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ABSTRACT 

In the Maritime Alps (NW Italy–SE France), the Middle Triassic–lowermost Cretaceous platform 

carbonates of the Provençal Domain locally show an intense dolomitization. Dolomitized bodies,

irregularly shaped and variable in size from some metres to hundreds of metres, are associated 

with tabular bodies of dolomite-cemented breccias, cutting the bedding at a high angle, and 

networks of dolomite veins. Field and petrographic observations indicate that dolomitization was

a polyphase process, in which episodes of hydrofracturing and host-rock dissolution, related to 

episodic expulsion of overpressured fluids through faults and fracture systems, were associated 

with phases of host-rock dolomitization and void cementation. Fluid inclusion analysis indicates 

that dolomitizing fluids were relatively hot (170–260 °C). The case study represents an 

outstanding example of a fossil hydrothermal system, which significantly contributes to the 

knowledge of such dolomitization systems in continental margin settings.   The unusually 

favourable stratigraphic framework allows precise constraint of the timing of dolomitization 

(earliest Cretaceous), and, consequently, direct evaluation of the burial setting of dolomitization,

which, for the upper part of the dolomitized succession, was very shallow or even close to the 

surface.  The described large-scale hydrothermal system was probably related to deep-rooted 
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faults, and provides indirect evidence of a significant earliest Cretaceous fault activity in this part

of the Alpine Tethys European palaeomargin. 

Keywords: hydrothermal dolomitization, fault-related fluid circulation, Early Cretaceous, 

Provençal Domain, Maritime Alps

INTRODUCTION 

In the broad field of dolomite literature, hydrothermal dolomitization processes (sensu Machel 

and Lonnee, 2002; Machel, 2004; Davies and Smith, 2006) represent the most studied and 

discussed in recent years. In fact, beyond the scientific significance, hydrothermal dolostones 

also have a high economic value, as they have long been known to host important base metal 

mineralizations (e.g. Mississippi Valley-Type lead–zinc ores; Hewett, 1928). More recently they 

have been recognized as potentially good hydrocarbon reservoirs  (Davies and Smith, 2006, 

and references therein). Moreover, the upflow of high-temperature fluids through a column of 

sediments can force the maturation of the organic matter and influence the migration of 

hydrocarbons (e.g. Lavoie et al., 2005; Sharp et al., 2010; Guo et al., 2011). 

In recent years, many examples of hydrothermal dolomitization have been documented 

worldwide (e.g. Boni et al., 2000; Lapponi et al., 2007, 2014; López-Horgue et al., 2010; Nader 

et al., 2012; Swennen et al., 2012; Haeri-Ardakani et al., 2013a, b; Hendry et al., 2015). In the 

Alpine chain, several examples of hydrothermal dolomitization come from the Southern Alps 

(Spencer-Cervato and Mullis, 1992; Carmichael and Ferry, 2008; Carmichael et al., 2008; Ferry 

et al., 2011; Ronchi et al., 2011, 2012). In many of these study cases, the most challenging 

point is the timing and the burial depth of dolomitization, which can be only inferred on the basis 

of indirect evidence regarding the regional context and the burial history.

In the Maritime Alps (NW Italy–SE France), the Middle Triassic and the Middle Jurassic–

Berriasian carbonates of the Provençal Domain are locally affected by intense dolomitization in 

an area of some tens of square kilometres, between the Vermenagna, Gesso, and Sabbione 

valleys to the north and the Roya and Bieugne valleys to the south (Fig. 1, 2). The presence of 

these dolostones has already been reported, although very briefly, by Bigot et al. (1967), 

Campanino Sturani (1967), Carraro et al. (1970), and Malaroda (1970, 1999). A preliminary 

description of this phenomenon has been given by Barale et al. (2013a), who documented its 

hydrothermal character, whereas Barale et al. (2016) mapped the distribution of dolomitization 

in the Italian part of the study area. The aim of this paper is to provide the full dataset of field, 
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petrographic, and geochemical characteristics of this remarkable study case of hydrothermal 

dolomites. The broad significance of this study case derives from the following points:

- local stratigraphy strictly constrains the timing and the burial depth of the dolomitization: 

the latter is considerably shallower than those reported in previous literature cases;

- inferred temperatures of dolomitizing fluids are very high, considering the shallow 

subsurface dolomitization environment; and

- it is the first report of hydrothermal dolomite in the Western Alps, where it contributes to 

a better knowledge of an Early Cretaceous syndepositional tectonics.

GEOLOGICAL SETTING

The Mesozoic succession of the study area was deposited on the European palaeomargin of 

the Alpine Tethys, in the northern part of the Provençal platform, close to the transition to the 

Dauphinois basin (Carraro et al., 1970; Lanteaume 1990; Barale et al., 2016; d’Atri et al., 2016).

The Provençal succession starts with Permian continental sediments resting on the crystalline 

basement of the Argentera Massif, characterized by marked changes in thickness and reaching 

a maximum thickness of 3000–4000 metres (Faure-Muret, 1955). They are followed by some 

tens of metres of Lower Triassic coastal siliciclastic deposits, Middle Triassic peritidal 

carbonates, a few hundred metres thick, and Upper Triassic evaporites. Discrete stratigraphic 

intervals of Middle Triassic carbonates consist of finely crystalline dolostones that are 

widespread at the regional scale (e.g., Lanteaume, 1968; Carraro et al., 1970; Costamagna, 

2013). A regional discontinuity surface corresponding to a Late Triassic–Early Jurassic hiatus is 

followed by 200–300 m of platform limestones attributed to the Middle Jurassic–Berriasian 

(Garbella Limestone; Barale, 2014; Barale et al., 2016). Lower Cretaceous deposits are 

represented by a condensed succession of bioclastic limestones and marly limestones, locally 

rich in authigenic minerals (phosphates, glauconite), reaching a maximum thickness of some 

tens of metres (Lanteaume, 1968; Malaroda, 1999; Barale et al., 2013b). They are followed by 

hemipelagic deposits of Late Cretaceous age. In the northern part of the study area (roughly 

corresponding to the Italian part), Cretaceous deposits are in general thinner and locally absent 

(Carraro et al., 1970; Barale et al., 2016). To the northwest of the study area, the Provençal 

successions pass to thicker Dauphinois successions, characterized by several hundred metres 

of pelagic to hemipelagic Jurassic–Cretaceous deposits (Carraro et al., 1970; Barale et al., 
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2016). The transition between the Provençal platform and Dauphinois basin corresponds to a 

preserved primary feature (Caire Porcera palaeomargin), which originated as a fault-related 

palaeo-escarpment during the Early–Middle Jurassic and was subsequently covered by 

Cretaceous slope deposits (Barale, 2014; Barale et al., 2016; d’Atri et al., 2016). The top of the 

Mesozoic succession is truncated by a regional unconformity, corresponding to a hiatus 

spanning the latest Cretaceous–middle Eocene, overlain by the Alpine Foreland Basin 

succession. This  consists of middle Eocene Nummulitic Limestone (mixed carbonate–

siliciclastic ramp deposits), followed by the hemipelagic upper Eocene Globigerina Marl and by 

the upper Eocene–lower Oligocene turbidite succession of the Grès d’Annot (Sinclair, 1997).

Since the Eocene, the palaeo-European continental margin has been progressively involved in 

the ongoing formation of the Alpine belt (e.g., Dumont et al., 2012). All the study successions 

underwent at least three deformation events that were well recorded at a regional scale, firstly 

with outward (southwestward) brittle–ductile thrusting and superposed foldings, then 

northeastward back-vergent folding, and lastly southward brittle thrusting and flexural folding 

(d’Atri et al., 2016). The regional structural setting resulted from a transpressional regime with 

important strain partitioning of contractional versus strike-slip-related structural associations 

(Piana et al., 2009; d’Atri et al., 2016), as evidenced by the occurrence of a post-Oligocene 

NW–SE Alpine transcurrent shear zone (Limone Viozene Zone) extending for several kilometres

from Tanaro valley to the study area. This shear zone is probably superimposed on a long-lived 

shearing corridor active since the Jurassic–Cretaceous and reactivated during the Cenozoic 

(Bertok et al., 2012; d'Atri et al., 2016). Stratigraphic and geometric evidence of Cretaceous 

paleofaults have been locally described in nearby sectors (e.g. Bertok et al., 2012), but 

commonly, in the study area, the large amount of finite deformation related to Alpine tectonics 

hinders direct recognition of ancient structures.Hydrothermal dolomitization affects the whole 

Provençal succession from the Middle Triassic carbonates to the Middle Jurassic–Berriasian 

shallow-water Garbella Limestone (Fig. 3). The Middle Triassic carbonates are represented by a

150–200-m-thick succession of limestones, dolomitic limestones, and fine-grained dolostones, 

with decimetre-thick bedding (Bersezio and d’Atri, 1986; Malaroda, 1999). Common 

sedimentary structures are microbial/algal lamination, collapse breccias, flat pebble breccias, 

tepees, and millimetre-sized calcite pseudomorphs on gypsum crystals, all reflective of a 

peritidal depositional environment. An interval of dark-coloured, organic-rich limestones and 

dolostones, a few tens of metres thick, is locally present above the Middle Triassic carbonates 

(Mont Chajol, see Fig. 2) and is attributed to the Upper Triassic (Malaroda, 1999).
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The Garbella Limestone is a 200–300-m-thick platform succession organized in poorly-defined 

decimetre- to metre-thick beds and mainly consisting of bioclastic packstones to rudstones and 

boundstones, rich in echinoderm fragments, corals, nerineid gastropods (e.g. Ptygmatis 

pseudobruntrutana), rudists (Diceratidae), and stromatoporoids. In the upper part, bioclastic 

mudstones–wackestones with Clypeina jurassica are common. The uppermost 5–10 metres are

locally represented by peritidal limestones associated with lagoonal charophyte-rich 

wackestones, of supposed Berriasian age (Barale, 2014; Barale et al., 2016). In the Mont Chajol

sector, the Middle–Upper Jurassic succession is formed by micritic limestones with Saccocoma 

and ammonites, attributed to a more pelagic environment with respect to the carbonates of the 

adjoining sectors. They locally contain beds of oolitic grainstones, interpreted as resedimented 

deposits.

METHODS

Petrographic studies on 70 uncovered thin sections (30 μm thick) were carried out by optical 

microscopy and cathodoluminescence (CL) with the aim of distinguishing different dolomite 

generations. CL observations were carried out on polished thin sections using CITL 8200 mk3 

equipment (operating conditions of about 17 kV and 400 μA).  In situ quantitative microprobe 

analyses were performed on carbon-coated thin sections with an energy dispersive x-ray 

spectroscopy (EDS) Energy 200 system and a Pentafet detector (Oxford Instruments) 

associated with a Cambridge Stereoscan S-360 scanning electron microscope (SEM). The 

operating conditions were 15 kV of accelerating voltage, around 1 nA of probe current, and 50 

seconds of counting time. SEM–EDS quantitative data (spot size: 2 μm) were acquired and 

processed using the Microanalysis Suite Issue 12, INCA Suite version 4.01; Structure Probe, 

Inc. (SPI) natural mineral standards were used to calibrate the raw data; the RoPhiZeta 

correction (Pouchou and Pichoir, 1988) was applied. Analytical statistical errors ∑ on atomic 

weight percent are 0.08 for Mg and Fe and 0.13 for Ca. Carbon and oxygen isotopic 

compositions of the carbonates were measured partly at the Stable Isotope Laboratory of the 

ETH Geological Institute, Zurich, Switzerland (using a Thermo Fisher Scientific GasBench II 

coupled to a Delta V mass spectrometer as described in Bretenbach and Bernasconi (2011)), 

and partly at the MARUM Stable Isotope Laboratory, Bremen, Germany (using a Finnigan MAT 

252 mass spectrometer and following the standard method of McCrea (1950)). In both cases, 

the oxygen isotope composition of dolomite was calculated using the fractionation factor of 

Rosenbaum and Sheppard (1986). The isotopic ratios for carbon and oxygen are expressed as 

δ13C and δ18O per mil values relative to the VPDB (Vienna Pee Dee Belemnite) standard 
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(precision ±0.05‰). Fluid inclusion petrography has been studied on bi-polished thin sections 

(80 μm thick). Microthermometry of primary fluid inclusion assemblages on dolomite and calcite 

was performed using a Linkam THMSG600 heating–freezing stage coupled with an Olympus 

polarizing microscope (100× objective), using the standard method described by Goldstein and 

Reynolds (1994).  Crystal size classes used in dolomite description are those proposed by Folk 

(1962).

DOLOSTONE MAIN FEATURES

Geometry, distribution and structures of the dolomitized bodies

Dolomitization affects the whole thickness of the Middle Triassic carbonates and of the overlying

Garbella Limestone for a total thickness of about 400–500 m (Fig. 3). Sediments overlying the 

Garbella Limestone are not dolomitized, but they locally contain clasts of dolomitized rocks, as 

described below. In the study area, the Triassic–Jurassic succession shows different modes 

and degrees of dolomitization (Fig. 2). Dolomite occurs both as a replacement phase and as a 

void-filling cement. The term “dolomitization degree” is used here as a qualitative evaluation, 

considering the volumetric abundance of dolomite with respect to the host rock and the degree 

of overprint on the primary fabric. The highest degree is observed in a belt with a rough NW–SE

orientation, about 2 km wide and 8–10 km long, extending from Punta Bussaia to the eastern 

side of the Sabbione Valley, and in the Mont Chajol–Mont Agnelet–Mont Paracouerte sector. In 

these areas dolomitization widely affects a great part of the Provençal carbonate succession 

(Fig. 4), and fabric-destructive facies are common, as well as breccias, dissolution cavities, and 

tightly spaced vein networks. Outside these areas, the dolomitization degree decreases: fabric-

retentive facies prevail, whereas the fabric-destructive ones are limited to isolated masses of 

decimetre to metre size. Breccias and dissolution cavities are rare, and vein networks are more 

spaced. Similar dolomitization phenomena, though less intense, locally affect the Middle–Upper 

Jurassic and Berriasian limestones in other sectors of the Provençal Domain (southern side of 

Argentera Massif and Nice Arc: Dardeau and Bulard, 1978; Malaroda, 1999; Barale, 2014) (Fig. 

5). In the Jurassic part of the succession, dolomitization gave rise mainly to light-coloured, 

intensely dolomitized bodies that are commonly irregularly shaped, vary in size from some 

decimetres to some hundred metres (Figs. 4, 6A), and show randomly oriented boundaries with 

the encasing limestones. Conversely, in the Triassic part of the succession, well exposed in the 

Mont Chajol–Mont Agnelet-Mont Paracouerte area, dark dolomite-cemented breccias prevail 

(Fig. 7) and light, pervasively dolomitized bodies are commonly limited to smaller masses, 

decimetre-thick and a few metres wide at most. They generally crosscut the host-rock bedding 
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(Figs. 8A and C) but some  stratabound occurences have also been observed (Figs. 6B and 

8B).The transition between completely dolomitized and undolomitized or poorly dolomitized rock

volumes is commonly very sharp and takes place in a few centimetres (Figs. 6B, 8A and C). In 

the Garbella Limestone, bedding-parallel burial stylolites systematically cut through dolomite 

crystals and veins (Fig. 9A). 

Dolomitization textures

Partially dolomitized limestones constitute the greatest volume of the dolomitized rocks in the 

study area. Four main types of partial-dolomitization fabrics can be distinguished:

 Matrix-selective. Dolomitization of the matrix can be either partial or complete, but it 

affects the grains very marginally. 

 Grain-selective. Dolomitization affects only the grains, or a particular kind of grain. This 

kind of selective dolomitization is commonly observed in the coarse-grained facies of the

Garbella Limestone, where it typically affects large bioclasts in rudstones and 

boundstones (Fig. 9B) or ooids in oolitic grainstones.

 Non-selective. The host rock is partially replaced by medium to coarsely crystalline 

dolomite growing indifferently on the grains and on the matrix/cement of the rock 

(Fig.10A ).

 Veined limestones. Dolomitization develops along a vein network, with euhedral 

dolomite crystals spreading from the veins and substituting the surrounding rock (Fig. 

10B). Locally, a higher vein density is present within subvertical, centimetre- to 

decimetre-wide, tabular rock volumes (Fig. 10C). Veins are 200 μm to 2 mm thick on 

average and show a thin inner part (100–200 μm), composed of finely to medium 

crystalline turbid dolomite and a thicker outer part (100–1000 μm) composed of outward 

growing, coarse to very coarsely crystalline dolomite crystals (Fig. 10D and E). The latter

grow as a replacement of the rock constituting the vein walls. Dolomite veins do not 

show any preferential orientation. These veins can be clearly distinguished from those 

related to Alpine structural associations, which commonly bear a large number of 

tectonic calcite  veins both in fold-related settings and fracture networks. Furthermore, 

dolomite veins are systematically cut by a recurrent N–NE-striking system of tectonic 

calcite veins, widespread in the study area. A few isolated crystals can also occur in the 

host rock, far from the veins, but the majority of dolomite grows directly from the veins, 

and the portions of the host-rock away from the veins are generally undolomitized. This 
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kind of dolomitization is typically observed in the mudstone–wackestone beds of the 

Garbella Limestone.

Completely dolomitized rocks occur mainly in the Jurassic succession as discrete masses, 

some metres to some tens of metres wide, randomly distributed within partially dolomitized 

limestones. The two principal types are whitish, fine to medium crystalline dolostones and white,

sucrosic, coarsely to very coarsely crystalline dolostones. Primary rock fabrics are commonly 

obliterated, although in some cases ghosts of the original fabric are still recognizable. 

Breccias  

Breccias form bodies with complex geometries, consisting of mainly tabular parts, at a high 

angle with respect to bedding, a few centimetres to some metres wide, which can be followed 

vertically for up to some tens of metres, and generally thinner bodies that develop along 

bedding planes in the host rock (Figs. 7, 11A and B). Four main breccia types have been 

recognized and are described below using the descriptive, non-genetic classification of 

carbonate breccias by Morrow (1982).

- Type-1 are clast-supported, monomictic breccias with clasts of undolomitized rocks , 

with the same lithology as the host rock. Clasts are generally angular and millimetre- to 

centimetre-sized and locally show a jigsaw-puzzle arrangement (Fig. 11C). Voids are 

cemented by millimetre- to centimetre-thick rims of white, coarsely to very coarsely 

crystalline dolomite, followed by calcite. Locally, internal sediments are present, either 

predating or postdating dolomite cements (Fig. 11D). Detailed petrographic and 

cathodoluminescence analyses show important differences and asymmetries in the 

stratigraphy of cement rims around different clasts or on different sides of the same 

clast. A gradual transition between veined limestones and type-1 breccias is commonly 

observed, occurring by a progressive increase of clast displacement resulting in the 

formation of centimetre-wide voids filled with coarse to very coarse dolomite cement 

(Fig. 11E). Clasts within these breccias are locally crossed by millimetre-thick dolomite 

veins and thus consist of veined limestones (Fig. 11F). Type-1 breccias can be either 

crackle, mosaic, or rubble packbreccias (sensu Morrow, 1982). 

- Type-2 are clast-supported, monomictic breccias with clasts of homogeneous, medium 

to coarsely crystalline dolostones, generally showing the same lithology as the host rock.

They are centimetre- to decimetre-sized, and sub-rounded to angular in shape 

(Fig.11G). Voids between the clasts are cemented by a millimetre- to centimetre-thick 

rim of coarsely to very coarsely crystalline white dolomite, with calcite plugging the 
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remaining pores. These breccias are mostly mosaic to rubble packbreccias or, less 

commonly, rubble floatbreccias (sensu Morrow, 1982).

- Type-3 are polymictic, clast-supported breccias with centimetre- to decimetre-sized, 

angular to subrounded clasts composed of coarsely-crystalline dolostones, limestones, 

and partially dolomitized limestones (including clasts of limestones with dolomite veins 

clearly truncated at the clast edge) (Fig. 11H). Voids between clasts are filled up with a 

micritic matrix containing sand-sized clasts of the same lithologies as larger clasts. Type-

3 breccias are mostly rubble packbreccias (sensu Morrow, 1982).

- Type-4 are clast-supported monomictic breccias, mostly composed of millimetre- to 

centimetre-long and millimetre-wide plate-like clasts (rubble floatbreccias sensu Morrow,

1982) (Fig. 12A). The clasts show a constant and particular fabric: a central part of finely

to medium crystalline dolomite is surrounded on the two sides by coarse crystals of 

white dolomite growing outward from the central part. The shape of the clasts is angular,

and their outline mostly coincides with the dolomite crystal faces. Voids between clasts 

are cemented by dark-grey, sparry calcite (Fig. 12A). Type-4 breccias are commonly 

found within veined limestone, as tabular bodies bordered by veins, forming a high angle

with the host-rock bedding (Fig. 12B).

Cavities

Irregularly shaped cavities are frequent in the dolomitized rocks and are commonly millimetre- to

centimetre-sized, but they can locally reach several decimetres in diameter (Fig. 13A). Cavities 

are commonly fringed by an isopachous rim of coarsely crystalline dolomite cement, locally 

showing a jagged outline (Fig. 13B), followed by sparry calcite. They host internal sediments, 

giving rise in some cases to geopetal structures  (Fig. 13C). Sediments are mainly silt-sized, 

locally passing to very fine and fine grained sands (up to 200 μm in diameter), and are 

commonly laminated (Fig. 13D and E). They generally consist of calcite, but they locally contain 

fragments of coarsely crystalline dolomite crystals. Laminae are some hundred micrometres to a

few millimetres in thickness and show a normal grading. Locally, these sediments are 

dolomitized and appear as a homogeneous mosaic of anhedral to subhedral, finely to medium 

crystalline dolomite crystals. In some large cavities, a first layer of dolomitized sediment is 

followed by a second one of undolomitized sediment (Fig. 13E). In most cases internal 

sediments are deposited above dolomite cement rims and are followed by calcite cement (Fig. 

13C). Locally, however, sediments can occur in any position, from below the first cement 

generation to above the last one.(e.g. Fig. 13D). Cavity fills also contain clasts which are 
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represented by fragments of the wall-rock or of early cement rims (Fig. 13A and E). A particular 

kind of cavities occurs in veined limestones and are entirely bordered by veins, giving rise to a 

boxwork fabric (Fig. 13F). A sparry calcite cement plugs these cavities.

Both partially and completely dolomitized rocks show a very low porosity, quantifiable as less 

than 2%. Cavities and fractures are completely occluded by cement, and no significant inter-

crystalline porosity is present in dolostones. 

Reworked dolomite

In the Colle di Tenda area, the Nummulitic Limestone directly overlies the dolomitized Garbella 

Limestone, and starts with a metre-thick bed of clast-supported conglomerate with decimetre-

sized clasts of limestones and coarsely crystalline dolostones (Carraro et al., 1970; Campredon,

1977), with Gastrochaenolites bivalve borings (Fig. 14). The conglomerate is followed by a 

succession of decimetre-thick, normally graded beds, made up of conglomerates to arenites, 

whose clasts and grains consist of dolomitic rocks and fragments of single dolomite crystals with

petrographic and cathodoluminescence features comparable to the underlying dolomitized 

carbonates. Similar dolostone clasts, have been recently found also in Cretaceous sediments of

the adjoining Dauphinois succession, in particular in Valanginian–Hauterivian p.p. pebbly 

mudstones locally draping the Caire Porcera palaeomargin (Lausa Limestone; Barale, 2014; 

Barale et al., 2016). 

PETROGRAPHY, CATHODOLUMINESCENCE, AND ELECTRON MICROSCOPY    

Petrographic analysis of the dolomitized rocks allowed different mineralogical phases related or 

subsequent to the dolomitization event to be distinguished. For dolomite phases, the 

morphological classification of Sibley and Gregg (1987) has been utilized. Four dolomite types 

have been recognized:

- Dol1. Finely to medium crystalline planar-s dolomite. It has a turbid appearance in thin 

section due to the abundance of small fluid and solid inclusions. Dol1 occurs both as a 

cement in the inner parts of dolomite veins (Figs. 10D, E), and as replacement phase in 

all kinds of host limestones throughout the succession (Fig. 15A). Dol1 commonly gives 

rise to homogeneous, beige-coloured dolostones that do not preserve any relict primary 

depositional fabric. Dol1 shows a dull to moderate, blotchy, orange–red CL. This CL 

pattern invariably characterizes Dol1 throughout the study area. 

- Dol2. Coarsely to very coarsely crystalline planar-e dolomite. It occurs as a replacement 

phase, commonly in micritic facies of the Garbella Limestone, and forms euhedral 
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crystals, up to 1–2 mm in size (Fig. 15B), showing unit extinction under crossed polars. 

Crystals generally show a large inner portion with abundant micrometre-sized calcite 

inclusions representing portions of the replaced sediment and a clearer thin outer rim, 

some tens of micrometres thick, almost devoid of solid inclusions. Dol2 is commonly 

non-luminescent in CL. Only locally does the external part of the crystals have some 

hairline zones with moderate to bright red–orange CL. 

- Dol3. Non-planar, coarsely to extremely coarsely crystalline (500–5000 µm)  dolomite. It 

has curved crystal faces and a marked sweeping extinction (Fig. 15C). In the outer part 

of the crystals, the alternation of more and less inclusion-rich bands defines a zoning 

which defines different growth stages. It occurs both as cement (saddle dolomite) and as

replacive dolomite. The former gives rise to millimetre-thick rims fringing cavity walls and

breccia clasts (Fig. 15B). Commonly, cavity-filling saddle dolomite has a cloudy inner 

part and a clear outer rim some tens of micrometres thick. Replacive Dol3 crystals 

typically grow from the veins outward (Fig. 10D and E) but also occur in the host 

limestone as isolated crystals, euhedral to subhedral and up to 2–3 mm in size. In some 

cases, Dol3 can completely replace the host rock, giving rise to a coarsely to very 

coarsely crystalline, sucrosic dolostone. In this case, it forms a mosaic of subhedral to 

anhedral crystals, 500–1000 µm in size on average, with larger crystals up to 4 mm in 

size. Larger crystals locally preserve ghosts of primary fabrics, evidenced by alignments 

of minute calcite inclusions. Dol3 crystals have, as a general trend, a thick inner part with

a homogeneous, dull to moderate red–orange luminescence, analogous to that of Dol1. 

This zone is followed by a thick non-luminescent zone locally showing hairline, 

moderately to brightly luminescent orange zones. The outer part of the crystals has a 

moderate to bright luminescence with a well-defined zonation, resulting from the 

alternation of red–orange, orange, and non-luminescent zones (Fig. 16A and B). 

- Dol4. Fibrous dolomite cement, forming elongated, blade- to fan-shaped crystals with 

rhombic terminations, up to 7–8 mm long and 1–2 mm wide, with the long axis 

perpendicular to the substrate. Crystals show sweeping extinction with diverging optical 

axes of the fibres (fascicular-optic; e.g., Richter et al., 2011) (Fig. 15D).  Dol4 is common

as breccia and cavity cement in the Mont Chajol sector, whereas it has not been 

observed in other sectors. Dol4 has a moderate orange or red–orange CL, with a well-

defined zonation in the outer part of the crystals, deriving from the alternation of zones 

with slightly different CL colour or intensity.
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SEM–EDS analyses show that all the above-described phases are non-ferroan, high-Ca 

calcium dolomites (sensu Jones and Luth, 2002). The CaCO3 content is 57–59 mol% in Dol1, 

54–56 mol% in Dol2, 56–59 mol% in Dol3, and 56–60 mol% in Dol4.

Calcite (Cc1) represents the last phase of void cementation throughout the study area. It is a 

coarsely to extremely coarsely crystalline sparry calcite (Fig. 15C), forming anhedral crystals 

that commonly show polysynthetic twinning. It is generally limpid in thin section, whereas on the 

hand sample the colour is variable, from white to dark-grey or blackish (Fig. 13A and F); the 

latter smells like oil when crushed. Cc1 shows a dull to moderate yellow–orange to greenish 

yellow CL with a local zonation resulting from the alternation of luminescent and non-

luminescent zones.

Dol1, Dol3, and Cc1 are the most commonly observed phases and are widespread throughout 

the study area. Dol1 predates Dol3 . This can be clearly observed in cavities, where Dol3 saddle

dolomite cement grows on the Dol1 replacement dolomite commonly representing the cavity 

wall, and in veins, where the inner part, made up of Dol1, is overgrown by outward-growing Dol3

crystals (Fig. 10D and E). Cc1 is the last phase of void filling, ubiquitously postdating Dol3 

cement. Dol2 has a wide distribution in the study area, but it seems to be limited to fine-grained 

host rocks (mudstones and wackestones), whereas Dol1 and Dol3 are common replacement 

phases in all types of rocks. Dol4 cement has only been observed in samples coming from the 

Mont Chajol sector.

STABLE ISOTOPE GEOCHEMISTRY

Twenty dolomite samples were measured to determine their δ18O and δ13C isotopic values. 

Samples consisted of Dol1 replacement dolomite, Dol3 saddle dolomite cement, and Dol4  

cement. The data obtained are similar for all dolomite types (Fig. 17): δ18O values range from –

2.00 to –11.03‰ VPDB, and the majority of them range between –4 and –7‰ VPDB, whereas 

δ13C values mostly range between +1 and +2‰ VPDB. Two samples of Cc1 calcite were also 

measured: they show negative δ18O values (–7.73 and –7.24‰ VPDB), whereas δ13C values 

are –2.10 and +0.50‰ VPDB, respectively. Lastly, eight samples of undolomitized Triassic and 

Jurassic carbonates have been measured: they show δ18O values between –4.21 and –1.63‰ 

VPDB and δ13C values between –0.53 and +2.53‰ VPDB.

FLUID INCLUSION ANALYSIS

More than 100 fluid inclusions from 8 double-polished sections have been measured to find their

homogenization temperatures with a standard heating method (Goldstein and Reynolds, 1994). 
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Primary fluid inclusions of useful size for microthermometry (i.e. greater than than 2 μm in 

diameter; Goldstein and Reynolds, 1994) were found in the clear, outer rim of Dol3 and Dol4. 

The distribution of these inclusions along growth zones documents their primary origin. They are

two-phase inclusions, liquid-rich with a vapour bubble, with irregular shapes, varying in size 

from 2–3 up to 10 µm. No evidence of stretching of either crystals or inclusions has been noted. 

Primary fluid inclusions show a relatively tight distribution of homogenization temperatures, 

ranging from 170 to 240 °C in Dol3 (highest frequency around 200 °C) and from 190 to 260 °C 

in Dol4 ( highest frequency around 230 °C) (Fig. 18). Larger fluid inclusions in Dol3 were also 

utilized for low-temperature runs to infer the fluid composition.  The only recognizable phase 

observed was ice, with final melting temperatures between –20 and –24 °C, whereas the 

eutectic temperatures were not clearly determinable. The measured final melting temperatures 

of ice are lower than the eutectic temperature of the H2O–NaCl system (–21.2 °C), thus pointing 

to a more complex system with cations other than Na+, possibly Ca2+ and Mg2+. Assuming a 

NaCl–CaCl2–MgCl2–H2O system (eutectic temperature -57°C; Shepherd et al., 1985) as a 

possible approximation for the fluid inclusion composition, the observed final melting 

temperatures indicate a highly saline fluid with an approximate salinity of 20–23% CaCl2 

equivalent (salinity is expressed in CaCl2 equivalent following Bakker and Baumgartner, 2012).

DISCUSSION

Age of dolomitization

On the basis of the stratigraphic relationships described in this paper, the timing of dolomite 

formation is well constrained. Dolomitization has to be younger than the youngest dolomitized 

rocks, which are the top interval of the Garbella Limestone, dated to the Berriasian. On the other

hand, dolomitization has to be older than the oldest sediments containing dolomite clasts. Clasts

derived from erosion of the dolomitized Garbella Limestone are present in Valanginian–

Hauterivian p.p. sediments locally draping the Caire Porcera palaeomargin (Barale, 2014). The 

presence of dolostone clasts in Valanginian–Hauterivian p.p. sediments thus indicates that 

dolomitization cannot be younger than Valanginian. To summarize, the studied hydrothermal 

dolomitization occurred in the earliest Cretaceous, probably in the latest Berriasian–Valanginian 

interval.

Burial conditions during dolomitization
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In order to reconstruct the diagenetic environment of dolomitization, the burial history of the host

rocks has to be considered. As concluded above, dolomitization took place in the earliest 

Cretaceous (latest Berriasian–Valanginian). Lower Cretaceous sediments are very thin or 

completely missing in the study area, more likely due to condensation and non-deposition than 

to subsequent erosion. The Lower Cretaceous Provençal succession is in fact condensed 

throughout the Maritime Alps (e.g., Lanteaume, 1968, 1990; Decarlis & Lualdi, 2008; Barale et 

al., 2013b). Thus, in the latest Berriasian–Valanginian, the top of the Garbella Limestone should

have been very close to the seafloor. This is confirmed by the absence of compactional features

(e.g., concave-convex grain contacts) in dolomitized ooid grainstone beds of the Garbella 

Limestone, documenting that dolomitization occurred before the onset of burial-related 

compaction of sediments (Fig. 10A).  Moreover, in the Garbella Limestone, dolomite veins are 

locally cut by bedding-parallel stylolites, again indicating that dolomitization occurred before the 

deep burial of the succession (Fig. 9A).

Contextually, the lower part of the Middle Triassic carbonates should have been buried to a 

depth of 400–500 m, corresponding to the cumulative thickness of the Garbella Limestone and 

the Triassic carbonates themselves. For this reason, the temperature of the host rock at the 

time of the dolomitization event should have been very low, close to seawater temperature 

(which was around 35 °C at the surface in Early Cretaceous low-latitude seas: Schouten et al., 

2003, Littler et al., 2011) in the upper part of the dolomitized succession and slightly higher in 

the lower part. On the other hand, microthermometric data indicate that dolomitizing fluids were 

significantly hotter (180–240 °C), and thus they can be properly considered as hydrothermal 

fluids (sensu Machel and Lonnee, 2002; Machel, 2004; Davies and Smith, 2006). 

Hydrothermal minerals

Among the different mineral phases described above, Dol1, Dol2, and Dol3 dolomites and Cc1 

calcite are the most important ones, as they are ubiquitous in the studied rocks. Dol4 is present 

only in a limited sector (Mont Chajol). Dol1 and Dol2 are both replacement phases, although 

showing very different features. It is not clear which factors controlled the development of Dol1 

rather than Dol2. The host-rock lithology might have played some role, as Dol2 has been 

observed almost exclusively in micritic rocks whereas Dol1 replaces all kinds of host limestones.

It is possible that partly lithified, and thus less porous and permeable, micritic host rock impeded

an efficient flux of dolomitizing fluids thus allowing a smaller number of dolomite crystals to 

nucleate, and promoting their non-competitive growth to larger sizes, whereas in more porous 

host rocks, e.g. non-cemented carbonate sands, the competitive growth of numerous crystals 
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generally resulted in a small crystal size. Dol3 also occurs as a replacement phase. Comparable

oxygen isotope values of Dol1 and Dol3, and the lack of fluid inclusion microthermometric data 

for Dol1, do not allow reliable hypotheses to be made on the factors controlling the development

of Dol3 rather than Dol1.

Dol4 fascicular-optic dolomite is only present in the Mont Chajol area, where it forms thick 

cement rims in breccias, cavities, and veins, analogously to Dol3 saddle dolomite.  Stable 

isotope and microthermometric data do not show clear differences between the fluids which 

precipitated Dol4 and those which precipitated Dol3 saddle dolomite, and thus do not allow us to

understand which factors locally favoured the precipitation of Dol4 instead of Dol3. 

Cc1 is the last phase of cement precipitation which plugs the remaining pores.  Many examples 

are reported in which calcite is closely associated with dolomite as a late-stage hydrothermal 

phase precipitating at a lower temperature (e.g. Lavoie et al., 2005; López-Horgue et al., 2010; 

Sharp et al., 2010). The change from dolomite to calcite precipitation has been related to a late-

stage calcite saturation in the fluid as a result of Mg exhaustion or, alternatively, to a switch of 

hydrothermal fluids from dolomite to calcite supersaturation due to a drop in temperature. 

Rock fabrics

The whole Middle Triassic to Berriasian succession, several hundreds of metres thick, is 

affected by dolomitization. Nevertheless, striking differences exist in the response of host rocks 

to the flow of dolomitizing fluids: in Triassic carbonates, breccias prevail and dolomitized bodies 

are smaller and scattered, whereas in the Middle Jurassic–Berriasian limestones a pervasive 

dolomitization (partial or complete) of the host limestones occurs (Fig. 3).

Partial versus complete dolomitization

Partially dolomitized rocks are volumetrically the most important form of dolomitization, and are 

affected by non-selective or selective dolomitization. The latter affects from place to place either

the matrix or the grains, and seems to be controlled by a number of factors: crystal size of the 

calcareous precursor (micrite vs. monocrystalline echinoderm fragments), mineralogy of the 

calcareous precursor (aragonite vs. calcite), early diagenetic processes such as cementation 

and neomorphism modifying, respectively, permeability and chemical stability of grains (e.g., 

Murray and Lucia, 1967; Sibley, 1982; Bullen and Sibley, 1984; Sibley and Gregg, 1987). The 

features of the sediment resulting from either depositional or early diagenetic processes 

interplayed with the chemical characteristics of dolomitizing fluids (e.g., saturation) which, in 
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turn, could vary both in space and time resulting in a complex spectrum of dolomitization 

modes.

Veined limestones represent a common type of partially dolomitized rocks, and are commonly 

developed in mudstones or wackestones, whereas matrix-poor, grainy textures show a more 

diffuse dolomitization. Tight, partly litified, mud-supported sediments possibly did not allow a 

diffuse, pore-controlled, fluid flow, but only a focused flow through a network of fractures, and 

dolomite formation was limited to vein cement and substitution of the host rock adjacent to the 

vein walls. Completely dolomitized bodies are decimetre- to decametre-sized, show an irregular 

shape and are randomly distributed in the sedimentary succession and commonly discordant 

with the bedding.  Only locally, in Middle Triassic carbonates, thin, laterally discontinuous, shale 

beds acted as minor barriers to the fluid flow and caused them to expand laterally, giving rise to 

decimetre- to metre-sized, stratabound dolomitized bodies. The factors controlling the 

distribution of dolomitized bodies probably lie in the intensity of the fluid flow and in the total 

volume of hydrothermal fluids circulating through the rock. These factors could be controlled in 

turn by the distance from the main fluid-flow pathways. Dolomitized bodies locally show a very 

sharp dolomitization front (Figs 6B, 8A and C), possibly corresponding to the margins of highly 

fractured rock volumes acting as fluid conduits.

Cavities

The irregular shapes of the cavities, generally with smooth and rounded edges, and their 

relatively large dimensions indicate that they formed as a consequence of dissolution 

processes. Moreover, the incongruent cement stratigraphy on different parts of cavity walls and 

around clasts, as well as the presence of cement clasts, indicate that cavity opening was a 

polyphase process. Phases of cavity enlargement by dissolution and subsequent cement 

precipitation on cavity walls likely alternated with phases of fracturing affecting both the cavity 

walls and the early cement rims grown on them (Figs. 11D, 13C, D and E, 19). Cavities 

commonly host laminated internal sediments. The relationships among the internal sediments 

and hydrothermal cements, in particular saddle dolomite, clearly document that the sediment 

deposition occurred indifferently before, after, or between different phases of cement 

precipitation (Fig. 19). This, together with the fact that internal sediments are locally dolomitized,

indicates that sediment deposition occurred when the hydrothermal system was still active. As 

to the origin of the sediments, there are two possibilities. The first hypothesis is that sediments 

originated within the hydrothermal system, deriving both from the erosion of cavity and fracture 

walls during the flow of the hydrothermal fluids, and from mobilization of still unconsolidated 
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levels of the sedimentary succession. The second hypothesis, conversely, is that they derived 

from infiltration of loose sediment from the seafloor. Internal sediments are present both in 

cavities hosted in the Garbella Limestone, whose upper portion was close to the seafloor at the 

time of dolomitization, and in the Middle Triassic carbonates (Monte Chiamossero, Mont 

Agnelet), which during and after the dolomitization event were separated from the seafloor by 

the entire thickness of the Jurassic succession (over 200 m). This considerable depth value 

does not rule out, in principle, the possibility of a sediment infiltration from the seafloor. In fact, 

sediment infiltration has been documented in cavity networks down to a depth of 300 m from the

seafloor (Aranburu et al., 2002). However, internal sediments locally contain sand-sized 

dolomite clasts that have been recognized as fragments of cavity-wall cements. This indicates 

that at least a part of the sediments has an intra-system provenance, even though a mixing of 

intra- and extra-system sediments cannot be excluded.

Breccias

Breccias are characterized by some common features:

- the angular shape and the jigsaw puzzle arrangement of clasts;

- the apparent floating fabric of clasts, clearly due to dilation;

- the high-angle orientation of the tabular breccia bodies with respect to host-rock 

bedding.

These features point to hydrofracturing processes related to mainly vertical fluxes of 

overpressured fluids (e.g. Phillips, 1972; Ohle 1985). Most breccias are monomictic, with clasts 

of the same lithology as the encasing rock. This documents that they derive from in situ 

disruption of the encasing rock, with a limited or no transport at all of the clasts. Conversely, the 

polymictic nature of type-3 breccias implicates some sort of clast transport, even though it is not 

known over what distance. Also, the fine-grained matrix locally present in type-3 breccias likely 

derived from transport and deposition of loose sediments. As to the origin of these sediments, 

the same considerations as for internal sediments in cavities are valid. Rounded breccias clasts 

formed by partial dissolution of the clast edges (cf. Iannace et al., 2012), as other rounding 

mechanisms, such as a prolonged transport, can be confidently ruled out.

Type-4 breccias deserve a separate discussion, because their unusual composition and fabric 

reflect a particular genetic mechanism. The shape and structure of the clasts strongly resemble 

those of the dolomite veins crosscutting the host limestones, and thus clasts reasonably 

represent fragments of such veins. Locally, on the outcrop, a lateral transition from veined 

limestones to type-4 breccias has been actually observed via a series of intermediate facies 
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with increasing host-rock dissolution and disruption of the vein network. These breccias are 

related to a dissolution process, locally affecting veined limestones. The steps of type-4 breccia 

formation can be summarized as follows (Fig. 20):

- The host limestone is crossed by a network of thin fractures. Dolomitizing fluids flow 

through this crack system, resulting in dolomite cementation of the fractures and 

dolomitization of their walls ;

- a local but complete dissolution of the host limestone occurs, leaving a fragile network of

isolated dolomite veins (boxwork fabric);

- the vein network collapses, forming clasts of vein material;

- clasts are cemented by sparry calcite.

In conclusion, type-1, -2, and -3 breccias originated through hydrofracturing processes and 

show only local evidence of dissolution (rounded clasts). On the contrary, type-4 breccias are 

only indirectly connected to hydrofracturing, but document strong dissolution of veined 

limestones. 

Characters and origin of dolomitizing fluids

The isotopic composition of hydrothermal dolomite shows slightly positive δ13C values, mostly 

between 1 and 2‰ VPDB, and negative δ18O values, varying from –2 to –11‰ VPDB. The δ13C 

values overlap with values from Triassic and Jurassic sediments not affected by hydrothermal 

dolomitization and are in the range of carbonates precipitated from seawater (e.g. Podlaha et 

al., 1998; Nunn and Price 2010). This probably indicates that the host rock had a buffering effect

on the carbon-isotope composition of the dolomite, as is commonly observed in dolomitization 

processes (e.g. Hoefs, 2009). Conversely, the δ18O values of hydrothermal dolomite differ 

significantly from the values of Triassic and Jurassic sediments not affected by hydrothermal 

dolomitization, being markedly more negative. Calculation of the isotopic composition of the 

parent fluids was made by combining the δ18O data measured on hydrothermal dolomite with 

the precipitation temperature obtained in the very same spots by fluid inclusion 

microthermometry (this was possible in very coarse, Dol3 and Dol4 cements).  According to the 

fractionation equation of Land (1985), the combination of these data indicates highly 18O-

enriched dolomitizing fluids, ranging from about +9 and +12‰ Standard Mean Ocean Water 

(SMOW).  The final melting temperature of fluid inclusions indicates that dolomitizing fluids were

highly saline fluids characterized by a complex composition that could be represented by the 

NaCl–CaCl2–MgCl2–H2O system and an approximate salinity of 20–23% CaCl2 equivalent. 

Basinal and evaporitic brines are commonly indicated as probable sources of highly saline fluids
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in hydrothermal systems (e.g. Davies and Smith, 2006; López-Horgue et al., 2010; Shah et al., 

2012; Lapponi et al., 2014). Moreover, such brines are highly 18O-enriched, as are waters 

deriving from salt dissolution or gypsum dehydration (Hitchon and Friedman, 1969; Knauth and 

Beeunas, 1986). In the study area,basinal brines could have entered the hydrothermal system 

only from the adjoining Dauphinois succession, that, however, was too thin (a few hundred 

metres; Carraro et al., 1970; Barale et al., 2016) to provide large amounts of fluids.  For this 

reason, the most important source of fluids was likely to be seawater, whose original 

composition still had to be strongly modified to produce the highly saline, 18O-enriched 

dolomitizing fluids. The interaction with evaporite intervals is commonly invoked to explain the 

high salinity and δ18O values of dolomitizing fluids (e.g. López-Horgue et al., 2010; Shah et al., 

2012; Lapponi et al., 2014; Geske et al., 2015). Upper Triassic evaporites are present in the 

stratigraphic succession of the Maritime Alps (Lanteaume, 1968; Carraro et al., 1970). This 

evaporite interval represents a preferential detachment horizon in the stratigraphic succession 

and it is not cropping out at present in the study area due to tectonic lamination, even though 

masses of Upper Triassic evaporites are locally present in the subsurface (Colle di Tenda 

tunnel; Ivaldi et al, 1998; Cavinato et al., 2006). However, the original thickness of Upper 

Triassic evaporites is unknown, and therefore it is not possible to establish if this interval could 

have played a significative role in modifying the composition of dolomitizing fluids. Another 

possible mechanism for increasing the salinity of fluids and enriching them in 18O is the 

interaction with silicate minerals of siliciclastic and crystalline rocks (Clayton et al., 1966; Land 

and Prezbindowski, 1981; Hitchon et al., 1990). As mentioned above, high precipitation 

temperatures document that dolomitizing fluids were involved in a deep hydrothermal 

circulation. Considering the extreme reduction of the Middle Triassic–Jurassic sedimentary 

succession in this area (not more than 400–500 m), it is very likely that fluids interacted with 

Permian–Lower Triassic siliciclastic rocks and with the crystalline rocks of the basement, 

currently exposed in the Argentera Massif (Fig. 21). This interaction possibly accounts for the 

enrichment in 18O and the increase in salinity of the dolomitizing fluids. Actually, the less 18O-

enriched values of the dolomitizing fluids, calculated from the most 18O-depleted dolomites, can 

be considered as the most representative of the fluids. The less depleted values of the dolomite 

could conversely be the result of important interactions between dolomitizing fluids and host 

rocks and as such not suitable to calculate the isotopic composition of dolomitizing fluids. A 

reasonable value for the latter therefore is around +8‰ SMOW or even lower and hence 

perfectly consistent with waters that have strongly interacted with silicate-rich basement rocks 

(e.g., Haeri-Ardakani et al., 2013a, b).
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Processes and features of the hydrothermal system

Temperatures obtained for dolomitizing fluids are anomalously high if compared to the low 

temperatures inferred for the dolomitized rocks from their shallow burial depth. In the study area

there is no evidence of magmatic activity in the Mesozoic, which could have represented a heat 

source for the fluids. Therefore, the high temperature of the fluids documents a very deep 

hydrothermal circulation related to deep-rooted fault systems (Fig. 21)., as commonly 

hypothesized for hydrothermal systems related to high-temperature and shallow-burial 

dolomitization (e.g. Davies and Smith, 2006; López-Horgue et al., 2010; Shah et al., 2012). 

In the study case, the measured homogenization temperatures of around 200° C would imply, 

assuming a normal geothermal gradient of about 30 °C/km, a circulation depth of at least 7 km. 

However, in extensional continental margins, crustal thinning is associated with anomalously 

high geothermal gradients (up to 80 °C/Km; Goldberg and Leyreloup, 1990; Vacherat et al., 

2014), which moreover can persist for a few tens of Myr after the end of rifting (Vacherat et al., 

2014). Such high gradients would significantly reduce the maximum depth of the hydrothermal 

system. The ubiquitous association of dolomitized bodies with vein networks and the common 

presence of dolomite-cemented, subvertical, tabular breccia bodies indicate that dolomitization 

was related to the circulation of fluids through high-angle faults and the related fracture systems.

In this sense, the hydrothermal system was controlled by fracture porosity (sensu Choquette 

and Pray, 1970) related to faults and fracture systems, which exerted the most important control

on the permeability of the host carbonates (e.g, Iriarte et al., 2012). Intrinsic porosity variations 

among the different rock facies had only a minor control on fluid circulation, possibly influencing 

the distribution of dolomitization only at the very local scale and away from the major fluid-flow 

pathways, where the fluid flow was less intense and pervasive. Dolomite both precipitated along

fault and fracture systems and replaced, partially or completely, non-fractured portions of 

carbonate rocks. This indicates that part of the host carbonates were still permeable enough to 

allow a diffuse flux of dolomitizing fluids. At the time of dolomitization, the Triassic and Jurassic 

parts of the succession differed in several aspects, such as lithofacies, composition, 

permeability, coherence, and burial depth, which altogether influenced the modes of 

dolomitization. The Triassic sediments were mainly fine-grained limestones and dolostones, and

evenly bedded because of thin shale partings. Moreover, their porosity was reduced by the 

overburden of the overlying sediment column. Therefore, on the whole, they were less 

permeable and compositionally less prone to dolomite replacement. Conversely, the Jurassic 

succession was more shallowly buried and in part composed of coarse-grained, mud-poor 
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carbonate sediments. Consequently, pervasive dolomitization was favoured in the more 

permeable and shallower Jurassic limestones, whereas deeper in the rock column, hydraulic 

fracturing processes prevailed with the development of a network of breccia conduits.

The random 3D orientation of vein networks and the common presence of hydrofracturing-

related breccias indicate the importance of hydrofracturing processes in the evolution of the 

hydrothermal system. Hydrofracturing was related to the abrupt expulsion of overpressured 

fluids along main fluid-flow pathways, likely represented by high-angle faults and the related 

subvertical breccia bodies and fracture systems. Polyphase breccias point to multiple events of 

hydrofracturing, in turn related to cyclic expulsion of overpressured fluids. Cyclic fluid expulsion 

through fault systems can be explained by the so-called fault–valve model (Ramsay, 1980; 

Sibson, 1987, 1992), which involves alternating phases of fluid accumulation and expulsion. It is

thus probable that events of fault activity coincided with periods of hydrothermal activity, causing

extensive hydrofracturing phenomena followed by massive fluid expulsion through the just 

opened fracture systems. 

The circulation of hydrothermal fluids had the dual effect of causing the replacive dolomitization 

of the host rock, and the precipitation of dolomite cements in fractures, among breccia clasts 

and in other voids. The solubility of dolomite is controlled by several parameters, including 

temperature, pH, partial pressure of CO2, and concentration of carbonate and other ions in the 

fluid. In hydrothermal systems, however, the decrease of the fluid pressure is the process most 

commonly invoked to explain fluid supersaturation and dolomite precipitation (e.g. Davies and 

Smith, 2006; Swennen et al., 2012). According to the above-cited fault–valve model, the abrupt 

release of overpressured fluids and their expulsion through fracture systems result in a 

significant pressure decrease. This caused a reduction of the partial pressure of CO2 and thus 

an increase of the fluid saturation with respect to dolomite.

Different features, including dissolution cavities, type-4 breccias, and rounded breccia clasts, 

indicate that the hydrothermal system was also punctuated by limestone dissolution episodes. 

Calcite dissolution in hydrothermal systems is commonly attributed to a decrease of fluid 

temperature, because calcite solubility increases as temperature decreases (hydrothermal karst

effect; Giles and de Boer, 1990). Rounded dolostone breccia clasts are the unique feature 

pointing to large-scale dissolution of dolomite (cf. Sharp et al., 2010). Nonetheless this is not 

conclusive evidence, as dissolution could also have affected the clasts before their 

dolomitization, when they were still composed of limestone. Good evidence of dolomite 

dissolution indeed exists albeit at a much smaller scale. The jagged outline of Dol3 saddle 
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dolomite crystals, rimming cavities (Fig. 13B), points to the flow of aggressive fluids that resulted

in the corrosion of the exposed dolomite cement crystals. 

REGIONAL CONTEXT

In the classical Alpine literature, the Dauphinois–Provençal Domain has always been 

considered the proximal portion of the European continental margin (e.g. Debelmas and 

Lemoine, 1970; Debelmas and Kerckhove, 1980; Stämpfli and Marthaler, 1990), separated 

during the Late Triassic–Early Jurassic rifting phase of the Western Alpine Tethys, which finally 

led to the opening of the Ligurian–Piemonte ocean in the Bajocian (Bill et al., 2001). The 

recognition of an Early Cretaceous hydrothermal dolomitization in the Provençal Domain 

provides a robust, although indirect, evidence of Early Cretaceous, post-rift tectonics in this 

sector of the European palaeomargin. As discussed above, the inferred temperature of the 

hydrothermal fluids and the large volumes of the rock bodies affected by dolomitization point to 

a huge and very deep hydrothermal system, in turn related to deep-rooted faults which could 

correspond to a segment of the proto-Periadriatic transform system (sensu Handy et al., 2010; 

Fig. 22). This important E–W-trending transform fault was active since the Bajocian, 

accommodating differential spreading of the Piemonte and Ligurian oceans. It continued its 

activity in the Middle–Late Jurassic and in the Early Cretaceous, when it was possibly 

connected to the Iberia–Europe plate boundary, which acted as a lithosphere-scale, left-lateral 

strike-slip fault. This strike-slip activity continued at least until the Aptian–Albian, when a 

regional plate kinematic reorganization caused the divergence between Europe and Iberia and 

the onset of oceanic spreading in the Bay of Biscay (Tugend et al., 2015, and reference 

therein).

Extensional to strike-slip tectonics was active at least until the Aptian, and is documented both 

in the External Briançonnais Domain (Bertok et al., 2012) and in the present French subalpine 

domain, where it controlled the evolution of the boundary between the Provençal platform and 

the Dauphinois basin (e.g. Dardeau and de Graciansky, 1987; de Graciansky and Lemoine, 

1988; Hibsch et al., 1992; Montenat et al., 1997, 2004; Friès and Parize, 2003; Masse et al., 

2009).

CONCLUSIONS

Detailed field, petrographic, and geochemical analysis, as well as fluid inclusion 

microthermometry, allowed a comprehensive characterization of the hydrothermal dolomitization
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largely affecting the Mesozoic Provençal carbonates in the French-Italian Maritime Alps. The 

main features of this process can be summarized as follows: 

- Dolomitization was a polyphase process, strictly associated with hydrofracturing events. 

Hydraulic fracturing was a consequence of the abrupt expulsion of overpressured fluids 

along main fluid-flow pathways, likely represented by high-angle faults and the related 

fracture systems. Circulation of hydrothermal fluids caused both replacive dolomitization 

of the host rock and dolomite cementation of fractures, breccias, and voids. 

- Dolomitizing fluids were hot (170–260 °C), highly saline, and 18O-enriched brines, likely 

derived from modification of seawater due to rock–fluid interactions with sedimentary as 

well as crystalline basement rocks during hydrothermal circulation. 

 Dolomitization occurred in the earliest Cretaceous, when the Provençal carbonates were

at a very shallow burial depth (from a few tens of metres to about 500 m). Therefore, the 

high temperature of the fluids documents a very deep hydrothermal circulation related to 

deep-rooted fault systems which represented the local physical expression of major 

changes in the tectonic regime of the Western Alpine Tethys.

The study case represents a striking example of fossil hydrothermal system where high-

temperature, deep-circulating fluids lead to the dolomitization of huge volumes of carbonate 

rocks at unusually shallow burial depth (< 500 m). The recognition of such evidence in an Alpine

setting is particularly significant since it provides a good, although indirect, evidence of pre-

orogenic tectonic activity in areas where successive collisional tectonics mostly overprinted the 

ancient faults.
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FIGURE CAPTIONS

Fig. 1. Schematic Geographical and geological map of the SW Alps. The red rectangle indicates

the location of the study area and corresponds to Fig. 2.
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Fig. 2. Geological scheme of the study area, showing the dolomitization degree of Middle 

Triassic–Jurassic carbonates (the location of the study area is also reported in the geological 

scheme of Fig. 5). 1: Argentera Massif crystalline basement. 2: Permian–Lower Triassic 

siliciclastic deposits. 3: Middle Triassic carbonates. 4: Upper Triassic–Lower Jurassic 

succession. 5: Jurassic Dauphinois hemipelagic succession. 6: Middle Jurassic–Berriasian 

Provençal carbonates (Garbella Limestone). 7: Cretaceous succession. 8: Alpine Foreland 

Basin succession. 9: intense hydrothermal dolomitization (local complete dolomitization of the 

host rock; common dolomite vein frameworks and dolomite-cemented breccias). 10: moderate 
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hydrothermal dolomitization (partial dolomitization of the host rock; rare dolomite vein networks 

and dolomite-cemented breccias). 11: main faults. 12: stratigraphic contacts. Modified from: 

Barale et al., (2016) (Italian part); Faure-Muret et al., (1967), and Lanteaume, (1990) (French 

part).

Fig. 3. Schematic stratigraphic log of the Middle Triassic–Paleogene succession in the study 

area, showing the vertical distribution of the main dolomitization facies, breccia types, cavities, 

and the occurrence of reworked dolomite. 1: decimetre-sized, stratabound, completely 
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dolomitized bodies. 2: subvertical bodies of type-1 breccias. 3: minor, bed-parallel type-1 

breccia bodies. 4: metre- to decametre-sized, completely dolomitized bodies. 5: non-selective 

partial dolomitization. 6: grain-selective partial dolomitization. 7: veined limestones. 8: boxwork 

fabrics and dolomite-vein breccias (type-4). 9: type-2 breccias. 10: dolomite-cemented 

dissolution cavities. 11: reworked dolomite in the Cretaceous succession. 12: reworked dolomite

in the lowermost interval of middle Eocene Nummulitic Limestone.

Fig. 4. Panoramic view of the western side of Passo di Ciotto Mieu. Dolomitized Garbella 

Limestone (GL) are unconformably overlain by the Alpine Foreland Basin succession 

(Nummulitic Limestone and Globigerina Marl, NL; Grès d’Annot, GA). The whitish colour of the 

Garbella Limestone reflects a high degree of dolomitization. The cliff of Garbella Limestone in 

the centre of the image is about 100 metres high; image taken from Monte Chiamossero 

eastern side (44°09'29.0"N, 7°30'44.8"E), looking north.
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Fig. 5. Geological scheme of the French–Italian southern Maritime Alps (redrawn from Rouire et

al., 1980), showing the distribution of the hydrothermal dolomite outcrops (stars). The red 

rectangle indicates the location of the study area and corresponds to Fig. 2.

Fig. 6. Field features of dolomitized rock bodies. (A) Discontinuous, decametre-thick, white-

coloured, pervasively dolomitized rock bodies (d) within the grey-coloured, partially dolomitized 

Upper Triassic–Jurassic carbonates on Mont Chajol southern side. The image shows a portion 

of cliff about 110 metres high, and has been taken from Mont Chajol southern ridge 
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(44°05'58.4"N, 7°31'50.6"E), looking north. (B) Stratabound, decimetre-thick, completely 

dolomitized rock body (d) in the Middle Triassic carbonates of Mont Agnelet (44°05'14.3''N, 

7°31'56.5''E); encircled hammer for scale.

Fig. 7. Complex network of decimetre-thick, tabular bodies of dolomite-cemented breccia in 

evenly bedded Middle Triassic carbonates (Mont Paracouerte southern side; 44°06'14.5"N, 

7°29'05.9"E); breccia bodies either crosscut at a high angle the host-rock bedding or develop 

parallel to it.
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Fig. 8. (A) Subvertical body made up of coarsely to very coarsely crystalline dolostones and 

dolomite-cemented breccias (D), showing a sharp contact with the poorly dolomitized Middle 

Triassic host rock (MT) and embedding a metre-sized, angular block of the same Middle 

Triassic carbonates (MTb); Mont Agnelet (44°05'16.5"N, 7°31'53.0"E). Black lines indicate the 

bedding of Middle Triassic carbonates (encircled hammer for scale). (B) Stratabound, 
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decimetre-thick, light-coloured, completely dolomitized body (dol) within Middle Triassic 

carbonates (MTc), showing an incipient nodular structure. At the boundary of the dolomitized 

body, dolomitization affects the internodular matrix but not the nodules themselves (Mont 

Agnelet; 44°05'13.6"N, 7°31'57.0"E). (C) Subvertical, light-coloured, completely dolomitized 

body (dol) within Middle Triassic carbonates (MTc), showing a sharp contact with the host rock. 

Mont Agnelet (44°05'14.3"N, 7°31'56.8"E).

Fig. 9. (A) Transmitted-light photomicrograph showing a bedding-parallel, burial stylolite 

(arrows) which separates a bioclastic wackestone crossed by dolomite veins (in the lower part) 
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from an undolomitized bioclastic wackestone with gastropod moulds (g), charophytae 

gyrogonites (c), and other bioclasts (in the upper part). Note that dolomite veins are clearly cut 

by the stylolite. Upper part of the Garbella Limestone, Monte Colombo. (B) Selective 

replacement of corals in a coral boundstone (Garbella Limestone, Sabbione Valley).
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Fig. 10. Partial-dolomitization fabrics: (A) Transmitted-light photomicrograph showing a non-

selective dolomitization of an ooidal grainstone: euhedral dolomite crystals grow indifferently on 

the ooids and on the cement. (B) Network of  dolomite veins crossing the Garbella Limestone 

(Passo di Ciotto Mieu; 44°09'47.9"N, 7°30'46.1"E). A few isolated dolomite crystals also occur in

the host rock. (C) Sub-vertical, decimetre-wide, tabular rock volume characterized by a very 

high density of dolomite veins, crossing the Garbella Limestone (Palanfré; 44°10'28.1"N, 

7°29'44.0"E). (D), (E) Transmitted-light photomicrograph (D) and cathodoluminescence image 

of a dolomite vein crossing the Garbella Limestone, showing a thin inner part composed of 

medium crystalline, turbid dolomite (Dol1), and a thicker outer part composed of outward 

growing, coarse dolomite crystals (Dol3).
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Fig. 11. Breccia features: (A) Centimetre-large, tabular breccia body crossing the bedding of 

finely laminated Middle Triassic carbonates at a high angle (fallen block on Mont Paracouerte 

western side; 44°06'10.8"N, 7°29'03.3"E). (B) Irregularly shaped, metre-sized breccia body in 

Middle Triassic carbonates (Mont Paracouerte; 44°06'14.4"N, 7°29'06.9"E). (C) Type-1 breccia 

in Middle Triassic carbonates, made up of centimetre-sized, angular clasts showing a jigsaw-

puzzle arrangement (Mont Agnelet; 44°05'12.0"N, 7°31'58.5"E). (D) Two polished hand samples

(juxtaposed in their relative position) of a type-1 breccia, made up of clasts of Middle Triassic 

carbonates, and showing a complex void filling. In the lower part, voids between clasts are filled 

with a grey, micritic sediment (sed1), which is followed by a white dolomite cement (Dol), in turn 

followed by a micritic, brownish sediment in the upper part (sed2) (Cime du Plan Tendasque; 

44°05'27.4"N, 7°29'49.0"E). (E) Tabular body of type-1 breccia crossing a veined volume of 

Garbella Limestone (Sabbione Valley; 44°10'13.6"N, 7°28'37.5"E). Note the gradual transition 

between the breccia body and the veined limestones, occurring by a progressive increase of 

clast displacement resulting in the formation of centimetre-wide voids filled with coarse dolomite 

cement. (F) Type-1 breccia composed of centimetre-sized clasts of Middle Triassic carbonates, 

in turn locally crossed by millimetre-thick dolomite veins (fallen block on Mont Paracouerte 

western side; 44°06'13.7"N, 7°28'53.6"E). (G) Type-2 breccia, consisting of centimetre-sized, 

subrounded clasts of  coarsely crystalline dolostones. Voids between clasts are cemented by a 

millimetre- to centimetre-thick rim of coarsely to very coarsely crystalline, white dolomite, with 

dark-coloured calcite plugging the remaining pores (near Passo di Ciotto Mieu; 44°09'51.1"N 

7°31'12.1"E). (H) Type-3, polymictic, clast-supported breccia with centimetre-sized, angular to 

subrounded, clasts, composed of dolostones, limestones and partially dolomitized limestones, in

a micritic matrix containing sand-sized clasts of the same lithologies as larger clasts (Passo di 

Ciotto Mieu; 44°09'49.6"N, 7°30'48.2"E).
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Fig. 12. Breccia features: (A) Close-up view of a type-4 breccia, mostly composed of 

millimetre- to centimetre-long and millimetre-wide, plate-like clasts made up of coarsely 

crystalline dolomite. Voids between clasts are cemented by dark-grey, sparry calcite (eastern 

side of Sabbione valley). (B) Centimetre-large tabular bodies of type-4 breccia (br), bordered by 

veins in the host Garbella Limestone (GL) (Monte Colombo).
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Fig. 13. Cavity features: (A) Large dissolution cavity in Middle Triassic carbonates. The 

occurrence of clasts with asymmetric white, very coarsely crystalline dolomite cement rims 

(saddle dolomite Dol 3, white arrows) and clasts entirely made up of the same dolomite cement 

(black arrows) indicate that cavity walls were fractured after precipitation of a coarse dolomite 

cement rim on them and before being plugged by a dark-coloured sparry calcite (Cc1). (Monte 

Chiamossero; 44°09'28.6"N, 7°30'50.5"E). (B) Transmitted-light photomicrograph showing a 
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portion of a dissolution cavity rimmed by a coarsely crystalline dolomite cement (saddle 

dolomite Dol3), and filled by a fine-grained sediment (sed). Note the jagged outline of dolomite 

crystals (arrows), due to dissolution of crystal faces. (C) Polished hand sample showing 

centimetre-sized cavities within completely dolomitized Garbella Limestone, rimmed by a white, 

very coarsely crystalline dolomite cement (saddle dolomite Dol3) and filled by mustard-coloured 

internal sediments, giving rise in some cases to geopetal structures plugged by a sparry dark-

coloured calcite cement (Cc1) (eastern side of Sabbione Valley). (D) Transmitted-light 

photomicrograph of a centimetre-sized cavity hosting silt-sized internal sediments, locally 

organized into graded laminae. Cavity walls are rimmed by a sparry calcite cement (Cc1). (E) 

Polished hand sample showing a large dissolution cavity in partially dolomitized bioclastic–

oncoidal rudstones of the Garbella Limestone (GL). The cavity is rimmed by a white, very 

coarsely crystalline dolomite cement (saddle dolomite Dol3) and filled by two different 

sediments. A first layer of laminated, dolomitized sediment (dsed) is followed by a second one 

of undolomitized sediment (sed), containing fragments of Dol3 crystals (arrows) (Monte 

Chiamossero; 44°09'36.0"N, 7°31'24.8"E). (F) Boxwork fabric in the Garbella Limestone: 

centimetre-sized cavities, filled with a sparry, locally dark-coloured, calcite cement (Cc1), are 

divided by a complex 3D network of thin dolomite veins. (Passo di Ciotto Mieu; 44°09'48.6"N, 

7°30'45.4"E).

Fig. 14. Upper surface of a conglomerate bed in the basal interval of the Nummulitic Limestone,

made up of clasts of dolomitized Garbella Limestone locally showing Gastrochaenolites bivalve 

borings (arrows). (Monte Garbella; 44°10'12.9"N, 7°28'39.8"E).

4895

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

96



Fig. 15. (A) Transmitted-light, crossed polars photomicrograph of a Garbella Limestone sample,

fully dolomitized by finely to medium crystalline, subhedral Dol1 replacement dolomite. (B) 

Transmitted-light photomicrograph showing a coarse, euhedral crystal of Dol2 replacement 

dolomite, growing in a mudstone bed of the Garbella Limestone. (C) Transmitted-light, crossed 

polars photomicrograph showing a detail of a cavity cemented by coarsely to very coarsely 

crystalline, Dol3 saddle dolomite, with Cc1 calcite plugging the remaining voids. Note: the 

curved crystal faces, the zoning, and the sweeping extinction of Dol3. (D) Transmitted-light, 

crossed polars photomicrograph  showing very coarsely crystalline fascicular-optic Dol4 

dolomite cements. Note the sweeping extinction of the crystals.
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Fig. 16. Transmitted light (A) and cathodoluminescence (B) photomicrographs of a very 

coarsely crystalline, Dol3 saddle dolomite rimming a cavity, and overlain by a fine-grained, 

calcitic sediment (sed). Dol3 crystals have a thick inner part with dull to moderate red–orange 

luminescence, followed by a thick non-luminescent zone with hairline, moderately to brightly 

luminescent, orange zones, and by an outer part with moderate to bright, red–orange 

luminescence zones.

Fig. 17. Stable isotope data: δ18O versus δ13C cross-plot for Dol1, Dol3 and Dol4 dolomite, for 

Cc1 calcite, and for Triassic and Jurassic host carbonates (values relative to VPDB standard).
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Fig. 18. Histogram of the homogenization temperatures obtained for Dol3 saddle dolomite and 

for Dol4 cements.

Fig. 19. Schematic paragenetic sequence showing the relative timing of the processes that 

affected the host rocks during and after hydrothermal dolomitization. Dashed lines indicate the 

uncertainty range.
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Fig. 20. (A–F) Interpretive sketch of the different steps leading to the formation of the type-4 

breccias.  A, B: the host limestone is crossed by a network of thin fractures. C: dolomitizing 

fluids flow through the fractures, resulting in dolomite cementation of the fractures and 

dolomitization of their walls. D: a local but complete dissolution of the host limestone occurs, 

leaving a frail network of isolated dolomite veins. E: the vein network collapses, forming clasts of

vein material. F: clasts are cemented by sparry calcite.
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Fig. 21. Conceptual model illustrating the geometries of the hydrothermal system, and the 

hypothetical origin and circulation pathways of the fluids. Blue arrows represent cold descending

fluids, whereas red arrows represent hot ascending fluids. Legend: 1: Argentera Massif 

crystalline basement. 2: Permian–Lower Triassic siliciclastic deposits. 3: Middle Triassic 

carbonates. 4: Jurassic Dauphinois hemipelagic succession. 5: Middle Jurassic–Berriasian 

Provençal carbonates (Garbella Limestone). 6: dolomitized bodies. 7: Early Cretaceous, syn-

dolomitization faults. 8: inherited, Early Jurassic and Palaeozoic faults.
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Fig. 22. Palaeogeographic sketch of the Western Mediterranean area in the Early Cretaceous. 

The black star indicates the position of the study area. Modified after Handy et al. (2010).
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