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The Preisach-Mayergoyz �PM� approach has been widely used to describe hysteresis in different fields.
Among these, various types of reversible hysteretic elastic behavior have been succesfully modeled, inclusing
quasi-static, fast and slow dynamics, modulation, and so on. Here, we propose an approach to extend the PM
formulation to also treat irreversible phenomena, such as fatigue and damage progression. For this purpose, we
introduce a multilevel scheme based on nested PM descriptions. The mathematical formulation is outlined and
a phenomenological application presented.
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I. INTRODUCTION

The internal structure of a medium affects its elastic prop-
erties and evidence has been found of the importance of the
nonlinear elastic response to external loading in several ma-
terials, such as rocks,1 concrete,2 structural materials,3

ceramics,4 and composites.5 Typical strain ranges are of the
order of 10−7 to 10−5. In particular, the type of elastic re-
sponse of a medium is used to assess its mechanical
integrity.6,7 The opposite is also true: perturbations inducing
large amplitude mechanical waves �e.g., during fatigue cy-
cling� modify the medium structure, leading to damage
progression.8–10 These two phenomena �nonlinear wave
propagation and damage progression�, which occur at differ-
ent strain scales �10−7 to 10−2�, are usually described in the
framework of different models and approaches, even though
they are linked by a feedback process and share several com-
mon features. Indeed, their physical origin can be, at all scale
levels, traced back to the inner complexity of the material,
which results in an emergent high level of nonlinearity with
irreversible processes leading to large energy dissipation.

To describe the observed phenomenology, several models
have been proposed,11–13 mostly starting from ad hoc defined
hysteretic functions. Our approach differs in that we exploit
the idea that the inner complexity mentioned above conveys
the concept that damage, its dynamics and interaction with
elastic waves, are emergent phenomena, deriving from inter-
actions between a large number of simple constitutive units
on a lower space scale. The Preisach-Mayergoyz �PM�
space14,15 seems to be an appropriate general framework for
this purpose. Indeed, the PM approach is based on the intro-
duction of simple units,16–21 characterized by some local
�and weakly nonlocal� interactions that satisfy simple equi-
librium and constitutive equations. A complex behavior
stems from their interactions, rather than from more compli-
cated constitutive equations introduced by hand.

The models presented so far, however, account only for
elastically fully reversible constitutive equations. As such,
are inadequate to describe plastic strains such as those occur-
ring during damage progression. Furthermore, the “feed-
back” between modifications in the microstructure and wave
propagation has not yet been described in a PM space frame-
work.

As discussed below, the PM approach can also be ex-
tended to deal with irreversible processes, while maintaining

a mathematical formulation capable of describing the cross-
interactions between the wave and the material microstruc-
ture at both large and small strains. For this purpose, we
introduce here a “multilevel” PM description, i.e., a sort of
hierarchy from an upper level to a lower one, with explicit
feedback between the various levels. At each intermediate
level a statistical ensemble of hysteretic elements �HE� is
defined and the behavior of each HE results from the collec-
tive behavior of a statistical ensemble defined on the lower
hierarchical level.

Here, we limit ourselves to introduce a formalism based
on phenomenological considerations. Indeed, in the past
years efforts have been made to explain the physical mecha-
nisms at the basis of elastic hysteresis in solids.22–24 In our
opinion, a clear comprehension of the phenomena involved
remains to be achieved and it is difficult to go beyond a
phenomenological approach, which, nevertheless, may be
both very simple and accurate enough to support the under-
standing of the observed phenomenology and the mecha-
nisms involved.25,26

II. PM SPACE DESCRIPTION

Let us assume we are interested in describing the tempo-
ral evolution of a quantity A�t� as a function of B�t�. The link
between A and B, called “constitutive law,” depends on a
material property C1�t�, which is also time dependent �the
need for the introduction of the index 1 will become evident
later�. A PM space description consists in extracting C1�t�
from the statistical behavior of a large number �N1� of simple
units, e.g., by a simple average:

C1�t� = �Ci
1�t�� i = 1 ¯ N1 �1�

Each unit �i� may be in one of two states �denoted as “open”
and “closed” in the following�, in which C1 assumes the
value Co

1 and Cc
1, respectively. The transition between the

states is driven by an external variable D1�t�, as depicted in
Fig. 1. We define for each unit a parameter pair �Dci

1 ,Doi
1 �,

with Doi
1 �Dci

1 , so that starting at a given D1�Dci
1 , the unit is

in the open state up to D1=Dci
1 , at which point it switches to

the closed state. Conversely, when D1 decreases, the state
changes again at D1=Doi

1 . A given distribution of �Dc
1 ,Do

1�
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pairs ensures a statistical behavior and accounts for memory
effects �for details on this topic, see, e.g., Ref. 25�.

Each level of the description through a PM space ap-
proach is defined once the driving variable D1 has been cho-
sen, and a number of parameters have been defined: The
values Co,c

1 , the number of units N1 and their distribution
�1�Do

1 ,Dc
1�. The parameter N1, provided it is large, loses its

relevance except in defining the smoothness of the results.

III. MULTI-LEVEL IMPLEMENTATION

The multilevel PM description is based on the idea that
any of the parameters used in the description at the first level
�e.g., Co,c

1 � follow a temporal evolution equation driven by a
“lower level” material property C2�t�. The latter is described
in a PM framework identical to the one used for the upper
level �C2�t�= �Ci

2�t���, except that the transition between the
states �Co

2 and Cc
2� is driven by a variable D2. The approach

may be repeated on different levels or with different branch-
ing. Feedback is then obtained if the variable D at one level
corresponds to the output variable C at some other level.

IV. A THREE-LEVEL EXAMPLE

As an example of implementation, we consider a phenom-
enological description of damage progression during
loading/unloading fatigue cycling.8–10 For this purpose, we
consider a one-dimensional �1D� material specimen �e.g., a
thin bar� subject to a varying external mechanical loading,
applied orthogonally to the two surfaces of the bar. The elas-
tic response of the material to the applied load consists of
both reversible �e.g., hysteresis in the reversible stress-strain
loops9� and irreversible effects �e.g., plastic softening and
residual/irreversible deformations with increasing
fatigue8,10�. To describe the system, we consider a three-level
implementation.

Level 1: Following the approach introduced in Ref. 19,
we model the specimen as a dynamical system composed of
a set of N linear springs, each of which may be in one of two
different states, characterized by different rest lengths lr= l0
+�o,c, with �o,c= ±� corresponding to C1 in the notation
adopted above. Each spring switches from one state to the
other depending on the stress � it is required to support
�positive stress corresponds to compression�. Each spring is
characterized by a specific ��c ,�o� pair. The first-level state
equation, relating stress � and strain � �A and B in the nota-
tion used above�, is then given by

��t� = K��t� � K
�lr�t� − l�t��

lr�t�
�2�

where l�t� and K are the spring length and spring constant. In
Fig. 2 we show a stress-strain plot for a chain of 1000
springs and different values of �. The stress-strain curves for
increasing � agree well, e.g., with the experimental behavior
of alloys and composites with increasing damage �see, e.g.,
Figs. 9 and 10 in Ref. 10�. As in the experiments, the strain
is calculated with respect to the average restlength lo. The
presence of hysteretic loops is recognized to be evidence for
various kinds of damage. For instance, the multiplication and
propagation of matrix cracks in a composite specimen is
known to be reflected in a decrease of the Young’s modulus.8

At the same time, an increase in the debonding length be-
tween matrix and fibers causes an increase in energy dissi-
pation, with consequent increase of the width of the stress-
strain loops.

The observed residual strain, i.e., the strain remaining
when the applied stress is completely released, is due to the
change in rest length with respect to the initial configuration
of the M units located in the region ��o�0;�c�0�. For an
appropriate choice of the initial conditions �for a complete
discussion see Ref. 25�, these units are in the open state at
t=0. When compression starts, they switch to the closed state
�i.e., more compressed�. During unloading, as long as the
stress remains positive, they do not switch back to the origi-
nal state, leading to a positive residual strain �compression�,
whose value is given by M ·�. As shown in the inset of Fig.
2, a single spring of the chain follows a different elastic
behavior in the two states, while in Ref. 19 only a different
restlength was accounted for. The reported data indicate that
the parameter � is the indicator of both hysteresis and non-
linearity ��=0 corresponds to the linear/intact case�.

Level 2: To introduce irreversible effects in the model, we
assume the parameter � to be different for each spring of the

FIG. 1. Bi-state representation of the material property as a
function of the driving state variable.

FIG. 2. Stress-strain relation for a chain of 1000 springs with
K=90 GPa, l0=60 �m and different values of � �in �m�. The ap-
plied stress has the form �ext=60 sin�0.02�t� MPa. The behavior of
one of the units in the chain is reported in the inset.
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chain and increasing with time accordingly to the following
equation

�̇ = k	 �3�

where k is a fixed parameter and 	 is a random number
which may assume the value 1 or 0 with probabilities pr and
1− pr, respectively. The increase of � ensures an increase in
the nonlinearity/damage. It follows that the probability pr of
further damaging should be stress-history dependent. For in-
stance, in composite materials, pullout of the longer fibers
during loading promotes debonding of the interfaces, in con-
sequence of the decrease of the interfacial sliding
resistance.27 Hence, we use a PM space representation for
the variable pr, assuming it to be given by the average of the
values assumed by a large number N of lower level units:
pr= �pri

�. Each unit at the lower level may be in one of two
states: Open state, with pri

=0; closed state, with pri
= p1.

Both tension and compression lead to the same qualitative
behavior, particularly in the early stage of damaging. As a
consequence, the variable driving the transition between the
states is chosen to be the absolute value of the stress sup-
ported by the given spring in the chain. Here we neglect that
tension is expected to be more effective than compression in
inducing damage, leading to asymmetries, which, however,
may be easily introduced in our approach. The pair of posi-
tive values ��̄c , �̄o� is specific to each unit. In Fig. 3, we
show the values of pr vs stress �Fig. 3�a�� and � versus time
�Fig. 3�b�� for the central spring in the chain relative to the
same case as in Fig. 2 �the applied stress varies sinusoidally
with a period of 100 s�. Note the two-lobe hysteretic loop in
the behavior of the damaging probability, with, as expected,
the maximum probability of damage occurring in correspon-
dence with the largest applied stress. Also, for a given stress,
the probability value is greater in the unloading phase, which
reflects the conditioning of the material. A similar behavior is
reflected in the temporal evolution of �, which shows an
approximately linear increase of damage with successive pla-
teaux corresponding to the time interval when the applied
stress is lowest.

Level 3: A further level of description can be introduced
to model the observed feature that damaging is more likely
to occur in a previously damaged zone, i.e., where � is larg-
est. For instance, it is known that an increase in the debond-
ing length between matrix and fibers in a composite speci-
men should increase the probability of fiber fracture.28 To
describe this effect, we assume the lower level parameter p1
to be different in each spring of the chain and to be given as
the average over J lower scale units �p1= �p1i

�� which may be
in one of two states �open state, with p1i

= po; closed state,
with p1i

= pc, pc� po�. The transition between the two states
is driven by the value of the parameter � in the correspond-
ing element of the chain. It follows that p1 always increases.
In Fig. 4 we plot the distribution in the specimen of damage
versus time, i.e., the values of � along the bar length after
successive cycles. The snapshots, in which lighter tones de-
note larger damage, show that up to about 200 cycles no
damage occurs in the specimen. Later, some damaging oc-

curs with a rapid localized increase and noticeable clustering.
At later cycles �not reported� damage spreads to the full
specimen.

V. RESULTS

We finally consider a specific experiment, similar to that
reported in Ref. 8 consisting in the measurement of the fa-
tigue properties of an improved SiC/SiC composite �Hi-
Nicalon™/SiC, Young’s modulus=89 GPa� in air at high
temperature. The specimen is subject to successive loading/
unloading cycles with stresses varying between 0 and

FIG. 3. �a� Damaging probability vs. stress and �b� damage in-
dicator vs time for the central spring of a chain of 1000 springs.
K=90 GPa, l0=60 �m, M =200, k=0.005· l0, p1=5·10−4. The ap-
plied stress is �ext=60 sin�0.02�t� MPa.

FIG. 4. Distribution of damage during successive loading
cycles. Lighter tones denote greater damage.
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120 GPa, and the strains are measured during successive
cycles. In Fig. 5, the resulting stress-strain curves are shown
for a few selected cycles and numerical results �solid lines�
are compared with experimental data �dots� taken from Fig.
5�b� in Ref. 8. In the simulations the specimen is assumed to
be initially intact, as in experiments. The best choice of pa-
rameters to fit the data is the following: first level parameters
K=89 GPa, l0=60 �m, N=5000; second level parameters k
=4·10−4l0, M =100; third level parameters po=1.5·10−3, pc
=3.5·10−3, J=50. l0 may be scaled to adjust the specimen
dimension. The agreement between numerical results and ex-
perimental data is very good, with the proposed approach

capturing the relevant features of the emerging hysteretic
loops: the increase in the residual deformation, the fact that
the loops are closed and the decrease in slope and increase in
width when the number of cycles increases. At the same
time, the loops move towards higher strain values �more
compressed�, in agreement with experimental data. Finally,
the fact that each loop is closed is in good agreement with
other data �see Fig. 2 in Ref. 9�, showing the repeatability of
immediately successive loops.

VI. CONCLUSIONS

We have presented an approach to describe damage pro-
gression and other reversible and irreversible effects affect-
ing the elastic properties of nonlinear media. The method
proposed consists in an extension of the well known
Preisach-Mayergoyz approach, introducing a multilevel de-
scription of the medium in which nested PM spaces are used.
An application has been presented to clarify the procedure
and to show its capability to adapt to real experimental situ-
ations. We have given a general formulation of the model,
with some qualitative physical justifications for the intro-
duced formalism and the obtained results. The approach
seems to us sufficiently general to allow its application to a
number of different physical systems �once the physical
mechanisms involved are discussed� and it is particularly
promising for the simultaneous description of both reversible
and irreversible processes in hysteretic media.
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