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COVERING AN ARITHMETIC PROGRESSION WITH

GEOMETRIC PROGRESSIONS AND VICE VERSA

CARLO SANNA

Abstract. We show that there exists a positive constant C such that the following holds:
Given an infinite arithmetic progression A of real numbers and a sufficiently large integer n

(depending on A), there needs at least Cn geometric progressions to cover the first n terms
of A. A similar result is presented, with the role of arithmetic and geometric progressions
reversed.

1. Introduction

Arithmetic and geometric progressions are always an active research topic in Number Theory.
In particular, problems concerning arithmetic progressions and covering, mostly over the inte-
gers, are well studied (for example, see [Sun95]). For v ≥ 0 and d > 0, let

A(v, d) := {v, v + d, v + 2d, v + 3d, . . .}

be the arithmetic progression with first term v and common difference d. Also, for u > 0 and
q > 1, let

G(u, q) := {u, uq, uq2, uq3, . . .}

be the geometric progression with first term u and ratio q. Furthermore, for a positive integer
n, let A(n), respectively G(n), be the set of the first n terms of the arithmetic progression A,
respectively the geometric progression G . Now, for a finite set S of nonnegative real num-
bers, denote by g(S) the least positive integer h such that there exist h geometric progressions

G1, . . . ,Gh covering S , i.e., S ⊆
⋃h

i=1 Gi. Similarly, denote by a(S) the least positive integer h
such that there exist h arithmetic progressions covering S . Since given any two distinct non-
negative real numbers there is an arithmetic progression, respectively a geometric progression,
containing them; it follows easily that a(S), g(S) ≤ (|S |+ 1)/2. On the other hand, obviously,
a(A(n)) = g(G(n)) = 1 for each arithmetic progression A and each geometric progression G .

We are interested in lower bounds for g(A(n)) and a(G(n)). Our first result is the following
theorem.

Theorem 1.1. There exists a positive constant C1 such that for each arithmetic progression
A = A(v, d) it results g(A(n)) ≥ C1n for n sufficiently large (how large depending only on v/d).
In particular, we can take C1 = 1/π2.

Regarding a lower bound for a(G(n)), with G = G(u, q), the situation is a little bit different.
In fact, we need to distinguish according to whether q is a root of a rational number > 1 or
not.

Theorem 1.2. Let q = r1/m with r > 1 a rational number and m a positive integer such
that qm

′

is irrational for any positive integer m′ < m. Then a(G(n)) ≤ m for each geometric
progression G = G(u, q) and each integer n ≥ 1, with equality if n ≥ 2m.

Theorem 1.3. There exists a positive constant C2 such that if q 6= r1/m for all rationals r > 1
and all positive integers m, then a(G(n)) ≥ C2n for each geometric progression G and each
integer n ≥ 1. In particular, we can take C2 = 1/6.
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A natural question, open to us, is the evaluation of the best constants C1 and C2 in Theorem
1.1 and Theorem 1.3, i.e., to find

inf
A

lim inf
n→∞

g(A(n))

n
and inf

G
lim inf
n→∞

a(G(n))

n
,

where A runs over all the arithmetic progressions and G runs over all the geometric progressions
G = G(u, q), with ratio q not a root of a rational number > 1. The results above give 1/π2 ≤
C1 ≤ 1/2 and 1/6 ≤ C2 ≤ 1/2.

Notation. Hereafter, N denotes the set of positive integers and N0 := N ∪ {0}. The letter p
is reserved for prime numbers and υp(·) denotes the p -adic valuation over the field of rational
numbers Q.

2. Preliminaries

The fundamental tool for our results is the following theorem of A. Dubickas and J. Jankauskas,
regarding the intersection of arithmetic and geometric progressions [DJ10, Theorem 3 and 4].

Theorem 2.1. Suppose that the ratio q > 1 is not or the form r1/m, with r > 1 a rational
number and m ∈ N, then |A ∩ G | ≤ 6 for each arithmetic progression A and each G = G(u, q).

If the ratio q of the geometric progression G is a root of a rational number > 1, then, without
further assumptions, |A ∩G | can take any nonnegative integer value, or even be infinite [DJ10,
Theorem 1 and 2]. However, we have the following:

Lemma 2.2. Suppose that q = r1/m, with r > 1 rational and m ∈ N such that qm
′

is irrational
for any positive integer m′ < m. If |A(v, d) ∩ G(u, q)| ≥ 3 then v/d is rational and u/d = sq−ℓ

for some s ∈ Q and some ℓ ∈ {0, 1, . . . ,m− 1}. Moreover, for each uqk ∈ A(v, d) ∩ G(u, q) it
results k ≡ ℓ (mod m).

Proof. Since |A(v, d) ∩ G(u, q)| ≥ 3, there exist k1, k2, k3 ∈ N0 pairwise distinct and such that
uqki = v + dhi, with hi ∈ N0 (i = 1, 2, 3). Set t := v/d and ξ := u/d, so that ξqki = t+ hi for
each i. Then, qk1 6= qk3 and

qk1 − qk2

qk1 − qk3
=

h1 − h2
h1 − h3

∈ Q,

so that qk1 , qk2 , qk3 are linearly dipendent over Q. Being xm − r the minimal polynomial of q
over the rationals (as it follows at once from our assumptions), we have that q0, q1, . . . , qm−1

are linearly independent over Q. It follows that at least two of k1, k2, k3 lie in the same class
modulo m. Without loss of generality, we can assume k1 ≡ k2 (mod m), so that qk1−k2 is
rational. Now

t+ h1 = ξqk1 = qk1−k2ξqk2 = qk1−k2(t+ h2),

thus, on the one hand,

t =
h1 − qk1−k2h2
qk1−k2 − 1

∈ Q,

and on the other hand ξ = (t+ h1)q
−k1 = sq−ℓ for some s ∈ Q and some ℓ ∈ {0, 1, . . . ,m− 1}

such that ℓ ≡ k1 (mod m). In conclusion, for each uqk ∈ A(v, d) ∩ G(u, q) we have ξqk = t+ h
for some h ∈ N0, so qk−ℓ = (t+ h)/s ∈ Q and necessarily k ≡ ℓ (mod m). �

Finally, we need to state the following lemma about the asymptotic density of squarefree
integers in an arithmetic progression [Pra58].

Lemma 2.3. Let a, b be integers with b ≥ 1 and gcd(a, b) = 1. Then

|{k ∈ N0 : k ≤ x and a+ bk is squarefree}| ∼
6

π2

∏

p|b

(

1−
1

p2

)−1

x

as x → ∞.
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3. Proof of Theorem 1.1

Let A = A(v, d) and n ∈ N. For the sake of brevity, set g := g(A(n)) and let G1, . . . ,Gg be

geometric progressions such that A(n) ⊆
⋃g

i=1 Gi. Suppose that |A ∩ Gi| ≤ 6 for i = 1, 2, . . . , g.
Then

n = |A(n)| ≤

g
∑

i=1

|A(n) ∩ Gi| ≤

g
∑

i=1

|A ∩ Gi| ≤ 6g,

with the result that g ≥ n/6 > n/π2.
Suppose now that there exists i0 ∈ {1, 2, . . . , g} such that |A ∩ Gi0 | > 6. For a moment, let

Gi0 = G(u, q). It follows from Theorem 2.1 that q = r1/m for some rational number r > 1

and m ∈ N. In particular, we can assume that qm
′

is irrational for any positive integer
m′ < m. Therefore, Lemma 2.2 implies that t := v/d is rational, u/d = sq−ℓ with s ∈ Q,
ℓ ∈ {0, 1, . . . ,m− 1}, and that for each uqk ∈ A ∩ Gi0 we have k ≡ ℓ (mod m). Since t ≥ 0 is
rational, we can write t = a/b, where a ≥ 0 and b ≥ 1 are relatively prime integers. On the
other hand, if uqk ∈ A ∩ Gi0 then k = mj + ℓ and uqk = v + dh for some j, h ∈ N0. As a
consequence, srj = t+h and bsrj = a+ bh. Now we claim that there exist at most two j ∈ N0

such that bsrj is a squarefree integer. In fact, since r > 1, there exists a prime p such that
υp(r) 6= 0. So υp(bsr

j) = υp(bs) + jυp(r) is a strictly monotone function of j and can take the
values 0 or 1, which is a necessary condition for bsrj to be a squarefree integer, for at most
two j ∈ N0. Consequently, if we define

B(n) := {v + dh ∈ A(n) : a+ bh is squarefree},

then |B(n) ∩ Gi0 | ≤ 2. Note that the definition of B(n) depends only on v, d and n, so we can

conclude that |B(n) ∩ Gi| ≤ 6 for all i = 1, 2, . . . , g. In fact, on the one hand, if |A(n) ∩ Gi| ≤ 6
then it is straightforward that |B(n) ∩ Gi| ≤ 6, since B(n) ⊆ A(n). On the other hand, if

|A(n) ∩ Gi| > 6 then we have proved that |B(n) ∩ Gi| ≤ 2. Now, Lemma 2.3 yields

|B(n)| ∼
6

π2

∏

p|b

(

1−
1

p2

)−1

n,

as n → ∞, so that |B(n)| ≥ (6/π2)n for n sufficiently large, depending only on a, b, i.e., t.
In conclusion,

6

π2
n ≤ |B(n)| ≤

g
∑

i=1

|B(n) ∩ Gi| ≤ 6g,

hence g ≥ n/π2, for sufficiently large n. This completes the proof.

4. Proofs of Theorem 1.2 and 1.3

Let G = G(u, q) and n ∈ N. For the sake of brevity, set a := a(G(n)) and let A1, . . . ,Aa be

arithmetic progressions such that G(n) ⊆
⋃a

i=1 Ai. Suppose q = r1/m, for a rational number

r > 1 and m ∈ N such that qm
′

is irrational for all positive integers m′ < m. Since r > 1
is rational, we can write r = r1/r2, where r1 and r2 are coprime positive integers. Then, for
k = 0, 1, . . . , n− 1, we have

uqk = uq(k mod m)r⌊k/m⌋ = 0 +
uq(k mod m)

rn2
· r

⌊k/m⌋
1 r

n−⌊k/m⌋
2 ∈ A(0, uq(k mod m)/rn2 ),

so that G(n) ⊆
⋃m−1

i=0 A(0, uqi/rn2 ) and a ≤ m. Suppose now n ≥ 2m. We define the sets
J := {1, 2, . . . , a},

J1 := {i ∈ J : ∃uqk1 , uqk2 ∈ Ai ∩ G(n) such that k1 6= k2, k1 ≡ k2 (mod m)},

and J2 := J \ J1. Clearly, {J1, J2} is a partition of J . For i ∈ J , suppose that there exist

uqk1 , uqk2 ∈ Ai ∩ G(n) such that k1 < k2. This implies that if Ai = A(v, d) then

d = 1
s (uq

k2 − uqk1),
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for some positive integer s. Furthermore, if uqk ∈ Ai ∩ G(n) then

uqk = uqk1 + dh = uqk1 + h
s (uq

k2 − uqk1),

for some integer h, hence

(1) qk = (1− h
s )q

k1 + h
s q

k2 .

On the one hand, if i ∈ J1 then we can assume k1 ≡ k2 (mod m), thus qk1 and qk2 are linearly
dependent over Q. From (1) it follows that also qk and qk1 are linearly dependent over Q, i.e.,
k ≡ k1 (mod m). On the other hand, if i ∈ J2 then we can assume k1 6≡ k2 (mod m), thus qk1

and qk2 are linearly independent over Q. From (1) it follows that necessarily h = 0 and k = k1,
or h = s and k = k2. To summarize, we have found that for a fixed i ∈ J1 it results that all the
uqk ∈ Ai ∩ G(n) have k in the same class modulo m, while for i ∈ J2 we have |Ai ∩ G(n)| ≤ 2.
As a consequence, if

R :=
{

k1 ∈ {0, 1, . . . ,m− 1} : uqk ∈
⋃

i∈J1

(Ai ∩ G(n)) for some k ≡ k1 (mod m)
}

,

then |J1| ≥ |R|. Also, if k1 ∈ {0, 1, . . . ,m− 1} \R and uqk ∈ G(n), with k ≡ k1 (mod m), then
uqk /∈

⋃

i∈J1
(Ai ∩ G(n)). But uqk ∈

⋃

i∈J(Ai ∩ G(n)) and so uqk ∈
⋃

i∈J2
(Ai ∩ G(n)). Thus, it

follows that

(2)
⋃

k1∈{0,1,...,m−1}\R

{uqk ∈ G(n) : k ≡ k1 (mod m)} ⊆
⋃

i∈J2

(Ai ∩ G(n)).

The set on the left hand side of (2) is an union of (m−|R|) pairwise disjoint sets, each of them
has at least ⌊n/m⌋ elements, so it has at least

⌊n/m⌋(m− |R|) ≥ 2(m− |R|)

elements. This and (2) yield

2(m− |R|) ≤

∣

∣

∣

∣

∣

∣

⋃

i∈J2

(Ai ∩ G(n))

∣

∣

∣

∣

∣

∣

≤
∑

i∈J2

|Ai ∩ G(n)| ≤ 2|J2|,

so that |J2| ≥ m− |R|. In conclusion,

a = |J | = |J1|+ |J2| ≥ |R|+ (m− |R|) = m,

hence a = m. This completes the proof of Theorem 1.2.
Suppose now that q is not of the form r1/m, with r > 1 a rational number and m ∈ N. From

Theorem 2.1 it follows that |Ai ∩ G | ≤ 6 for all i ∈ J . Then, for all n ∈ N,

n = |G(n)| ≤

a
∑

i=1

|Ai ∩ G(n)| ≤

a
∑

i=1

|Ai ∩ G | ≤ 6a,

and so a ≥ n/6. This completes the proof of Theorem 1.3.
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