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ON THE SUM OF DIGITS OF THE FACTORIAL

CARLO SANNA

Abstract. Let b ≥ 2 be an integer and denote by sb(m) the sum of the digits of the positive
integer m when is written in base b. We prove that sb(n!) > Cb logn log log logn for each
integer n > ee, where Cb is a positive constant depending only on b. This improves by a
factor log log logn a previous lower bound for sb(n!) given by Luca. We prove also the same
inequality but with n! replaced by the least common multiple of 1, 2, . . . , n.

1. Introduction

Let b ≥ 2 be an integer and denote by sb(m) the sum of the digits of the positive integer
m when is written in base b. Lower bounds for sb(m) when m runs through the member of
some special sequence of natural numbers (e.g., linear recurrence sequences [Ste80] [Luc00] and
sequences with combinatorial meaning [LS10] [LS11] [KL12] [Luc12]) have been studied before.

In particular, Luca [Luc02] showed that the inequality

(1) sb(n!) > cb log n,

holds for all the positive integers n, where cb is a positive constant, depending only on b. He
also remarked that (1) remains true if one replaces n! by

Λn := lcm(1, 2, . . . , n),

the least common multiple of 1, 2, . . . , n. We recall that Λn has an important role in elementary
proofs of the Chebyshev bounds π(x) � x/ log x, for the prime counting function π(x) [Nai82].

In this paper, we give a slight improvement of (1) by proving the following

Theorem 1.1. For each integer n > ee, we have

sb(n!), sb(Λn) > Cb log n log log log n,

where Cb is a positive constant, depending only on b.

2. Preliminaries

In this section, we discuss a few preliminary results needed in our proof of Theorem 1.1.
Let ϕ be the Euler’s totient function. We prove an asymptotic formula for the maximum of the
preimage of [1, x] through ϕ, as x→ +∞. Although the cardinality of the set ϕ−1([1, x]) is well
studied [Bat72] [BS90] [BT98], in the literature we have found no results about max(ϕ−1([1, x]))
as our next lemma.

Lemma 2.1. For each x ≥ 1, let m = m(x) be the greatest positive integer such that ϕ(m) ≤ x.
Then m ∼ eγx log log x, as x→ +∞, where γ is the Euler–Mascheroni constant.

Proof. Since ϕ(n) ≤ n for each positive integer n, we get m ≥ bxc. In particular, m→ +∞ as
x→ +∞. Therefore, since the minimal order of ϕ(n) is e−γn/ log log n (see [Ten95, Chapter I.5,
Theorem 4]), we obtain

(e−γ + o(1))
m

log logm
≤ ϕ(m) ≤ x,

as x→ +∞. Now ϕ(n) ≥
√
n for each integer n ≥ 7, thus m ≤ x2 for x ≥ 7. Hence,

m ≤ (eγ + o(1))x log logm ≤ (eγ + o(1))x log log(x2) = (eγ + o(1))x log log x,
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2 CARLO SANNA

as x→ +∞.
On the other hand, let p1 < p2 < · · · be the sequence of all the prime numbers and let

a1 < a2 < · · · be the sequence of all the 3-smooth numbers, i.e., the natural numbers of the
form 2a3b, for some integers a, b ≥ 0. Moreover, let s = s(x) be the greatest positive integer
such that

(p1 − 1) · · · (ps − 1) ≤
√
x,

and let t = t(x) be the greatest positive integer such that

at(p1 − 1) · · · (ps − 1) ≤ x.
Note that s, t→ +∞ as x→ +∞. Now we have (see [Ten95, Chapter I.1, Theorem 4])

√
x < (p1 − 1) · · · (ps+1 − 1) < p1 · · · ps+1 ≤ 4ps+1 ,

hence

(2) ps >
1
2ps+1 >

1
4 log 4 log x,

from Bertrand’s postulate. Put m′ := atp1 · · · ps, so that for s ≥ 2 we get

ϕ(m′) = at(p1 − 1) · · · (ps − 1) ≤ x,
since p1 = 2, p2 = 3 and at is 3-smooth, thus m ≥ m′. By a result of Pólya [Pól18], at/at+1 → 1
as t→ +∞. Therefore, from our hypothesis on s and t, Mertens’ formula [Ten95, Chapter I.1,
Theorem 11] and (2) it follows that

m ≥ m′ = at
at+1

· at+1

s∏
i=1

(pi − 1) ·
s∏
i=1

(
1− 1

pi

)−1
> (1 + o(1)) · x · log ps

e−γ + o(1)

> (eγ + o(1))x log log x,

as x→ +∞. �

Actually, we do not make use of Lemma 2.1. We need more control on the factorization of a
“large” positive integer m such that ϕ(m) ≤ x, even at the cost of having only a lower bound
for m and not an asymptotic formula.

Lemma 2.2. For each x ≥ 1 there exists a positive integer m = m(x) such that: ϕ(m) ≤ x;
m = 2tQ, where t is a nonnegative integer and Q is an odd squarefree number; and

m ≥ (12e
γ + o(1))x log log x,

as x→ +∞.

Proof. The proof proceeds as the second part of the proof of Lemma 2.1, but with ak := 2k−1

for each positive integer k. So instead of at/at+1 → 1, as t→ +∞, we have at/at+1 = 1/2 for
each t. We leave the remaining details to the reader. �

To study Λn is useful to consider the positive integers as a poset ordered by the divisibility
relation |. Thus, obviously, Λn is a monotone nondecreasing function, i.e., Λm | Λn for each
positive integers m ≤ n. The next lemma says that Λn is also super-multiplicative.

Lemma 2.3. We have ΛmΛn | Λmn, for any positive integers m and n.

Proof. It is an easy exercise to prove that

Λn =
∏
p≤n

pblogp nc,

for each positive integer n, where p runs over all the prime numbers not exceeding n. Therefore,
the claim follows since

blogpmc+ blogp nc ≤ blogpm+ logp nc = blogpmnc,
for each prime number p. �
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We recall some basic facts about cyclotomic polynomials. For each positive integer n, the
n-th cyclotomic polynomial Φn(x) is defined by

Φn(x) :=
∏

1≤ k≤n
gcd(k,n)=1

(
x− e2πik/n

)
.

It is known that Φn(x) is a polynomial with integer coefficients and that it is irreducible over
the rationals, with degree ϕ(n). We have the polynomial identity

xn − 1 =
∏
d |n

Φd(x),

where d runs over all the positive divisors of n. Moreover, Φn(a) ≤ (a + 1)ϕ(n), for all a ≥ 0.
The next lemma regards when Φm(a) and Φn(a) are not coprime.

Lemma 2.4. Suppose that gcd(Φm(a),Φn(a)) > 1 for some integers m,n, a ≥ 1. Then m/n
is a prime power, i.e., m/n = pk for a prime number p and an integer k.

Proof. See [Ge08, Theorem 7]. �

Finally, we state an useful lower bound for the sum of digits of the multiples of bm − 1.

Lemma 2.5. For each positive integers m and q, we have sb((b
m − 1)q) ≥ m.

Proof. See [BD12, Lemma 1]. �

3. Proof of Theorem 1.1

Without loss of generality, we can assume n sufficiently large. Put x := 1
8 logb+1 n ≥ 1.

Thanks to Lemma 2.2, we know that there exists a positive integer m such that ϕ(m) ≤ x and

(3) m > 1
3e
γx log log x > Cb log n log log log n,

where Cb > 0 is a constant depending only on b. Precisely, we can assume that m = 2tQ,
where t is a nonnegative integer and Q is an odd squarefree number. Fix a nonnegative
integer j ≤ t. For each positive divisor d of Q, we have ϕ(2t−jd) | ϕ(m/2j) and so, a fortiori,
ϕ(2t−jd) ≤ ϕ(m/2j). Therefore,

(4) Φ2t−jd(b) ≤ (b+ 1)ϕ(2
t−jd) ≤ (b+ 1)ϕ(m/2

j) ≤ (b+ 1)ϕ(m)/2j−1 ≤ n1/2j+2
.

Let µ be the Möbius function. Now from (4) and Lemma 2.4 we have that the Φ2t−jd(b)’s,
where d runs over the positive divisors of Q such that µ(d) = 1, are pairwise coprime and not

exceeding n1/2
j+2

, thus

(5)
∏
d |Q

µ(d)= 1

Φ2t−jd(b) = lcm{Φ2t−jd(b) : d | Q, µ(d) = 1} | Λbn1/2j+2c.

Similarly, the same result holds for the divisors d such that µ(d) = −1. Clearly, we have

bm − 1 =
∏
d |m

Φd(b) =
∏

0≤ j≤ t
r∈{−1,+1}

∏
d |Q

µ(d)= r

Φ2t−jd(b).

Moreover,  ∏
0≤ j≤ t

bn1/2j+2c

2 ≤ ∏
0≤ j≤ t

n1/2
j+1 ≤ n.

As a consequence, from (5) and Lemma 2.3, we obtain

bm − 1 |

 ∏
0≤ j≤ t

Λbn1/2j+2c

2 | Λn.
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Thus, bm− 1 | Λn and also bm− 1 | n!, since obviously Λn | n!. In conclusion, from Lemma 2.5
and (3), we get

min{sb(Λn), sb(n!)} ≥ m > Cb log n log log log n,

which is our claim, this completes the proof.

Acknowledgements. The author thanks Paul Pollack (University of Georgia) for a sugges-
tion that has lead to the exact asymptotic formula of Lemma 2.1.
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