CIP4-KD MCF10.DCIS.com 

(100,000 cells) were injected subcutaneously into 6- to 9-week-old female NOD.Cg-

Prkdc
scid

Il2rg
tm1Wjl

/SzJ [commonly known as the NOD SCID gamma (NSG)] mice in 50% Matrigel 

(BD Biosciences, Bedford, MA) as described (Hu et al., 2008). One to three weeks later xenografts 

were measured using digital calipers and tumor volume was calculated according to the formula: L 

× W
2
/2 = mm

3
. The tumors were excised, fixed in 4% phosphate-buffered formalin and embedded 

in paraffin for IHC staining. The Scan Scope XT device and the Aperio Digital pathology system 

software (Aperio) were used to capture IHC images.  
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Figure legends 

 

Figure 1: CIP4 regulates MCF10A cell compaction and EGF-induced scattering.  
(A) Efficiency of TOCA family member knockdown in MCF10A cells assessed by immunoblotting 

(IB) with the indicated antibodies (abs) of lysates of shRNA-lentivirally infected MCF10A cells: 

scrambled shRNA (scr-CTR); shRNAs against CIP4 (CIP4-KD #1/#2), TOCA-1 (TOCA1-KD) or 

FBP17 (FBP17-KD) alone or together (CIP4/TOCA-1 double KD - 2KD; CIP4/TOCA-1/FBP17 

triple KD - 3KD). 

(B) Phase contrast images of various MCF10A cell lines growing in complete medium. Magnified 

view of the boxed area is shown. Bar, 1000 µm. 

(C) The % of single cells or clusters relative to the scr-CTR MCF10A cells (n = 200 cells/genotype 

in 3 independent experiments). ***P<0.001, t-test.  

(D) Expression levels of CIP4 by IB in scr-CTR and CIP4-KD MCF10A cells expressing an 

shRNA-resistant CIP4 mutant (resCIP4-GFP) or an empty GFP vector (eGFP).  

(E) Images of CIP4-KD#1 MCF10A cells expressing GFP or resCIP4-GFP. Left panels show low-

magnification of GFP- or resCIP4-expressing CIP4-KD. Bar, 100 µm. Right, merged images of 

GFP epifluorescence (green), F-actin (red) and DAPI nuclei (blue). Bar, 20 µm.  

(F) The number of single and clustered cells was quantified as in C (n=226 to 647 cells). 

***P<0.001, t-test. 

(G-H) Still images of scr-CTR and CIP4-KD#1 MCF10A cells induced to scatter by adding EGF 

(100 ng/ml) to EGF-starved cells (see Movie S2). Cell scattering was quantified either (right graph) 

by determining the time required to complete scattering or (H) by tracking individual cells, 

measuring the accumulated distance covered by cells during four 4 h after EGF stimulation. Data is 

the % of accumulated scattering cell distance with respect to control cells (n = 25 cells/experiment 

in 4 experiments). ***P<0.001, t-test. 

(J) Invasion through Matrigel
TM

-coated transwells toward EGF was assessed for 24 h. 

Representative images are shown. Cell invasion is the % of invasive cells with respect to control 

cells. **P<0.01, t-test. 

 

 Figure 2: CIP4 controls EGF-induced actomyosin tensile junctional stress across E-cadherin..  
(A) Left panels, lysates of scr-CTR and CIP4-KD MCF10A cells treated with EGF (100 ng/ml) 

were IB with the indicated abs. Right panels, EGF-deprived scr-CTR and CIP4-KD #1 MCF10A 

cells plated on plastic were stimulated with EGF and stained with the anti-pMLC abs or phalloidin 

to detect F-actin. Arrows indicate pMLC at junctions. Bar, 25 μm.  

(B) Scheme of E-cadherin tensor sensor 

(C) Representative images from Movie S4 showing the FRET:CFP(E2) ratio of scr-CTR and CIP4-

KD-MCF10A cells expressing the EcadTsMod-CFP(E2) and induced to scatter by EGF addition. 

The upper and lower limits of the FRET:CFP ratio range are shown on the left in the Ratio colored 

key (ImageJ software). CIP4-KD cells appear smaller due to compaction. Bar, 10 µm.  

(D) Normalized FRET ratio at cell-cell junction of MCF10A cells treated as in (C). For each cell-

cell contact, data were normalized to the FRET/CFP(E2) ratio value at time 0h. Data are expressed 

as mean ± s.e.m. (n = 30 cell-cell contacts/experiment, 3 experiments). *P<0.05, **P<0.01, t-test. 

(E) EGF-deprived scr-CTR and CIP4-KD#1 MCF10A cells plated on plastic were stimulated with 

EGF and stained with the anti-Vinculin abs or phalloidin to detect F-actin. Arrows indicate vinculin. 

Bar, 20 μm. 

 

Figure 3. Fibronectin adhesion rescues delayed scattering and reduces junctional actomyosin 

contractility. 
(A) Control and CIP4-KD MCF10A cells were plated on plastic (uncoated) or fibronectin (FN) for 

24 h. Cells were EGF-starved and stimulated with EGF to induce scattering. Representative images 

are shown. Graph on the left represents the time to reach complete scattering (***P<0.001 

compared to scr-CTR cells). Bar, 20 μm.  
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(B) Cell scattering was also quantified as described in Fig. 2D. Left, exemplar tracks of individual 

cells undergoing scattering. The accumulated scattering distance is expressed as the % of scr-CTR 

(n = 25/experiment, 3 experiments). **P<0.01, compared to scr-CTR MCF10A cells. 

(C) Left panels, lysate of scr-CTR and CIP4-KD#1 MCF10A cells plated on fibronectin were IB for 

indicated abs. Right panels, EGF-deprived scr-CTR and CIP4-KD#1 MCF10A cells plated on FN 

were stimulated with EGF and stained with the anti-pMLC abs or phalloidin to detect F-actin. 

Arrows indicate pMLC at junctions. ***P<0.01, compared to scr-CTR MCF10A cells. Bar, 25 μm.  

 

Figure 4: CIP4 is required for the internalization of E-cadherin upon EGF stimulation.  
(A) Lysates of scr-CTR or MCF10A cells devoid of TOCA family members and grown in complete 

medium were immunoblotted (IB) to detect E-cadherin.  

(B) Internalization of E-cadherin-GFP upon acute EGF stimulation of EGF-starved MCF10A cells. 

Still images are from Movie S4.  

(C) Surface biotinylation of MCF10A cells was as described in Experimental Procedures. 

Internalization of E-cadherin upon stimulation with EGF for up to 120’ at 37°C. Surface levels of 

biotinylated E-cadherin is shown for unstimulated cells maintained at 4°C (M, membrane) and after 

washing with MESNA buffer (-, negative control). IBs in the lower panel show E-cadherin and 

actin in cell lysates used to perform biotin pull-downs.  

(D) Quantification of internalized E-cadherin from the biotinylation assay expressed as % of cell-

surface E-cadherin levels (n= 3 experiments).  

(E) Internalization of surface-labeled E-cadherin using anti-E-cadherin (HECD-1) abs. We 

quantified the relative levels of internalized E-cadherin by evaluating total fluorescence intensity 

normalized for cell number and field area. 

 

Figure 5: EGF induces redistribution of CIP4 to junctions and its interaction with E-cadherin 

and SRC in MCF10A cells.  

(A) EGF-deprived MCF10A cells were stimulated with EGF for 5’ at 37°C, fixed and stained to 

detect CIP4 (red) and either F-actin or E-cadherin (green). Insets are higher magnification of boxed 

areas. Bar, 20 µm.  

(B) MCF10A cells were EGF-starved for 18 h and mock treated (-) or stimulated with EGF (+) for 

30’ at 37°C. Total cell lysates (TCLs, 1 mg) were immunoprecipitated with anti-CIP4 antibody or 

irrelevant IgG. TCLs (60 μg) and immunoprecipitates (IPs) were IB with the indicated abs.  

(C) Lysates of control (scr-CTR) or CIP4-KD MCF10A cells, treated as in B, were 

immunoprecipitated with anti-SRC abs. IPs were IB with the indicated abs. Relative intensity of the 

pSRC signal with respect to total SRC (n = 3). 

(D) Lysate of EGF-stimulated WT- or ΔP-CIP4-293T cells stimulated with EGF (100 ng/ml)  

incubated with GST- or GST-SH3 domain-bound to bead of SRC. Input and bound material were 

immunoblotted with the anti-CIP4 antibody. As control GST-SH3 beads were also incubated with 

lysate buffer alone (no lysate). 

(E) EGF-deprived flag-tagged WT- or ΔP-CIP4-293T cells were stimulated with EGF for 30’. 

Lysates were incubated with equimolar amounts of GST or GST-SH3 domain of SRC, immobilized 

on glutathione beads. Input and bound material were immunoblotted with the anti-CIP4 antibody. 

(F) scr-CTR and CIP4-KD #1 MCF10A were lentivirally infected with either an empty vector or 

with vector encoding siRNA-resistant WT-(resCIP4-WT)  r ΔP-CIP4 (resCIP4-ΔP) mutants.  Still 

images of lentivirally infected MCF10A cells induced to scatter by adding EGF (Movie S8). Scale 

Bar,100 µm. Right, top panels, CIP-WT and CIP4-ΔP were detected by IB with the indicated abs. 

Cell scattering, quantified as in Fig. 1G-H, is the % of accumulated scattering cell distance with 

respect to the distance of control cells  (n = 55 cells/experiment in 3 experiments).**P<0.01 

compared to scr-CTR MCF10A cells, t-test. 

 

Figure 6: CIP4 facilitates TGF-1-induced mesenchymal morphological conversion in 

MCF10A cells.  
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(A) Phase contrast images of scr-CTR and CIP4-KD#1 MCF10A cells treated with 5 ng/ml TGF-1 

or vehicle for 24 h.  

(B) QRT-PCR of the mRNA of indicated genes from scr-CTR and CIP4-KD MCF10A cells treated 

with TGF-β1 or vehicle. Data are the fold-increase with respect to vehicle treatment (1.5 h) for each 

cell sublines normalized for the 18S mRNA levels.  

(C) Lysates of scr-CTR and CIP4-KD MCF10A cells treated with TGF-1 (5 ng/ml) or vehicle (V) 

were IB with the indicated abs. The relative intensity of the N-cadherin with respect to vehicle-

treated scr-CTR cells was quantified from 3 experiments. Long (l. exp) and short (s.exp) exposures 

of CIP4 IB.  

(D) Total RNA was extracted from control MCF10A cells treated with TGF-β1 or vehicle, and CIP4 

gene expression was measured by quantitative RT-PCR as described previously.  

(E) Internalization of surface-labeled E-cadherin using an anti-E-cadherin (HECD-1) antibody.  

(F) Relative levels of internalized E-cadherin were quantified by evaluating total fluorescence 

intensity and normalized with respect to cell number and field area (in µm
2
). 

(G) Total cell lysates of scr-CTR and CIP4-KD MCF10A cells treated with TGF-1 (5 ng/ml) or 

vehicle (V) for the indicated time were IB with the indicated abs. 

(H) Invasion assay of scr-CTR and CIP4-KD MCF10A cells pre-treated with TGF-1 (5 ng/ml) or 

vehicle for 24 h, done as described in Fig. 1J. Cell invasion is the % of invasive cells with respect to 

control cells. *P<0.05, **P<0.01 (compared to scr-CTR MCF10A cells pre-treated with vehicle), t-

test.. Images of invaded cells are shown. Bar, 100 μm. 

 

Figure 6. Deregulation of CIP4 in human breast cancer.  
(A) CIP4 expression was measured by IHC on TMA. Example of CIP4 score assignment: CIP4 

high expression was defined when tumors display an expression score >1. In tumor tissues the IHC 

signals were associated with the tumor cell and not with the stroma.  

(B-C) Correlation of CIP4 expression with clinico-pathological parameters. The number of scored 

cases is lower than the total number of cases (349) since: i) in some cases, individual cores detached 

from the slides during the manipulations; ii) clinical information was not available for all patients.  

(D) CIP4 overexpression is predictive of high risk of any breast-related event. Any Event: loco-

regional relapse, distant metastasis, contralateral breast cancer or death for breast cancer; Distant 

Relapse: distant metastasis.  

 

Figure 7: CIP4 is required for ERBB2-induce invasive outgrowth in mammary epithelial cells 

and DCIS-to-IDC conversion in vivo.  
(A) Lysates of lentivirally-infected scr-CTR or CIP4-KD#2 MCF10A.ERBB2 cells were 

immunoblotted with the indicated abs. ERBB2 IPs were immunoblotted with anti-tyrosine abs.  

(B) Phase-contrast micrograph of 7-day acinar structures of scr-CTR and CIP4-KD 

MCF10A.ERBB2 cells in the presence of TGF-β1 (5 ng/ml), AP1510 (100 nM), or both TGF-β1 (5 

ng/ml) and AP1510 (100 nM). Bar, is 400 µm. The number of invasive acini is expressed as % of 

total acini ± s.e.m. (n = 30, 3 experiments). 

(C) Lentivirally-infected scr-CTR or CIP4-KD#2 MCF10.DCIS.com cells were IB with the 

indicated abs. 

(D) An equal number of scr-CTR and CIP4-KD0MCF10.DCIS.com cells were plated sparsely in 

complete medium. Phase-contrast images are shown. Right, magnified view of the boxed area. Bar, 

250 µm. The % of single cells or clusters relative to the total number of MCF10.DCIS.com cells 

was quantified by counting at least 300 cells/genotype in 3 independent experiments. **P<0.01 

compared to scr-CTR cells in clusters, t-test.  

(E) Phase contrast micrograph of 9-day acinar structures of scr-CTR and CIP4-KD MCF.DCIS.com 

cells in the absence or presence of HGF (20 ng/ml). Bar,  400 µm. Quantification of invasive 

structures/cell acini is expressed as a % of total acini (n = 52 in 2 independent experiments). 

(F) scr-CTR and CIP4-KD MCF10.DCIS.com cells were injected subcutaneously into NSG mice. 

Histological (H&E) and immunohistochemical analyses of scr-CTR and CIP4-KD 
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MCF10.DCIS.com xenografts were performed at 1 and 3 weeks after cell injection. H&E 

micrographs are shown at two different magnifications. The conversion from DCIS to IDC was 

detected in control xenografts between 1 and 3 weeks by l ss  f αSMA-positive myoepithelial 

layers. Images are representative of 3 independent experiments, where n = 5 mice/experimental 

condition. Bar, 100 μm.  
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SUPPLEMENTAL INFORMATION 

 

 

Supplemental Figure Legends 

 

Figure S1: Expression of CIP4 regulates MCF10A cell compaction. (related to 

Figure 1) 

(A) MCF10A cells were infected with lentiviruses expressing scramble control 

shRNA (scr-CTR) or shRNAs against TOCA family proteins, individually (CIP-KD 

#1/#2; TOCA1-KD; FBP17-KD) or in combination (CIP4/TOCA-1 double KD - 

2KD; CIP4/TOCA-1/FBP17 triple KD - 3KD). Representative phase contrast images 

of the indicated cells grown in complete medium are shown. Bar, 150 μm.   

(B) MCF10A cells devoid of TOCA family members and grown in complete medium, 

were fixed and stained to detect E-cadherin (green), F-actin (red) and nuclei (blue). 

Right panels show magnifications of boxed areas.  

(C) Quantification of junctional E-cadherin. The intensity of randomly chosen areas 

of junctional E-cadherin in the confocal images shown in (B) was normalized with 

respect to cytoplasmic areas of identical size and expressed as a ratio. Data are the 

mean±s.e.m (n=5).  

(D) MTT proliferation assay was performed for the different MCF10A sublines grown 

in complete medium. Data are expressed as % of scr-CTR cells.  

(E) Scr-CTR and CIP4-KD MCF10A cells grown in the presence of complete 

medium were fixed and stained for giantin (red), F-actin (green) and nuclei (blue). 

Arrows indicate examples of cells with outwardly polarized distribution of the Golgi 

apparatus. Bottom images are magnification of the boxed areas. Bottom graph, the 

percentage of cells displaying Golgi oriented toward the outside of the cluster with 

respect to the nucleus was quantified in three independent experiments counting > 

100 cells/experiment.  

(F) Representative confocal images showing basolateral F-actin staining in the 

different MCF10A sublines. Insets show a higher magnification of selected areas. Bar, 

20 µm. (*P<0.05 and ***P<0.001 compared to scr-CTR MCF10A cells determined 

by the paired Student’s t-test). 

 

Figure S2: CIP4 expression modulates the motility of clustered MCF10A cells, 

without affecting the parameter of individual cell migration. (Related to Figure 

1) 

(A) Migration of randomly chosen control (scr-CTR) or MCF10A cells devoid of 

TOCA family members was monitored in complete medium containing EGF, by time-

lapse microscopy (Movie S1A and B). Graphs represent tracks of cells moving over a 

24-hour period (a minimum of 50 cells were analyzed for each cell genotype). CIP4-

KD cells stop migrating once entering contacting a cluster. Whereas control cells that 

have come into contact with each other or a cluster frequently detach and resume their 

motility. 

(B) Cell locomotion was by analyzed subdividing cells undergoing two distinct mode 

of motility: 1) the “single motility mode” during which cells move without touching 

each other or a cluster and 2) the “cluster motility mode” during which cells come 

into contact with each other or with a cluster. During single motility mode, cells move 

at a speed that is independent from the removal of CIP4. Conversely, silencing of 

CIP4 decreases significantly the motility of the cells coming into contact with cluster 
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since they can no longer detach from it and ceased migration. ** P<0.001 compared 

to scr-CTR MCF10A cells based on the paired Student’s t-test; n.s. not significant.  

(C) Wound healing assay performed with scr-CTR and CIP4-KD#1 MCF10A cells. 

Representative phase contract images at the indicated time points are shown. Scale 

Bar,100 μm. Wound closure was quantified by measuring the wound area at different 

time points. Data are expressed as the % of wound area at the indicated time with 

respect to time 0. 

(D) Scr-CTR and CIP4-KD #1 MCF10A cells cultured in complete or EGF-depleted 

medium were imaged by phase-contrast microscopy. Bar, 400 µm.  

(E) Immunofluorescence staining to detect F-actin (red), E-cadherin (green) and 

nuclei (blue) of EGF-deprived control (scr-CTR) or the indicated TOCA family-KD 

MCF10A cells. Magnifications of boxed areas are shown on the right. Bar, 20 µm.  

 

Figure S3: EGFR internalization, activation and downstream signaling are not 

affected by CIP4 depletion.  
(A) Total cell lysates of control (scr-CTR) or MCF10A cells devoid of TOCA family 

proteins grown sparsely or confluent were IB with the indicated antibodies.  

(B) Cell surface levels of EGFR were quantified in the MCF10A cell sub-lines as 

described in Suppl. Experimental Procedure. The number of cell surface receptors 

was deduced from the specific activities of 
125

I-EGF.  

(C) EGFR degradation and activation of MAPK/ERK pathway was assessed in 

control or CIP4-KD #1 MCF10A cells after acute EGF stimulation (100 ng/ml) by 

immunoblotting (IB) with the indicated antibodies. Vinculin was used as a loading 

control. The relative intensity of the pAKT and pERK1/2 signals with respect to total 

AKT and ERK1/2 was quantified by densitometry analysis.  

(D) Internalization of 
125

I-EGF was studied in scr-CTR and CIP4-KD MCF10A cells 

as described in Experimental Procedures. The rate of internalization is expressed as 

the ratio between internalized and surface 
125

I-EGF for each time point.  

(E) Recycling of EGFR was determined in scr-CTR and CIP4-KD #1 MCF10A cells 

by measuring surface-bound and intracellular 
125

I-EGF levels. For each time point, the 

medium was collected and subjected to TCA precipitation to determine the amount of 

intact 
125

I-EGF. Data are expressed as the percentage of intact internalized 
125

I-EGF in 

the medium with respect to the total 
125

I-EGF.  

(F) scr-CTR and CIP4-KD #1 MCF10A cells were stimulated with EGF (100 ng/ml) 

for the indicated times. Phosphorylated (Tyr1068; pEGFR) and total EGFR were then 

assessed in total cell lysates by IB with the indicated antibodies. The relative intensity 

of the pEGFR signals with respect to total EGFR was quantified by densitometry 

analysis. Actin was used as a loading control.  

(G) Total lysates of scr-CTR and CIP4-KD MCF10A cells treated or not with acute 

EGF for 5 minutes were immunoblotted for indicated protein. The anti-pY-N-WASP 

detects tyrosine 256 phosphorylation, which occurs when N-WASP is in an open and 

actin conformation.  

 

Figure S4: Fibronectin, but not vitronectin or laminin adhesion rescue impaired 

myosin light chain phopshorylation and scattering. (Related to Fig. 2A and 3C). 

(A-B) EGF-deprived scr-CTR and CIP4-KD #1 MCF10A cells plated either on 

gelatin (A) or Fn (B) were stimulated with EGF and stained with the anti-pMLC 

antibodies or phalloidin to detect F-actin (see also Fig. 3A and E). Bar, 25 μm.  

(C). scr-CTR and CIP4-KD #1 MCF10A cells were grown in complete media either 

on plastic (uncoated) or on FN. Phase contrast images are shown. Bar, 100 μm. 
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(D) EGF-deprived scr-CTR and CIP4-KD #1 MCF10A cells plated on plastic, or 

fibronectin (Fn), or on laminin (Lm) or vitronectin (Vn) were stimulated with EGF 

and monitored by time lapse. Cell scattering was quantified as described in Fig. 2D by 

tracking individual cells, measuring the accumulated distance covered by cells from 

the original position at time 0 within a cell cluster. Example of tracks covered by 

individual cells for the entire time of the scattering experiments is shown on the left. 

The % of control of accumulated scattering distance of at least 20 cells/experiments (n 

= 3 independent experiments) is plotted on the right. (**P<0.05; **P<0.01 compared 

to scr-CTR MCF10A cells). (see also representative Movie S6) 

 

Figure S5: CIP4 loss has a marginal impact on integrin-mediated adhesion, β1 

integrin levels and signaling, despite a slight reduction of β1 integrin 

internalization. (Related to Fig. 3A-B) 

(A) The attachment of MCF10A cells to poly-D-lysin (PDL), fibronectin (Fn), 

laminin (Ln) or Vitronectin (Vn) was monitored using the xCELLigence system as 

described in Material and Methods.  

(B) Representative phase contrast images from MCF10A cells growing on fibronectin 

(10 µg/ml) from which the cell area was measured. Bar is 25 μm. Right graph 

quantification of the average spreading area. 

(C) Growing scr-CTR and CIP4-KD #1 MCF10A cells were detached and plated 

either on Poly-D-Lysin (PDL) or on fibronectin (Fn). At the indicated times, cells 

were lysate and immublotted with the indicated antibodies. 

(D) Flow cytometric analysis of cell surface α5β1 and β1 integrins in growing scr-

CTR and CIP4-KD MCF10A cells.  

(E) Internalization of total and active β1 integrin was monitored in scr-CTR and 

CIP4-KD #1 MCF10A cells in absence and presence of EGF (100 ng/ml). Mean 

values  SD; p< 0.001. 

 

Figure S6: EGF-induced internalization of E-cadherin is reduced by loss of CIP4 

and SRC pharmacological inhibition. (Related to Fig. 4). 

(A) Internalization of E-cadherin was assessed in scr-CTR and CIP4-KD #1 MCF10A 

cells following EGF-stimulation, at the indicated time points, using an anti-E-

cadherin antibody that recognizes the extracellular domain (HECD-1), as described in 

Suppl. Experimental Procedure. Total surface-bound E-cadherin in untreated controls 

that were not subjected to acid wash is also shown (0 NW). Internalized E-cadherin 

was quantified by measuring the intensity of the signal over the number of cells and 

the area of the field in µm
2
. The quantification and selected time points are shown in 

Fig. 4E. Bar, 15 µm.  

(B) Efficacy of SRC inhibitors PP2 (10 µM) and Dasatinib (100 nM) was evaluated 

by immunoprecipitating SRC from lysates of control (scr-CTR) and CIP4-KD 

MCF10A cells, treated as shown, and IB with the indicated antibodies. 

(C) EGF-induced E-cadherin internalization was monitored in scr-CTR and CIP4-KD 

#1 MCF10A cells, treated with DMSO as control or PP2 (10 µM) or dasatinib 

(100nM), using the anti-E-cadherin HECD-1 antibody as described in Fig. 4E.  

(D) EGF-induced cell scattering of scr-CTR and CIP4-KD MCF10A cells treated with 

DMSO as control or PP2 (10 µM) or dasatinib (100nM). Cell scattering was 

quantified by tracking individual cells, measuring the accumulated distance covered 

by cells from the original position at time 0 within a cell cluster. The % of control of 

accumulated scattering distance of at least 40 cells/experiments (n = 3 independent 
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experiments) is plotted on the right. (***P<0.005 compared to scr-CTR MCF10A 

cells) (see representative Movie 7). 

 

Figure S7: Clinical features of TMA and CIP4 antibody characterization. 

(Related to Fig. 7) 

(A) The clinical and pathological information of the patients included in the case-

control TMA operated at the European Institute of Oncology (IEO) between 1994 and 

1997 is reported. Disease recurrence (any event and distant relapse) was within 18 

years (median 9.2 years and 10.6 years respectively). For some patients not all 

information was available. Nottingham Prognostic Index (NPI) combines nodal status, 

tumor size and histological grade. According to NPI’s score patients can be divided 

into 3 classes: Good Prognosis Group (GPG), Moderate Prognosis Group (MPG) and 

Poor Prognosis Group (PPG).  

(B) Specificity of the anti-CIP4 antibodies used for the IHC analysis of human 

tumors. Control and CIP4-KD #1 MCF10A, HeLa and MDA-MB-231 cells were 

embedded in paraffin and stained with anti-CIP4 antibody. 

 

Figure S8: CIP4 is required for invasion of ERBB2-dependent breast cancer cell. 

(Related to Fig. 8) 

(A) Invasion of 10A.ERBB2 scr-CTR and CIP4-KD cells was assessed during 48 

hours using ethanol as a control and AP1510 (100 nM) or EGF (100 ng/ml) as 

chemoattractant. Representative images are shown and invasion was quantified as 

described in Material and methods. Data are the mean± s.e.m. *p<O.01 and 

***p<0.005, as compared to scr-CTR 10A.ERBB2 cells (n=3 independent 

experiments). Bar is 200 μm.  

(B) Total cell lysates from various human breast cancer cell lines were 

immunoblotted with the indicated abs. Please note that CIP4 levels are particularly 

elevated in the ERBB2+ HCC-1954 line. Triple negative ( ER-, PgR-and ERBB2-) 

and ERBB2+ breast cell lines are indicated.  

(C-D) HCC-1954 cells were stably transfected with lentiviral vectors encoding for 

scrambled shRNA (scr-CTR) and CIP4-shRNA (CIP4-KD #2), as described 

previously, and blotted for CIP4 and vinculin as loading control. Equal number of scr-

CTR and CIP4-KD HCC-1954 were seeded sparsely. Representative phase contrast 

images are shown. 

(E) Invasion of scr-CTR and CIP4-KD HCC-1954 cells was assessed during 48 hours 

using vehicle as a control and a mixture of EGF (100 ng/ml) or HGF (20 ng/ml) as 

chemoattractant. Representative images are shown on the left and invasion was 

quantified as described in Material and methods. Data are expressed as the % of 

invasion of scr-CTR cells invading toward the chemotactic mixture and are the mean± 

s.e.m. *p<0.01 and ***p<0.005, as compared to scr-CTR HCC-1954 cells (n=3 

independent experiments). Bar is 100 μm.  

 

 

 

Supplemental Movie legends 

Movie S1: Random migration of MCF10A cells silenced for TOCA family 

members. Related to Fig.  S2A-B. Random migration of scr-CTR, CIP4-KD#1, 

TOCA-1-KD, FBP17-KD, 2KD and 3KD MCF10A cells was monitored in complete 

medium over a 24-hour period with pictures taken every 15 minutes. 
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Movie S2: EGF-induced cell scattering is delayed in CIP4-KD MCF10A cells. 

Related to Fig. 1G-H. 
scr-CTR and CIP4-KD#1 MCF10A cells were EGF-starved for 24 hours before the 

addition of 100 ng/ml EGF. Cell scattering was then monitored over a 24-hour period 

with pictures taken every 5 minutes.  

 

Movie S3: Dynamics of E-cadherin-GFP in MCF10A cells upon EGF stimulation. 

Related to Fig. 2 and Fig. 4B. 
 Scr-CTR and CIP4-KD #1-MCF10A cells were transfected with E-cadherin-GFP and 

EGF-starved for 24 hours. Internalization of E-cadherin was monitored after EGF 

addition (100 ng/ml) over a 4-hour period with pictures taken every 2 minutes. 

 

Movie S4. CIP4 loss impairs EGF-induced decreases of FRET efficiency of 

EcadTSMod at cell–cell junctions. Related to Fig. 2C. 

EGF-starved Scr-CTR and CIP4-KD#1 MCF10A cells were microinjected with the 

EcadTSMod-CFP(E2)  construct or EcadTSModΔcyto-CFP(E2) (not shown) before 

the addition of 100 ng/ml EGF. Cell scattering was monitored by fluorescence 

timelapse microscopy over a 5 h period. Pictures were taken every 10 minutes. CFP 

and the derived FRET/Ratio channels on cell-cell junction, delimited by defining 

manually the appropriate Region of Interest, are shown. Bar, 10 µm. 

 

Movie S5: EGF-induced scattering of control and CIP4-KD MCF10A cells on 

different ECM. Related to Fig. 2A and S4D. 
-Left Movies, EGF-induced cell scattering of CIP4-KD MCF10A cells is rescued by 

plating cell onto fibronectin. Scr-CTR and CIP4-KD #1 MCF10A cells were plated on 

tissues culture plastic dish that were either left untreated or coated with 10 μg/ml of 

FN. Cells were EGF-starved for 24 hours before the addition of 100 ng/ml EGF. Cell 

scattering was then monitored over a 24-hour period with pictures taken every 5 

minutes. 

Related to Fig. 2A. 

-Right Movies, EGF-induced cell scattering of CIP4-KD MCF10A cells is rescued by 

plating cell onto fibronectin, but not on Laminin or Vitronectin. Scr-CTR and CIP4-

KD #1 MCF10A cells were plated on tissues culture plastic dish that were either left 

untreated (plastic) or coated with 10 μg/ml of fibronectin, or Laminin (LM) or 

vitronectin. Cells were EGF-starved for 24 hours before the addition of 100 ng/ml 

EGF. Cell scattering was then monitored over a 24-hour period with pictures taken 

every 15 minutes. 

Related to Fig. S4D. 

 

Movie S6: Effects of SRC inhibition and of CIP4 mutant no longer binding to 

SRC on EGF-induced scattering of MCF10A. Related to Fig. S6B and 5F. 

-A, Left Movies, EGF-induced cell scattering of CIP4-KD MCF10A cells is impaired 

by pharmacological inhibition of SRC. Scr-CTR and CIP4-KD #1 MCF10A cells 

were plated on tissues culture plastic dish. Cells were EGF-starved for 24 hours 

before the addition of 100 ng/ml EGF in the presence of DMSO, as vehicle, or 100 

μM of PP2 or 100 nM of Dasatinib. Cell scattering was then monitored over a 24-

hour period with pictures taken every 15 minutes. 

Related to Fig. S6B 

-B, Right Movies: EGF-induced cell scattering of CIP4-KD MCF10A cells is rescued 

by the expression of a siRNA resistant wild type CIP4, but not an SRC-binding 
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defective ΔP-CIP4 mutant. scr-CTR and CIP4-KD #1 MCF10A were lentivirally 

infected with either an empty vector or with vector expressing siRNA-resistant WT-

(resCIP4-WT) or ΔP-CIP4 (resCIP4-ΔP) mutants.  Cells were EGF-starved, before 

stimulation with 100 ng/ml EGF. Cell scattering was monitored by time-lapse video 

microscopy over a 24-hour period with pictures taken every 15 minutes. 

Related to Fig. 5F 

 

 

 

 



 7 

Supplemental Experimental Procedures  

 

Antibodies and reagents 

Mouse monoclonal anti-TOCA-1 was raised against amino acids 416–470 fused to 

GST. Polyclonal anti-EGFR is against amino acids 1172-1186. The rabbit serum anti-

FBP17 (YU520) was kindly provided by Dr. Pietro De Camilli (Yale University 

School of Medicine, Connecticut, USA). Polyclonal anti-human CIP4 serum was 

kindly provided by Dr. Andrew Craig (Queen’s University, Ontario, Canada). 

Monoclonal antibodies directed against actin and vinculin were from Sigma. 

Antibodies directed against phospho-EGFR (Tyr1068), AKT, phospho-AKT (Ser473), 

ERK1/2, phospho-ERK1/2 (p42-44), phospho-SRC Family (Tyr416), phospho-Smad3 

(C25A9) and Smad3 (C67h9), polyclonal anti-phospho-Myosin Light Chain 2 

(Thr18/Ser19) antibodies were from Cell Signaling. Anti-CIP4, -N-cadherin and -E-

cadherin were from BD transduction Laboratories. Monoclonal HECD-1 anti-E-

cadherin, anti-giantin,  ab30388 Anti-N-WASP (phospho 

Y256) antibody ab23395 were from Abcam. Anti-SRC (clone GD11) was from 

Millipore and mouse anti-integrin a5β1 monoclonal antibody (P1D6) was from 

Immunological Sciences.  BD Pharmingen (9EG7, 

550531).   Mouse anti-integrin β1 (K-20) was from Santa Cruz Biotechnology.  

Secondary antibodies conjugated to: horseradish peroxidase were from Bio-Rad; Cy3 

were from Amersham; Alexa Fluor® 488 were from Molecular Probes. TRITC- and 

FITC-conjugated phalloidin were from Sigma Aldrich. EZ-Link
TM

 Sulfo-NHS-SS-

Biotin was from Thermo Scientific. MESNA and Streptavidin-Agarose beads were 

from Sigma, while Nitrocellulose transfer membrane was from Whatman. SRC 

inhibitor PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine) 

was from Gibco. E-cadherinTsMod_CFP(E2): The E-cadherinTSMod-CFP(E2) 

construct was generated by modification of the previously published E-

cadherinTsMod construct (Borghi et al., 2012). The original E-cadherinTsMod was 

assembled (Epoch Life Science) from canine E-cadherin cDNA (Adams et al., 1998) 

and the TSMod sequence (Grashoff et al., 2010). In the TsMod of E2 construct mTFP 

was substituted for CFP. Resulting modified TsMod bearing CFP and EYFP (Venus) 

separated by flexible flagella sequence, was flanked with linkers A: 

GGATCAGGTGGAACTGGTTCAACATCTGGAGGTTCAGGAGGTTCAACAGG

AGGTGGAACAGGAGG upstream and 

B:GGATCAGGTGGAACTGGTTCAACATCTGGAGGTTCAGGAGGTTCAACA

GGAGGT downstream and inserted between V742 and K743 of E-cadherin, which 

are the fourth and fifth residues of the juxtamembrane domain, respectively.  

The above modifications, CFP swap and longer linkers, enable the resulting fusion 

protein to be less prone to aggregation. E-cadherin TsoModΔCyto_CFP:  The 

EcadTSModΔcyto-CFP construct assembled from E-cadherin residues 1–758 

appended with the TSMod sequence bearing CFP fused through the linker A. E-

cadherin TsMod-CFP(E2) only was used to control for bleed through estimation was 

assembled by deletion of the EYFP(Venus) from E-cadherinTsMod-CFP(E2).  

 

Immunohistochemistry and TMA analysis 

Immunohistochemical analyses of CIP4 expression were performed on formalin-fixed 

paraffin-embedded breast TMA tumor sections obtained from tumor breast biopsies 

using a commercial Rabbit monoclonal antibody (Abcam, AB108313, clone 

EPR1965), which was used at a dilution of 1:1,500 following an antigen retrieval 
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procedure in EDTA pH 8.0. Immunocomplexes were visualized by the EnVision™+ 

HRP. Rabbit (DAB+), DAKO (K4011), and acquired with the Aperio ScanScope 

system. CIP4 expression was measured in parallel in a group of normal breast 

samples (N=38). In normal tissue CIP4 is expressed at low level (median score =0.5, 

mean score =0.68). CIP4 high expression was defined when tumors display an 

expression score >1. Tumors were consequently divided in CIP4-high and CIP4-low 

according to the score assigned.  

 

Cell culture and transfection 

The immortalized human mammary epithelial cell line MCF10A.ErbB2 (kindly 

provided by Muthuswamy, S.K.) and MCF10A were cultured in DMEM/F12 medium 

supplemented with 5% donor horse serum, 20 ng/ml EGF, 10 μg/ml insulin, 0.5 μg/ml 

hydrocortisone and 100 ng/ml cholera toxin at 37°C in a humidified atmosphere with 

5% CO2. MCF10A cells were transduced with pLKO.1-scr-CTR (scrambled control 

sequence), pLKO.1-shCIP4#2, pLKO.1-shTOCA-1, pLL3.7-shCIP4#1, and pLL3.7-

shFBP17 lentiviruses, and selected with the appropriate antibiotic to generate the scr-

CTR, CIP4-KD #2, TOCA-1-KD, CIP4-KD #1 and FBP17-KD cells, respectively. 

CIP4-KD #1 MCF10A cells were also subjected to a second round of infection with 

the pLKO.1-shTOCA lentivirus (designated 2KD), and a third round of infection with 

the pLL3.7-shFBP17 lentivirus (designated 3KD). Where specified, cells were EGF- 

and serum-starved for 18 hours and treated with 5 ng/ml TGF-1 (RD Systems, 

Inc.) or vehicle (4 mM HCl, 1 mg/ml BSA) for different time points. When PP2 was 

used, cells were treated for 18 hours with 10 µM PP2 or DMSO control in medium 

without EGF. 

For rescue experiments, cells were transfected with peGFP empty vector or resistant-

CIP4-peGFP plamid (res-CIP4-peGFP) using Amaxa® Nucleofector® kit V 

formulated by Lonza. Briefly, cells (1x10
6
) were transfected with 5 µg of appropriate 

plasmid using program T-024 of the Nucleofector® I Device and lysed for protein 

analysis. For immunofluorescence and epifluorescence analysis, transfected cells 

were seeded on glass coverslips and fixed 24 hours after transfection. 

 

Generation of lentiviruses particles  

Lentiviruses were produced by co-transfection of HEK293T cells with a pLKO.1-

based plasmid or pLentiLox 3.7 (pLL3.7) and packaging vectors (pCMV∆R8.91, 

VSV-G, Rev, pMDL) via the calcium phosphate method. Two batches of conditioned 

medium were collected after 48 and 72 hours and filtered through 0.45 µm filters. 

MCF10A cells were transduced with viral supernatants and cell pools were selected 

using puromycin (1 µg/ml), hygromycin (100 µg/ml) and/or neomycin (150 µg/ml). 

After several passages, cell pools were selected based on the efficiency of shRNA by 

protein analysis (shCIP4 target sequence#1: 5’-GGAGGTGGTGCCCATAATA-3’, #2 

and 5′-GCAACAGTCCTTCGTACAGAT-3; shTOCA1 target sequence: 5’-

CGCACAGAGTGTATGGTG-3’, shFBP17 target sequence: 5’- GATCAGTTTGAC 

AACTTA-3’). 

 

Immunoprecipitation and immunoblotting  

Cells were lysed in lysis buffer (50 mM Tris-HCl pH8.0, 150 mM NaCl, 5 mM 

EGTA, 1.5 mM MgCl2, 10% glycerol, 1% Triton X-100, 1 mM Na3VO4, 10 µg/ml 

aprotinin, 10 µg/ml leupeptin) and centrifuged at 16,100g for 30 minutes at 4°C. 

Soluble cell lysates were subjected to immunoprecipitation with anti-E-cadherin, anti-

SRC or anti-CIP4 antibodies. Antibody-protein complexes were recovered with 
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protein G-Sepharose (GE Healthcare). Proteins were then separated by SDS-PAGE, 

transferred onto a Protran® nitrocellulose membrane and probed with the appropriate 

antibodies. 

 

Quantitative RT-PCR detection of mRNAs 

Total RNA was extracted from MCF10A cells using the Trizol reagent (Invitrogen). 

Reverse transcription was performed using SuperScript® VILO
TM

 cDNA Synthesis 

Kit (Invitrogen). Gene expression was measured using TaqMan Gene Expression 

Assays (Applied Biosystems). 18S was used as an internal control to normalize 

mRNA levels. Real-time PCR quantitation of transcripts was expressed as fold 

increase with respect to 90 minutes treatment with vehicle for respective MCF10A 

cell sublines. 

 

Immunofluorescence 

MCF10A cells (1x10
5
) were seeded in a 100 mm diameter dish containing glass 

coverslips and grown in complete medium for 3 days. Where applicable, cells were 

EGF-starved for 24 hours prior to staining. Cells were then washed with PBS, fixed 

with 4% paraformaldehyde and permeabilized with 0.5% Triton X-100. After 

blocking with 3% BSA, primary antibodies were added for 1 hour at room 

temperature. Cover slips were washed in wash solution (130 mM NaCl, 0.1% BSA, 

0.2% Triton X-100, 0.05% Tween 20, 15 mM PBS pH 7.4) before incubation with 

Alexa-Fluor-488- or CY3-conjugated IgG at room temperature for 1 hour. TRITC- or 

FITC-conjugated phalloidin was added in the secondary antibody mixture. After 

washing, coverslips were incubated with 0.5 ng/ml DAPI, post-fixed and mounted on 

slides. Images were taken with a Leica TCS SP2 confocal microscope.  

 

Extended version of the 
125

I-EGF internalization and recycling assays. 

EGFR surface levels and EGF Internalization and recycling assays with 
125

I-EGF 

were performed as described in (Sorkin and Carpenter, 1991; Sorkin and Duex, 2010; 

Sorkin et al., 1991). 

EGFR surface levels: Serum and EGF-starved MCF10A cells were incubated on ice 

for 7 hours in the presence of 100 ng/ml EGF (20 ng/ml 
125

I-EGF plus 80 ng/ml cold 

EGF) in DMEM/F12 medium supplemented with 2% BSA. Cells were washed 3 

times with ice-cold PBS and solubilized in 1 M NaOH. After correction for the 

hot/cold dilution, the number of receptors on the surface was deduced from the 

specific activities of the labeled ligand. Non-specific binding was measured for each 

time point in the presence of a 100-200–fold excess of cold ligand, and was never > 3-

10 % of the total counts 

Internalization assay: MCF10A cells were EGF-starved for 18 hours before the 

addition of 2 ng/ml 
125

I-EGF in the binding medium (DMEM/F12 medium containing 

20 mM Hepes and 0.1% BSA) for 2, 4 and 6 minutes at 37°C. Afterwards, cells were 

transferred on ice, washed with cold PBS pH 7.4 and incubated for 5 minutes in acid 

wash buffer (0.5 M NaCl, 0.5 M acid acetic). This soluble fraction represents the 

amount of 
125

I-EGF bound to the receptor on the cell surface. Cells were then dried at 

room temperature for 5 minutes and lysed with 1 N NaOH. This lysate represents the 

amount of internalized 
125

I-EGF. The rate of internalization is expressed as the ratio 

between internalized and surface 
125

I-EGF for each time point. A low concentration of 
125

I-EGF was used to avoid saturation of the internalization machinery. Specific 

binding is reported for all data points. Non-specific binding was measured by adding 

a 200-fold excess of cold EGF. 



 10 

Recycling assay: 
125

I-EGF recycling assays were performed exactly as described 

(Sorkin and Carpenter, 1991). Briefly, cells were EGF-starved and then incubated 

with 
125

I-EGF (20 ng/ml) for 15 minutes at 37°C, followed by mild acid/salt treatment 

(0.2 M Na acetate pH 4.5, 0.5 M NaCl) to remove bound EGF. Cells were then chased 

at 37°C in medium containing 4 μg/ml EGF for the indicated times, to allow 

recycling. At the end of each chase time, the medium was collected and subjected to 

TCA precipitation to determine the amount of intact (TCA precipitable) and degraded 

(TCA soluble) 
125

I-EGF present. Surface-bound 
125

I-EGF was extracted by acid 

treatment (0.2 M acetic acid pH 2.8, 0.5 M NaCl). Finally, cells were lysed in 1N 

NaOH to determine intracellular 
125

I-EGF. Data are expressed as the percentage of 

intact internalized 
125

I-EGF in the medium with respect to the total 
125

I-EGF (total 

medium + total surface + total intracellular). Non-specific counts were measured for 

each time point in the presence of a 200-fold excess of cold ligand, and were never > 

3-10% of the total counts.  

 

Extended version of the total and active β1 integrin internalization. 

Internalization of total and active β1 integrin was assessed as in (Roberts et al., 2001)

(Roberts et al., 2001) 

ab30388)  9EG7 (BD Pharmingen 550531).
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PARAMETER GROUP 

CASE-CONTROL 
DATASET 
(N = 349) 

N % 

Histotype  
DUCTAL 290 83.09 
LOBULAR 50 14.33 
OTHER 9 2.58 

pT 

1 178 51.44 
2 142 41.04 
3 18 5.2 
4 8 2.3 

Nodal Status  
NEG 153 43.84 
POS 196 56.16 

Grade  
G1 56 18.42 
G2 132 43.42 
G3 116 38.16 

ER 
NEG 106 31.45 
POS 231 68.55 

PgR 
NEG 140 41.54 
POS 197 58.46 

Ki -67 
NEG 116 34.42 
POS 221 65.58 

ErbB2  
NEG 227 88.22 
POS 37 11.78 

NPI 
GPG 84 28 
MPG 133 44.33 
PPG 83 27.67 

Any Event  
NO 165 47.28 
YES 184 52.72 

Distant  Relapse  
NO 245 70.2 
YES 104 29.8 

Status  
ALIVE 233 66.76 
DEAD 116 33.24 

MCF10a CIP4-KD MCF10A scr-CTR

MDA-MB-231 HeLa 

B

Fig. S7

Supplemental Table 1. Clinical and pathological 
information of the case-control dataset of breast 
cancer patients 
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