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Energy consumption and CO2 analysis of different types of chippers used in 1 

wood biomass plantations 2 

 3 



Abstract 1 

Woodchip is preferred to all biomass forms because it shows standardised sizes and offers 2 

additional benefits in terms of load density. In Europe, a large amount of woodchip is produced by 3 

dedicated cultivations: very Short Rotation Coppice (vSRC) and Short Rotation Coppice (SRC). 4 

The chipping operation can be done during the biomass harvest or some months after tree cutting. 5 

This operation can be performed by different machines: disc chippers, drum chippers, feller-6 

chippers and grinders.  7 

 The goal of this work was to determine the energy and the CO2 emission of different types 8 

of chippers used in biomass comminution produced by poplar vSRC and SRC. All machines were 9 

tested with two different feedstocks: branchwood (treetops and biomass produced by vSRC) and 10 

whole-trees (biomass produced by SRC).  11 

 Fuel consumption ranged between 14.36 and 59.52 l h-1 and energy consumption varied 12 

from 0.92 to 0.62 MJ MgDM-1, respectively, for branchwood and whole-trees feedstock type. In 13 

addition, an average value of 16.40 kgCO2eq MgDM-1 in branchwood chipping and an average 14 

value of 10.80 kgCO2eq MgDM-1 were obtained in CO2 assessment.  15 

  This experiment indicated that self-propelled feller-chippers were significantly more 16 

convenient than “conventional chippers” in biomass comminution produced by dedicated 17 

plantations. 18 

 19 
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1. Introduction 1 

 2 

Energy produced by renewable sources is considered a valid solution for reducing environmental 3 

pollution caused by the use of fossil fuels [1-2]. In fact, recently, the European Union has provided 4 

incentives for renewable energy production [3]. Among all renewable energy sources, biomass is 5 

the one that has the greatest possibility for fossil fuel substitution [4], especially woodchip [5], 6 

which is preferred over all other biomass forms because it shows standardised sizes and offers 7 

additional benefits in terms of load density [6]. 8 

 The chipping operation can be done during the biomass harvest [7] or some months after 9 

tree cutting [8]. This operation can be performed by two different groups of machines: chippers—10 

machines using sharp tools (knives) to cut or slice wood; and grinders—machines using blunt tools 11 

(hammers) to smash or crush wood [9].  12 

 In particular, grinders are used when dealing with contaminated wood, as their blunt tools 13 

are less sensitive to the wearing effect of contaminants [10], but offer a biofuel of low quality level, 14 

unsuitable for use in some plants [11]. In contrast, chippers are exclusively applied to clean wood 15 

and offer a finer and better product [12]. For wood comminution, mobile and stationary chippers are 16 

used, but the former, despite their inferior performance, are more diffused in forestry yards [13]. 17 

  18 

In Europe, a large amount of woodchip is produced by dedicated cultivations: Short Rotation 19 

Coppice (SRC). In recent years, the ligno-cellulosic species cultivation has increased because 20 

several farms have inserted SRC in  their cultural plans [14]. The main forestry species cultivated in 21 

Europe are poplar (Populus spp.) [15], willow (Salix spp.) [16], black locust (Robinia pseudoacacia 22 

L.) [17] and eucalyptus (Eucalyptus spp.) [18]. Forestry species can be cultivated with a high 23 

planting density (5,500–14,000 plants ha−1) and harvested every 1 to 4 years (very Short Rotation 24 

Coppice—vSRC) or with a lower planting density (1,000–2,000 plants ha−1) and harvested ranging 25 

from 5 to 7 years (Short Rotation Coppice-SRC) [19]. 26 



 1 

 Until now many works have focused on various aspects of vSRC or SRC: genotype 2 

selection [20], cycle duration [21], biomass production [22], planting techniques [23], weed control 3 

and fertiliser effect [24], pesticides application [25], irrigation effect [26], etc. Among all SRC 4 

cultural operations, biomass harvesting is considered crucial for a farmer to estimate the economic 5 

sustainability of the crop in advance [27]. In fact, recently, the biomass harvesting operation has 6 

been studied from different points of view: harvesting techniques [28], economic and energetic 7 

costs [29], and wood chip quality [30]. Since biomass harvesting-especially woodchip production 8 

[29]—requires approximately 25% of the total SRC energy input [31], it is very important to make 9 

a correct choice of the machine used to reduce total energy consumption.  10 

 In recent years, some works have focused on the evaluation of chipper performance but 11 

unfortunately, all of these have considered only a single machine or various machines but not under 12 

the same work conditions (these experimentations are different in terms of feedstock characteristics, 13 

materials and methods used) [7, 13, 27]. They do not give sufficient information to compare the 14 

performance of different types of chipper machines used in SRC plantations.  15 

 In order to overcome this deficiency, a specific study was performed in which the 16 

performances of different types of machines used in wood chip production were assessed under the 17 

same working conditions. On this basis, the goal of this work was to determine the energy and the 18 

CO2 emission of different types of chippers, usually used in biomass comminution produced by 19 

poplar vSRC and SRC, in the same area and using the same feedstocks. In particular, in this study, 20 

disc and drum chippers, feller-chippers and grinders were tested with two different feedstocks: 21 

branchwood (treetops and biomass produced by vSRC) and whole-tree (biomass produced by SRC).  22 

 23 

2. Materials 24 

For this study, eight different machines were chosen. In particular, three of these were powered by 25 

the tractor’s PTO, while five by an independent engine. All machines required power between 103 26 



and 420 kW. In the tests, drum chippers and disc chippers were compared to one grinder and three 1 

feller-chippers (self-propelled) (Table 1).  2 

 3 

Table 1 – Technical characteristics of the chippers and grinder tested 4 

Machine 
(n°)  

Machine   
(type)  

Powered  
system 

Power 
(kW) 

Chipper 
(type) 

Knives 
(number) 

Mouth feeding 
size (mm) 

Feeding 
system 

1 Feller-chipper 
Power Take 

Off 103 disc 3 250 x 600 automatically 

2 Chipper 
Power Take 

Off 130 disc 3 700 x 600 with crane 

3 Chipper Indep. engine 170 drum 4 650 x 900 with crane 

4 Feller-chipper 
Power Take 

Off 190 disc 2 700 x 600 automatically 

5 Chipper Indep. engine 200 drum 4 350 x 600 with crane 

6 Chipper Indep. engine 310 drum 2 650 x 900 with crane 

7 Grinder Indep. engine 320 hammer 38 700 x 1500 with crane 

8 Feller-chipper Indep. engine 420 drum 4 300 x 600 automatically 
 5 

 For each machine category an appropriate feeding system was used; self-propelled chippers 6 

were fed automatically, while “conventional” chippers and the grinder were fed by forestry cranes. 7 

All stationary machines, in order to reduce the effect of the operator’s training and skill level, 8 

already well known in other forestry sectors [32], were fed using only one forestry crane driven by 9 

the same operator. The crane used in the test was a DALLA BONA AS610 fixed to a 4 WD tractor 10 

(Same ANTARES 110). 11 

 All machines were tested with only poplar tree species (Populus x euroamericana). Hybrid 12 

poplar is the main species used for the afforestation of north Italian farmland, and it can be 13 

considered representative of all types of wood used for biomass production [20]. Since the 14 

feedstock size can cause an effect on machine performance [33], in the trials, two feedstock types 15 

were used: branchwood (seven year-old treetops and biomass produced by a two year-old very 16 

Short Rotation Coppice), and whole tree (materials produced by Short Rotation Forestry of seven 17 

year -olds).  18 



 In this work, treetops were also considered because in some cases, in order to become 1 

positive, the economic balance of SRC, the basal part of the trunk, up to 4–6 m, is used to produce 2 

industrial wood (OSB panel, packaging) [34]. 3 

 Branchwood had an average diameter (measured to about 10 mm from cutting section) of 4 

between 50 and 120 mm, while the whole tree had a base diameter between 280 and 400 mm.  5 

Due to the limited size of their cutting heads and to the specific cutting system type, not all chipping 6 

machines tested were able to work with the two different feedstocks. Feller-chippers 1 and 8 7 

worked on vSRC plantations (branchwood) only, while feller-chipper 4 worked only in SRC (whole 8 

tree). 9 

 All wood was freshly processed, with a moisture content of about 55%. 10 

 Feedstock was made available in large piles (approximately 100 m3) built at the field edge. 11 

All machines, except feller-chippers, were stationed near the piles and the forestry crane was used 12 

to move the wood into their feeding device. Feller-chippers worked directly into the plantation 13 

(vSRC and SRC) because the feed of their cutting heads has carried out  automatically during 14 

forward speed. The trials were performed on a poplar vSRC, where the distance between the rows 15 

was of 3.00 metres and the distance between plants was of 0.50 metres (density of 6,700 plants per 16 

hectare), and a poplar SRC with same distance between the rows but with a distance between plants 17 

of 3.00 metres (1,600 plants per hectare).  18 

 Each feller-chipper was tested on a rectangular area of 0.25 hectares with sizes of 19 

approximately 105 metres in length and 24 metres in width (8 rows). In particular, the rows showed 20 

a length of 95 metres and a headland of 5 metres.  21 

 Chips were blown into three-axle trailers with a capacity of 35 m3. Trailers were towed by 22 

farm tractors, so that the whole operation was based exclusively on farming equipment. 23 

 24 

3. Methods  25 

 26 



The research was conducted in northwestern Italy, near the town of Alessandria, between January 1 

and March 2012.  2 

 The sampling unit consisted of a full trailer. The experimental design aimed at testing the 3 

effect of machine categories used for woodchip production (disc chipper, drum chipper, feller-4 

chippers, and grinder) on  productivity, energy consumption and CO2 emission.  5 

 All machines worked with new knives and hammers.  6 

 7 

3.1. Productivity 8 

 9 

Productivity was estimated through a detailed time-motion study conducted at the cycle level [35], 10 

where a full trailer load (35 m3) was assumed as a cycle. Cycle times were defined and split into 11 

time elements, following the International Union of Forest Research Organisations (IUFRO) 12 

classification [36]. Productivity of the chipping operation was expressed in terms of mass (Mg DM 13 

h-1) and density (m3h-1). Furthermore, these parameters were also calculated as a function of chipper 14 

engine power (Mg DM h-1 and m3h-1 x kW). Net chipping productivity for each chipper was 15 

determined considering only productive working time (time which the woodchip produced).  16 

 Outputs were estimated by measuring the volume and weight of all woodchips produced 17 

during each test. The weight of each trailer was measured by a certified weighbridge with an 18 

accuracy of 10 kg (Ferrero® FL311). Before determining the trailer weight, the load was leveled 19 

equal to tipper topsides. This operation was necessary to obtain density values of biomass. 20 

Moisture content determination was conducted with the gravimetric method according to European 21 

Standard CENT/TS 14774 [37], on one sample (1 kg) per trailer, collected in sealed bags and 22 

weighed fresh.  23 

 24 

3.2. Energy Consumption 25 

 26 



Energy consumption was calculated considering direct energy consumption (fuel and lubricant 1 

consumption) and indirect energy consumption (energy for the machines manufacturing) [38]. 2 

Inputs were transformed into energy unit measures adopting coefficients: machine 92.0 MJ kg-1 and 3 

equipment 69.0 MJ kg-1 [39]. Direct energy input was calculated by multiplying the fuel and 4 

lubricant consumption by the respective energy contents: 37.0 MJ l-1 for fuel [40] and 83.7 MJ kg-1 5 

for lubricant [39], and then inflating this value by 1.2 MJ kg-1 as additional fossil energy used in 6 

their production, transportation and distribution [41]. 7 

 In this experimentation, a life of 12,000 hours and an annual utilisation of at least 500 hours 8 

were assumed for tractors (with the tractor also being used for other operations) and a life of 8000 9 

hours and an average annual utilisation of 350 hours was considered for chippers and grinder [29]. 10 

Energy spent for maintenance and repair was considered 55% of the energy needed for machine 11 

manufacturing [42]. 12 

 Fuel consumption for the whole chipping operation was determined by a “topping-off 13 

system”. With this method, fuel consumption was determined by refilling the machine tank after 14 

each trailer (35 m3) was produced. The tank was refilled using a 2-litre glass pipe with 0.02-litre 15 

graduations, corresponding to the accuracy of measurements [43]. The lubricant consumption was 16 

determined as a function of fuel consumption in a measure of 2% [44]. 17 

 18 

3.3. Environmental assessment  19 

 20 

The environmental impact of the chipping operations was performed considering CO2 emitted by 21 

fuel combustion during the work and CO2 emitted during machinery production. On the basis of 22 

research published, an amount of 3.76 kg of CO2 per litre of diesel fuel [45-46] and an average 2.94 23 

kg of CO2 for each kg of lubricant [47] emitted in the atmosphere were considered. Moreover, the 24 

environmental impact required for maintenance was calculated considering an emission factor of 25 

0.159 kg CO2 per MJ of energy content in the machines [29]. 26 



 The collected data were processed with Microsoft Excel software and analysed with SPSS 1 

21 (2014) advanced statistics software to determine the statistical significance of the differences 2 

between the treatments using ANOVA. A statistical GLM approach considering the machinery’s 3 

nominal power effect on the different parameters analysed in this experimentation was not carried 4 

out because the machine characteristics were implicitly inserted in the information related to the 5 

unit of nominal power.  6 

 7 

4. Results 8 

 9 

4.1. Productivity 10 

 11 

In branchwood chipping, the higher value of productivity (102.67 m3h-1 equal to 16.29 Mg DM h-1) 12 

was obtained using machine 8, whereas the lowest value was obtained using machine 1 (19.33 m3h-1 13 

equal to 3.06 Mg DM h-1). Net productivity expressed for each nominal power  unit of the machine 14 

ranged between 30 and 38 kg DM h-1 x kW-values always obtained by machines 1 and 8 (Table 2). 15 

However, in whole tree chipping, the higher value of the working rate (112.67 m3h-1 equal to 16 

18.14 Mg DM h-1) was obtained using machine 7, whereas the lower values (34.67 m3h-1 equal to 17 

6.07 Mg DM h-1) with machine 4. A higher value of net productivity expressed for each nominal 18 

power unit of the machine was obtained with machines 5 and 6 (60 kg DM h-1 x kW), whereas a 19 

lower value (32 kg DM h-1 x kW) with machine 4 (Table 2). The lower value obtained from 20 

machine 4 is related to its discontinuous work due to manoeuvres required by its positioning near 21 

the trees. 22 

The productivity obtained in whole tree chipping (0.053 Mg DM h-1 x kW) was about 30% higher 23 

than that obtained in branchwood comminution (Table 2).  24 



 During data interpretation, if the values of machine 4 are not considered with regard to its 1 

peculiarities, it is possible to assert that productivity is affected only by feedstock size and not by 2 

different comminution systems, powered systems and feeding systems (Table 2). 3 

 4 

Table 2 – Productivity and statistical analysis of the all machines for each feedstock tested 5 

    Productivity   Specific productivity (*) 
Feedstock Machine  (m3 h-1)  (Mg DM h-1)    (m3 h-1 kW-1) (Mg DM h-1 kW-1) 

    Mean  SD Mean  SD   Mean  SD Mean  SD 

Branchwood 

1 19.33 0.58 3.06 0.09   0.19a 0.005 0.030a 0.0007 

2 27.67 1.53 4.36 0.24   0.21a 0.005 0.034a 0.0008 

3 37.67 0.58 5.93 0.09   0.22a 0.003 0.035a 0.0005 

5 39.33 1.53 6.88 0.27   0.20a 0.005 0.034a 0.0009 

6 70.33 2.08 11.47 0.06   0.23a 0.003 0.037a 0.0002 

7 75.00 1.00 10.77 0.21   0.23a 0.002 0.034a 0.0006 

8 102.67 4.04 16.29 0.64   0.24a 0.006 0.038a 0.0010 

Whole-trees 

2 43.00 2.00 7.22 0.34   0.33b 0.009 0.056b 0.0015 

3 55.33 4.16 9.49 0.71   0.33b 0.024 0.056b 0.0041 

4 34.67 1.53 6.07 0.27   0.18a 0.004 0.032a 0.0006 

5 68.00 4.00 11.90 0.70   0.34b 0.012 0.060b 0.0020 

6 110.00 4.36 18.48 0.73   0.35b 0.005 0.060b 0.0008 

7 112.67 0.58 18.14 0.09   0.35b 0.001 0.057b 0.0001 

Notes: (*) Values refer to a nominal power of the machine; different letters (a, b,) indicate significant  differences 
between machines for α = 0.05    

  

  

 6 

4.2. Fuel consumption 7 

 8 

Fuel consumption ranged between 14.36 and 59.52 l h-1 as a function of the nominal power of 9 

machines and the feedstock type (Table 3). Hourly fuel consumption increased in accordance with  10 

the power engine with a linear trend independently of the machine and feedstock types (Fig. 1).  11 

 12 



 

Notes: values reported in this figure are a mean of three replicates 

Figure 1 – Fuel consumption versus nominal machine power 1 

 2 

Specific fuel analysis showed different values as a function of the parameter considered. Referring 3 

fuel consumption to biomass produced, independently of whether the latter is expressed in terms of 4 

weight or volume, higher values (3.90 l MgDM-1 or 0.63 l m-3) were obtained in branchwood 5 

comminution, while lower values were observed in whole tree chipping (2.60 l MgDM-1 or 0.44 l 6 

m-3). Feller-chippers powered by tractors (machines 1 and 4) showed higher values (4.67 l MgDM-1 7 

or 0.79 l m-3) when compared to other machines independently of the feedstock considered. That 8 

statistical difference was not found when referring the specific fuel consumption to engine nominal 9 

power. In fact, for each feedstock tested, all machines  showed similar values. In particular, average 10 

values of 113 and 123 g kW h-1  were observed in branchwood and whole tree chipping respectively 11 

(Table 3). 12 



Table 3 – Fuel consumption during branchwood and whole-tree chipping 1 

Feedstock Machine 
Power 
(kW) 

Fuel measured 
(lh-1)   

Specific fuel consumption  

Mean SD  
l Mg 
DM-1 l m-3 g(*) kW h-1 

Branchwood 1 103 14.36 0.61   4.69c 0.74c 116b 

2 130 17.45 0.54   4.00b 0.63b 112b 

3 170 22.52 0.89   3.80b 0.60b 110b 

5 200 25.68 1.26   3.73b 0.65b 107ab 

6 310 43.32 0.84   3.78b 0.62b 116b 

7 320 42.86 0.76   3.98b 0.57b 111b 

8 420 59,52 0.98   3.65b 0.58b 118b 
Whole-trees 2 130 19.40 1.14   2.69a 0.45a 124c 

3 170 25.05 0.78   2.64a 0.45a 123c 

4 190 28.27 0.86   4.66c 0.82c 124c 

5 200 29.62 2.15   2.49a 0.44a 123c 

6 310 45.50 1.36   2.46a 0.41a 122c 

7 320 47.86 0.68   2.64a 0.42a 124c 
Notes: (*) Value calculated considering a diesel fuel density of 0.832 g cm-3; different letters (a, b, etc.) indicate 
significant  
differences between treatments for α = 0.05  
 2 

 3 

4.3. Energy evaluation 4 

 5 

Energy consumption in chipping operations resulted independently of the nominal power engine 6 

and in inverse relation to feedstock size comminuted. In fact, the higher value (0.92 MJ MgDM-1) 7 

and the lower value (0.62 MJ MgDM-1) were obtained from branchwood and from whole-tree 8 

chipping, respectively. The highest values (1.19 MJ MgDM-1), also for this parameter, were 9 

observed in chippers powered by tractors (Table 4). In addition, this evaluation pointed out that 10 

chipping operations required an average energy consumption of 6.50 MJ for each kW of chipper 11 

nominal power independently of machine type, feeding system and feedstock size. All machines 12 

showed an incidence of direct energy consumption on total energy consumption between 80 and 13 

90%; no statistically significant difference was observed for different feedstock considered (Table 14 

4). 15 



  1 

Table 4 – Energy consumption in chipping operation 2 

Feedstock Machine 

Energy consumption   Specific energy consumption  

Direct 
(MJ h-1) 

Indirect 
(MJ h-1) 

Total   
(MJ h-1) 

  

Energy per 
nominal power 

(MJ kW-1) 

Incidence of 
direct on total 

(%) 

Energy per 
biomass produced 

(MJ MgDM-1) 

Branchwood 

1 555.4 137.4 692.8   6.71a 81.0 1.20c 

2 674.9 162.2 837.1   6.44a 80.6 0.98b 

3 870.9 108.7 979.7   6.13a 88.9 0.88b 

5 993.1 251.3 1244.5   6.21a 79.8 0.96b 

6 1675.4 213.9 1889.3   6.11a 88.7 0.91b 

7 1657.6 303.0 1960.6   6.13a 84.5 0.87b 

8 2301.9 352.9 2654.8   6.32a 86.7 0.90b 

Whole-trees 

2 750.3 162.2 912.5   6.90ab 82.2 0.67a 

3 968.8 108.7 1077.5   6.34a 89.0 0.61a 

4 1093.3 251.3 1344.6   7.01ab 81.3 1.18c 

5 1145.5 213.9 1359.4   6.80a 84.3 0.61a 

6 1759.7 267.4 2027.0   6.54a 86.8 0.59a 

7 1850.9 303.0 2154.0   6.73a 85.9 0.62a 
Notes: different letters (a, b, etc.) indicate significant differences between treatments for α = 0.05  3 
 4 

 5 

4.4. Environmental assessment 6 

 7 

Data processing highlighted an average value of 16.40 kgCO2eq MgDM-1 (2.61 kgCO2 m
-3) in 8 

branchwood chipping and an average value of 10.80 kgCO2eq MgDM-1 (1.82 kgCO2 m
-3) in whole-9 

tree chipping. Also, in this evaluation the worst results were obtained by the chippers powered by 10 

the tractor. In fact, independently of feedstock considered, an amount of approximately 20.30 11 

kgCO2eq MgDM-1 (3.38 kgCO2 m
-3) was obtained by a chipper powered by tractors (Table 5). 12 

No statistical differences were found between machines equipped with different comminution 13 

system and feeding system used.  14 

 15 

Table 5 – CO2 emission during branchwood and whole-tree chipping 16 



Feedstock Machine 
CO2 eq emission 

kgCO2eq MgDM-1 kgCO2 m
-3 

Branchwood 

1 20.45c 3.24c 

2 17.38b 2.74b 

3 17.26b 2.72b 

5 16.31b 2.85b 

6 15.48b 2.52b 

7 16.78b 2.41b 

8 15.18b 2.41b 

Whole-trees 

2 11.53a 1.94a 

3 10.73a 1.84a 

4 20.12c 3.52c 

5 10.52a 1.84a 

6 10.22a 1.72a 

7 11.02a 1.77a 
Notes: different letters (a, b, etc.) indicate significant differences between treatments for α = 0.05 1 
 2 

 3 

5. Discussion  4 

 5 

During biomass plantation harvesting, independent of feeding system types used in chipping 6 

operations (automatically or with forestry crane), the supporting work time and delay (unproductive 7 

time) were low (8% of total working time). This value is similar to that obtained in other work 8 

performed using traditional chippers [48], but is much lower (four times) in comparison to a self-9 

propelled forager modified for wood chipping tested on a poplar plantation of 270 mm diameter 10 

[49]. This difference could be attributed to the lower tree sizes and to the optimal conditions (large 11 

square and big head field) in which the machines worked during the trials. Overall it is very 12 

important to highlight that working time can also be linked to the operator’s training and skill level 13 

[50]. 14 

 Productivity is influenced particularly by the rotation length of the SRC harvested because a 15 

different plantation edge causes a different feedstock type (Table 6). It is lower when the wood 16 

assortment processed is characterised by a small size (branchwood or vSRC). This effect may be 17 

attributed to low feedstock density and to greater difficulty in its handling. This wood assortment 18 



type can also cause some problems in feeding operations, where the branches can get stuck in the 1 

feeding mouth of chippers. These operative problems were also shown in other studies [51-52]. 2 

 Independent of the type of machine considered (feller-chipper, chipper or grinder), the 3 

working rate results are similar for all machines with similar nominal engine power; different values 4 

are obtained only with different feedstock. This is confirmed in the database compiled by Spinelli 5 

and Magagnotti [13] and in the study conducted by Spinelli et al [51]. The minor differences 6 

between the values could be attributed to different feed systems (automatic or with crane) and 7 

operator skill. In addition, no significant difference was found by adopting a different comminution 8 

system (disc, drum, hammer). 9 

 In absolute terms, fuel consumption obtained in this work was in line with the values 10 

reported by Nati et al. [53] (0.8 to 1.6 l t-1) and by Spinelli et al. [51] (1.7-1.8 l t-1 for poplar). 11 

Moreover, these results are similar to those assumed for a life cycle assessment of fuel wood chip 12 

production from willow [54] and eucalyptus [55] biomass plantations.  13 

 Furthermore, this study highlights that in biomass comminution, independently of the 14 

machine type used (self-propelled chipper, feller-chipper or grinder) and feedstock size 15 

(branchwood or whole-trees), fuel consumption is strictly related to the engine’s nominal power of 16 

the chipping machine used. A similar trend was also found by Spinelli and Hartsough [56] during a 17 

survey of chipping operations performed with conventional chippers. Since fuel consumption is 18 

proportional to engine load, these results could be linked to max rotation speed of the engine used to 19 

power the machine [57]. In fact, at high rotation speed, eventual change of load due to resistance 20 

forces of different feedstock size is better endured by the engine [58]. In addition, when the 21 

chippers are equipped with a no-stress electronic device (a device to control the forward speed of 22 

the feeding material in function of engine speed), in order to obtain a high woodchip quality, the 23 

engine works with a constant speed, and for this reason, with a fairly constant load for all feedstock 24 

size variations as well [51]. Also for this parameter, statistical analysis showed no significant 25 



difference between machines equipped with different comminution system and feeding system. 1 

Differences were observed only when machines powered by PTO of the tractor were considered.  2 

 Referring  the energy consumption in biomass comminution to nominal power of machines 3 

used, a similar value was obtained for all machines tested (6.50 MJ for each kW) independently of 4 

machine type, feeding system and feedstock size. However, relating energy consumption to 5 

woodchips produced, the highest mean value (0.92 MJ MgDM-1) was observed during the 6 

comminution of feedstock of small size (branchwood), and the lowest mean value (0.62 MJ MgDM-7 

1) during whole-tree chipping. Also for this parameter, these results can be attributed to the constant 8 

engine load guaranteed by a no-stress device and to different productivity that is obtainable using 9 

different feedstocks. The highest absolute value (1.18 MJ MgDM-1) observed in chipper 4 powered 10 

by PTO of the tractor could be related to a lower working rate and lower efficiency of the power 11 

transmission system. In fact, when using the PTO and a hydraulic power transmission system, part 12 

of the power provided by the engine is absorbed by the cardan shaft used to couple the chippers to 13 

tractors and the pump used to maintain the oil  under pressure [59]. 14 

 In general terms, the energy required by a chipping operation is very low (0.6–1.2 %) when 15 

compared with the energy value of the woodchip produced (1880 MJ MgDM-1). These results are 16 

comparable to those found by other researchers in similar plantations [60-61]. In addition,  this 17 

study indicates an average incidence of about 85% of the direct energy (fuel and lubricant 18 

consumption) on total energy required. These results are similar to those calculated for woodchip 19 

transportation [62] and biomass harvesting [29].  20 

 Regarding CO2 emission during biomass chipping, data processing highlights a different value in 21 

function of feedstock size. Higher results were obtained in whole-tree comminution (16.40 kg 22 

CO2eq MgDM-1) compared to 10.80 kgCO2eq MgDM-1 emitted during branchwood chipping. This 23 

trend can be caused by different chippers’ productivity. In fact, whole-trees have highlighted  higher 24 

wood chip production in the unit time. These values are in line with those found during a life cycle 25 

assessment of chip production from eucalypt forestry residues [55] and poplar SRC [60,63].  26 



 Also in this case, the chippers powered by a tractor showed the worst results independently of 1 

feedstock physical characteristics (20.30 kgCO2eq MgDM-1). This aspect is very important and it 2 

should not be underestimated because the CO2 emission, as well as being detrimental to the 3 

environment, is also harmful for the operators [64]. 4 

 Finally, the study highlighted that the cutting operation performed in simultaneity with the 5 

chipping operation (feller-chippers) does not considerably reduce  chipping operation productivity 6 

and does not influence fuel and energy consumption. These results again increase the high 7 

performance of self-propelled feller-chippers that in previous tests have shown advantages in 8 

economy [27] and soil compaction [28] when compared to “conventional” machines used in 9 

biomass harvesting and chipping. Nevertheless, machine 4 (feller-chipper that worked only in SRC–10 

plantation with a medium-length rotation) showed a low working rate because its working process 11 

was not continuous due to difficulty in cutting trees with large diameters (up to 400 mm). In fact, 12 

under these conditions, manual cutting and harvesting can be economically competitive compared 13 

to mechanical systems [65].  14 

 15 

6. Conclusions 16 

 17 

In conclusion, the data processed showed that all parameters analysed in this study (productivity, 18 

energy consumption, and CO2 emitted) are mainly affected by feedstock size and powering system 19 

of the machines used. Different comminution systems (disc, drum, and hammers) and feeding 20 

systems (automatic and with forestry cranes) do not significantly influence the values.  21 

 In addition, the study highlighted a significant advantage in the use of self-propelled feller–22 

chippers because these machines, although performing two operations simultaneously (cutting trees 23 

and chipping wood) show a similar performance to “conventional chippers”.  24 



Nevertheless, feller-chippers powered by PTO of tractors do not seem to be a good solution 1 

because they have shown the worst results in terms of productivity, energy consumption, and CO2 2 

emitted.  3 

On the base of the results obtained in this study, in order to reduce the environmental impact 4 

of the chipping operations, especially GHG emission, manufacturers should focus on machines with 5 

an independent engine, while farmers should plan their crops with long harvest cycles (seven years). 6 

 7 

 8 
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