

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Computational assessment of the fluorescence emission of phenol oligomers: A possible insight into the

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/1616072

since 2017-01-17T16:06:05Z

Published version:

DOI:10.1016/j.jphotochem.2015.09.012

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. A, CHEMISTRY, 315, 2016, 10.1016/j.jphotochem.2015.09.012.

You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions:

(1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license.

(2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.

(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en), 10.1016/j.jphotochem.2015.09.012

The publisher's version is available at: http://linkinghub.elsevier.com/retrieve/pii/S1010603015003676

When citing, please refer to the published version.

Link to this full text: http://hdl.handle.net/2318/1616072

This full text was downloaded from iris - AperTO: https://iris.unito.it/

Computational assessment of the fluorescence emission of phenol oligomers: A possible insight into the fluorescence properties of humic-like substances (HULIS).

Francesco Barsotti,^a Giovanni Ghigo,^{b,*} Davide Vione^{a,*}

Dipartimento di Chimica, Università di Torino Via Giuria 5^a and/or 7^b, 10125 Torino, Italy.

* Address correspondence to either author: *giovanni.ghigo@unito.it* (G. Ghigo, Phone +39-011-6707872), *davide.vione@unito.it* (D. Vione, Phone +39-011-6705296)

Abstract

Compounds with fluorescence in the humic-like substances (HULIS) region are known to be formed under conditions where the oxidation (which could lead to the oligomerization) of phenolic compounds is operational, because of the formation of phenoxy radicals. However, there was no evidence to date that such fluorescence emission was really due to phenol oligomers. In this work, the fluorescence of phenol and some of its oligomers was studied by computational methods and it was compared with experimental data, when allowed by the availability of commercial standards. The oligomer fluorescence depends on the contribution of different stable conformers, which differ from one another for the dihedral angles between the aromatic rings. Differences in the dihedral angles are also observed between the ground states and the corresponding excited singlet states. The predicted wavelengths of fluorescence emission increase with increasing the number of aromatic rings, up to a plateau at around 450 nm. Compounds with more than three-four aromatic rings are not expected to show emission in a different range, because the transitions causing fluorescence involve only three consecutive rings. These results support the hypothesis that oligomers account for the fluorescence emission in the HULIS region, which has been observed under the photochemical and photosensitized transformation of phenolic compounds.

Keywords: atmospheric photochemistry; oligomeric compounds; excitation-emission fluorescence matrix; phototransformation; density functional theory.

1. Introduction

Humic-like substances (HULIS) are important components of the atmospheric aerosols, of which they affect for instance the ability to nucleate water droplets and to absorb sunlight [1-3]. HULIS share some common features with humic and fulvic acids found in surface waters and soils (such as for instance the optical properties), but they are much smaller than humic acids and possess a smaller fraction of aromatic moieties and a larger fraction of aliphatic ones [4]. HULIS account for an important part of the water-soluble organic carbon in atmospheric aerosols, and they are thought to originate from both primary (biomass burning, release of organic compounds from water and soil to the atmosphere) and secondary processes (atmospheric reactions) [5-12].

The characterization of HULIS has been carried out with different techniques, including mass spectrometry, IR and NMR spectroscopy [13-16]. Unfortunately, these techniques often require sample fractionation and enrichment steps that would be problematic for a routine analysis of atmospheric samples. In contrast, characterization by absorption and fluorescence spectroscopy allows information to be obtained with minimal sample pre-treatment [17,18].

Several potential processes that could generate HULIS have been studied in the laboratory. Among these, photochemical reactions involving phenolic compounds in the presence of triplet sensitizers produce species with many similarities (functional groups, absorption and fluorescence spectra, hygroscopic properties) to atmospheric HULIS [19-23]. Interestingly, the same processes induce phenol oligomerization through the corresponding phenoxy radicals [19, 23-25]. Phenol oligomers might or might not account for the observed properties, because additional compounds would also be formed under the same conditions. However, phenols and HULIS emit in clearly separated wavelength intervals [17,26,27], and the photochemical and photosensitized transformation of phenols produces a gradual shift of the fluorescence emission range towards the HULIS region [23].

The testing of the hypothesis that the fluorescence in the HULIS region is accounted for by phenol oligomers (trimers, tetramers and so on) has to face the difficulty that these compounds are hardly available as commercial standards. To by-pass this problem, the present work carries out a quantum mechanical assessment of the fluorescence emission of phenol and of some of its oligomers, optimizing and validating the computational techniques by comparison with the available experimental data. By so doing, one can predict the fluorescence behavior of compounds for which standards are not available, and carry out a comparison with the known HULIS emission.

2. Materials and methods

The absorption spectra were measured with a Varian Cary 100 Scan UV-Vis double-beam spectrophotometer, using quartz cuvettes (1.000 cm optical path length). The excitation-emission

matrix (EEM) fluorescence spectra were taken with a VARIAN Cary Eclipse Fluorescence Spectrophotometer, with an excitation range from 200 to 400 nm at 10 nm steps, and an emission range from 200 to 600 nm with a scan rate of 1200 nm min⁻¹. Excitation and emission slits were set at 5 nm for 0.1 mM phenol (Aldrich, 99% purity grade) and at 20 nm for 0.1 mM 4-phenoxyphenol (Aldrich, 99%). Spectra were taken in a fluorescence quartz cuvette (Hellma) with 1.000 cm optical path length. The Raman signal of water was taken as a reference for lamp intensity and signal stability within different measurements.

The computational study was performed within the Density Functional Theory (DFT) [28-30] with the following procedure: we first optimized the geometries of the ground states, then we calculated the excitation energies with the Time- Dependent DFT (TD-DFT) [31,32]. This method provides a reasonable accuracy at reasonable computational costs (time and computing resources) [33-35]. The excitation energies calculated in this way correspond to the maxima in the absorption spectra, as this approach does not include vibrational contributions or dynamic solvent effects. Actually, our intent is not to fully reproduce the experimental absorption spectra, but only to identify the most important transitions and reproduce the fluorescence spectra. When more conformations are possible for a certain molecule, each set of transitions is reported scaled by the weight of the corresponding conformation (see details in the Supplementary Material, hereafter SM). In the following, each molecule was re-optimized in its first excited state, and the difference between its energy and the one calculated for the ground state at the excited state geometry was taken as emission (fluorescence) energy. Solvent effects (water) to the electronic energies were introduced both in geometry optimization and TD-DFT calculations by the Polarized Continuum Method (PCM) [36,37] within the universal Solvation Model Density [38,39]. There exist a wide variety of DFT functionals used in conjunction with the Time-Dependent approach. Therefore, a preliminary screening work was carried out and 17 different functionals were tested (see details in the SM). After the screening, we decided to use the mPWLYP functional (modified Perdew-Wang exchange functional) [40] and Lee-Yang-Parr correlation [41,42] with the Pople basis set 6-31+G(d) [43,44], because this method gives a suitable approximation of the experimental values and requests reasonable calculation time. Calculations were performed by the quantum package Gaussian 09-A [45]. Figures 2, 7 and SM1-SM7 (SM) and the Figures embedded in Tables in the SM were obtained with the graphical program Molden [46]. Figures 7 and SM2, SM4, SM6, SM7 in the SM show the differential electronic density maps at the excited state geometries in the electronic excitation, *i.e.* the graphic representation of the difference in electronic densities between the ground and the first excited state responsible for the fluorescence. In other terms, the red areas are where the electron comes from, while the blue area is where the electron goes (these areas roughly correspond to HOMO and LUMO in HOMO-LUMO dominated electronic transitions, as it is the case here).

3. Results and Discussion

The absorption and fluorescence properties were calculated for a series of poly-*para*-phenoxyphenols (Scheme 1): phenol, 4-phenoxyphenol (4PPP), 4-(4-phenoxy)phenoxyphenol (4PPP) and 4-(4-(4-phenoxy)phenoxy)phenoxyphenol (4PPPP). For phenol and 4PP, the predictions of calculations were compared with the available experimental data. To confirm the predicted trend of the fluorescence emission wavelengths, partial calculations were also carried out for a 5-ring system (the latter calculations were referred to one conformation only, due to remarkable computational costs).

Scheme 1. The poly-*para*-phenoxyphenols studied.

3.1. Phenol

The absorption spectra were calculated as a first issue. Phenol absorption bands were predicted at <230 nm and at ~265 nm, in satisfactory agreement with the experimental data (see Figure 1a). As far as fluorescence is concerned, both the $S_2 \rightarrow S_0$ and $S_1 \rightarrow S_0$ transitions were calculated. For phenol, the predicted emission wavelengths (λ_{em}) were at 276 and 287 nm, respectively. Figure 1b reports the EEM spectrum of phenol, which shows fluorescence bands around excitation/emission (Ex/Em) wavelengths of ~220/~300 nm and ~270/~300 nm. The two bands with Ex/Em of ~220/~600 nm are the second harmonics of the bands with emission at ~300 nm.

The excitation wavelengths correspond quite well to the experimental and calculated absorption bands of phenol, while there appears to be only one emission band ($\lambda_{em} \sim 280-320$ nm). This band is consistent with the S₁ \rightarrow S₀ transition, in agreement with Kasha's rule [47] according to which the S₂ state would quickly undergo radiationless deactivation to S₁, from where the fluorescence emission would take place. The spectroscopic properties of phenol have been the subject of several computational studies, the more recent of which have been performed with high-level *ab-initio* methods [48-51]. However, these are not directly comparable with our results because all calculations have been carried out in the gas phase. More interesting is a comparison with experimental data [52,53] concerning the change in the structural parameters that is quite well reproduced (see details in SM).

Figure 1. (a) Experimental absorption spectrum of 0.1 mM phenol and calculated transitions (AU = absorbance units). (b) EEM matrix of 0.1 mM phenol in aqueous solution.

3.2. 4-Phenoxyphenol

Differently from phenol that has just one conformer, 4-phenoxyphenol (4PP) has three different stable conformations (here indicated as 2a, 2b, 2c, see Figure 2). The main differences among the three conformers of 4PP are the two dihedral angles between the aromatic rings that, therefore, show different orientation one with respect to the other.

Figure 2. The three conformers of 4-phenoxyphenol (4PP).

Depending on the stability of each conformer, the relative abundance is predicted to be 2b > 2a > 2c. Eighty transitions were calculated for each structure, and they were superposed to the experimental absorption spectrum. Figure 3a shows the results of this procedure. The comparison suggests that the experimental absorption band of 4PP around 200 nm would be the result of

multiple transitions involving the three conformers. The experimental band around 230 nm would be produced by several transitions in the interval 220-240 nm, while the band around 280 nm would be the consequence of transitions taking place at 260-270 and 290-300 nm. Overall, there is a good qualitative agreement between the calculated transitions and the experimental spectrum.

To investigate the fluorescence properties of 4PP, the geometry of the first excited state of each conformer was determined. Based on the results obtained with phenol and in agreement with Kasha's rule, only the $S_1 \rightarrow S_0$ transition was taken into account. As for the ground state, the S_1 state presents, apparently, three conformations $(2aS_1, 2bS_1, 2cS_1)$: their structures are reported in the SM) which differ, again, mainly for the values of the dihedral angles. Predicted transitions for the emission are at ~355 nm $(2a_{S_1 \rightarrow S_0})$ and ~425 nm (both $2b_{S_1 \rightarrow S_0}$ and $2c_{S_1 \rightarrow S_0}$). The former is due to an electron transfer from the π framework of the phenoxy moiety to the π framework of the phenol, while the latter are both due to an electron transfer in the opposite direction (Figure SM2).

The experimental fluorescence spectrum (EEM matrix) is reported in Figure 3b. It shows some linear features that do not depend on 4PP emission (they are the Raleigh scattering of the solution at $\lambda_{\rm Em} = \lambda_{\rm Ex}$, its second harmonic at $\lambda_{\rm Em} = 2 \lambda_{\rm Ex}$, and the Raman signal of water at $\lambda_{\rm Em} > \lambda_{\rm Ex}$), two weak fluorescence bands at Ex/Em wavelengths of ~220/~350 nm and ~280/~350 nm, and two more intense bands at Ex/Em ~220/~425 nm and ~300/~425 nm. The excitation wavelengths roughly correspond to the two absorption bands of 4PP at ~225 and ~280 nm (S₀ \rightarrow S₂ and S₀ \rightarrow S₁, respectively). Even more significantly, one observes a remarkably good agreement between the predicted and the observed wavelengths of fluorescence emission: a couple of weak bands correspond to the $2a_{S_1 \rightarrow S_0}$ transition, and the other couple to $2b_{S_1 \rightarrow S_0}$ and $2c_{S_1 \rightarrow S_0}$. The excited electronic states 2bS₁ and 2cS₁ are generated, respectively, from the 2b and 2c conformers which represent 70% of the population, while the electronic state $2aS_1$ is generated from 2a which is the remaining 30%. This can explain why the emission bands at ~350 nm (generated by $2aS_1$).

Figure 3. a) Experimental absorption spectrum of 0.1 mM 4PP and calculated transitions. b) EEM matrix of 0.1 mM 4PP in aqueous solution.

3.3. 4-(4-Phenoxy)phenoxyphenol (4PPP)

In the case of the three-ring system 4PPP, three conformers (3a, 3b, 3c) were found. They are described by the dihedral angles between the three aromatic rings (each conformer is described by a total of four dihedral angles). The structures of 3a, 3b and 3c are reported in the SM, and the predicted order of stability and abundance is 3a > 3c - 3b. As before, eighty absorption transitions were calculated for each conformer and the main ones are reported in Figure 4. When considering the band broadening that is expected to take place in aqueous solution, one may predict that 4PPP would absorb radiation below 340 nm and that the identity/structure of the absorption bands would be partially lost (see Figure SM8 in the SM).

Figure 4. Calculated absorption transitions of 4PPP.

A S₁ state can be computed for each ground-state conformer, from which it mainly differs for the values of the dihedral angles (see the SM for the structures of $3aS_1$, $3bS_1$ and $3cS_1$). Interestingly, similar emission wavelengths (in the 447-448 nm range) are predicted for the three $S_1 \rightarrow S_0$ transitions. Coherently with this fact, we can observe that all three transitions are due to an electron transfer from the π framework of the phenol moiety to the π framework of the adjacent phenoxyl moiety (Figure SM4). Therefore, 4PPP would emit fluorescence radiation around 450 nm.

3.4. 4-(4-(4-Phenoxy)phenoxy)phenoxyphenol (4PPPP).

The four-ring system 4PPPP has six different stable conformers (4a-4f, see SM) with comparable abundance, a partial exception being 4f that is the least stable. The conformers differ for the six dihedral angles between the aromatic rings. The absorption transitions of 4PPPP were derived with the usual procedure and they are shown in Figure 5. The large number of transitions covers with regularity the wavelength range up to at least 360 nm. Under these circumstances, the simulated absorption spectrum of 4PPPP would show an overall decrease of the absorption intensity with increasing wavelength, with limited spectral features (see Figure SM9 in the SM). It might be tempting to draw a parallel between such condition and the featureless pseudo-exponential decay with wavelength that is observed in the absorption spectra of humic substances in surface waters and of atmospheric HULIS [54,55]. However, the absorption spectra of humic compounds are thought to originate from inter-molecular charge-transfer interactions and not from molecular chromophores [55].

Similarly to 4PP and 4PPP, also in the case of 4PPPP the S1 conformers (4aS1-4fS1, see the SM) mainly differ for the dihedral angles. The predicted emission wavelengths for five of the conformers are very similar and range from ~446 to ~448 nm. For a sixth conformer (4b) the calculated emission wavelength is 434 nm.

Figure 5. Calculated absorption transitions of 4PPPP.

3.5. Trends of the fluorescence emission wavelengths

The calculated wavelengths of fluorescence emission are in good or very good agreement with the experimental data, when available (phenol and 4PP). Moreover, computational results predict an increase of the fluorescence emission wavelengths with increasing number of aromatic rings, which is shown in Figure 6.

Figure 6. Trend of the calculated fluorescence emission maxima of the investigated compounds (their different conformers are indicated on the plot), as a function of the number of aromatic rings. The experimental data (Exp: wavelength range of the measured emission band) for phenol and 4PP are also reported as ellipses near the relevant calculation results.

4PP was the only case where two considerably different emission wavelengths were predicted for the various conformers. Both emissions were actually observed in the experimental spectrum, although the emission corresponding to conformer 2a was much weaker than the other one (2b + 2c). Note that the conformer 2b would be the most stable and, therefore, the most abundant.

The trend reported in Figure 6 shows a plateau in the calculated fluorescence emission maxima near 450 nm, and there is very little difference between the emission wavelengths predicted for 4PPP and 4PPPP. This trend is confirmed by the emission at 444 nm calculated for one conformer of the fivering system 4-(4-(4-(4-(4-phenoxy)phenoxy)phenoxy)phenoxyphenol (4PPPPP), which is almost identical to the emission from 4PPPP. This issue can be reasonably explained when taking into account the nature of the excited states, looking at the differential electronic densities. From the graphical representation of the differential electronic density (Figure 7 reports the differential electronic density map for the conformer 4d of 4PPPP, the maps for the other conformers are reported in the SM), one can deduce that the excited states (S₁) of the molecules with two or more rings show a charge-transfer (CT) character. All pictures show an electron transfer from the π orbitals of one aromatic ring to the π orbitals of a different aromatic ring (with some participation of the p orbitals on the oxygen atoms). In particular, for all the molecules with calculated fluorescence around 446-448 nm (4PPPPP, five out of six conformers of 4PPPP and all the three conformers of 4PPP), the electronic transfer is from the first aromatic ring (that bearing the hydroxyl group) to the second or the third aromatic ring. By contrast, the 434 nm emission from conformer 4b corresponds to a CT from the third to the second ring. For 4PP, the excited states emitting at 425 nm (2b and 2c) correspond to a CT from the first ring to the second, while the conformer emitting at 359 nm (2a) corresponds to a CT from the second ring to the first.

Figure 7. Differential electronic density map between the states S₁ and S₀ in conformer 4d of 4PPPP.

It is interesting to point out that the predicted emission at ~450 nm is well within the fluorescence region of HULIS [4], and it is also very near the fluorescence signal observed upon phototransformation of phenolic compounds, under conditions where the formation of phenoxy radicals and the subsequent dimerization/oligomerization processes are quite likely [23,56]. The computational results presented here give support to the hypothesis that the observed fluorescence is accounted for by phenol oligomers: an ongoing oligomerization process, with formation of progressively larger systems with an increasing number of aromatic rings, would produce a fluorescence signal at wavelengths approaching 450 nm. At that point, the possible formation of larger compounds is not expected to cause an important modification of the emission wavelengths.

Another interesting issue concerns the absorption spectra, where a gradual shift of the absorption towards higher wavelengths is predicted for the oligomers with more aromatic rings, together with a loss of the individual features of the different bands. An absorbance increase at higher wavelengths has been reported under conditions where oligomerization is operational, both in gas-solid systems and in solution, together with the appearance of a featureless decay of the absorption with increasing wavelength [22,56]. However, differently from the case of phenol oligomers, the experimental absorption was extended into the visible, which is most likely due to charge-transfer bands caused by interaction between electron donors and acceptors. Donors and acceptors might include phenols and aromatic carbonyls, respectively, that could be formed under oxidative conditions. The acceptor-donor inter-molecular interactions would be characterized by

efficient processes of internal conversion, with an efficient quenching of the possible fluorescence emission [55]. Therefore, phenol oligomers could account for the observed fluorescence emission, but their contribution to the experimental absorption spectra is expectedly limited.

4. Conclusions

Phenol dimers and oligomers are characterized by the presence of different conformers, which differ for the dihedral angles between the aromatic rings. Each conformer gives its own contribution to the absorption and fluorescence spectra of the investigated compounds. In particular, 4PP and 4PPP have three stable conformers each, while 4PPPP has six conformers. The predicted wavelengths of fluorescence emission, which correspond to $S_1 \rightarrow S_0$ transitions, increase up to a plateau when increasing the number of aromatic rings. Considering that the transitions producing fluorescence involve at most three aromatic rings, important changes in the emission wavelength are not expected when further increasing the molecular size. This issue is further supported by the calculated fluorescence emission of one of the conformers of 4PPPPP.

The plateau in the predicted emission wavelengths is at around 450 nm, which is quite in the fluorescence range of HULIS. The oligomeric compounds might thus account for the HULIS-type fluorescence, which has been observed under conditions where phenol oligomerization was operational due to the formation of phenoxy radicals [23]. Interestingly, the plateau in the emission wavelengths predicts that a mixture of phenol oligomers could not show fluorescence in a different spectral interval than the one that is experimentally observed: the increasing molecular size would initially shift fluorescence from the phenolic region to the HULIS one, but further increases of the ring number are not expected to produce important modifications in the wavelengths of the emission signal.

Acknowledgements

DV acknowledges financial support by Università di Torino - EU Accelerating Grants, project TO_Call2_2012_0047 (DOMNAMICS).

References

[1] E. Dinar, I. Taraniuk, E.R. Graber, S. Katsman, T. Moise, T. Anttila, T.F. Mentel, Y. Rudich, Cloud Condensation Nuclei properties of model and atmospheric HULIS, Atmos. Chem. Phys. 6 (2006) 2465-2482.

- [2] A. Hoffer, A. Gelencsér, P. Guyon, G. Kiss, O. Schmid, G.P. Frank, P. Artaxo, M.O. Andreae, Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys. 6 (2006) 3563-3570.
- [3] T.B. Kristensen, N.L. Prisle, M. Bilde, Cloud droplet activation of mixed model HULIS and NaCl particles: Experimental results and κ-Köhler theory, Atmos. Res. 137 (2014) 167-175.
- [4] E.R. Graber, Y. Rudich, Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmos. Chem. Phys. 6 (2006) 729-753.
- [5] S. Decesari, M.C. Facchini, E. Matta, M. Mircea, S. Fuzzi, A.R. Chughtai, D M. Smith, Watersoluble organic compounds formed by oxidation of soot, Atmos. Environ. 36 (2002) 1827-1832.
- [6] I. Salma, R. Ocskay, X.G. Chi, W. Maenhaut, Sampling artefacts, concentration and chemical composition of fine water-soluble organic carbon and humic-like substances in a continental urban atmospheric environment, Atmos. Environ. 41 (2007) 4106-4118.
- [7] M. Paglione, A. Kiendler-Scharr, A.A. Mensah, E. Finessi, L. Giulianelli, S. Sandrini, M.C. Facchini, S. Fuzzi, P. Schlag, A. Piazzalunga, E. Tagliavini, J.S. Henzing, S. Decesari, Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques. Atmos. Chem. Phys. 14 (2014) 25-45.
- [8] B.R.T. Simoneit, Eolian particulates from oceanic and rural areas Their lipids, fulvic and humic acids and residual carbon, in: Advances in Organic Geochemistry. A. G. Douglas and J. R. Maxwell (eds.), Pergamon Press, Oxford, 1980, 343-352.
- [9] N. Calace, B.M. Petronio, R. Cini, A.M. Stortini, B. Pampaloni, R. Udisti, Humic marine matter and insoluble materials in Antarctic snow, Intern. J. Environ. Anal. Chem. 79 (2001) 331-348.
- [10] E.O. Fors, J. Rissler, A. Massling, B. Svenningsson, M.O. Andreae, U. Dusek, G.P. Frank, A. Hoffer, M. Bilde, G. Kiss, S. Janitsek, S. Henning, M.C. Facchini, S. Decesari, E. Swietlicki, Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data, Atmos. Chem. Phys. 10 (2010) 5625-5639.
- [11] G.J. Zheng, K.B. He, F.K. Duan, Y. Cheng, Y.L. Ma, Measurement of humic-like substances in aerosols: A review, Environ. Pollut. 181 (2013) 301-314.
- [12] M.P. Tolocka, M. Jang, J.M. Ginter, F.J. Cox, R.M. Kamens, M.V. Johnston, Formation of oligomers in secondary organic aerosol, Environ. Sci. Technol. 38 (2004) 1428-1434.
- [13] A. Cappiello, E. De Simoni, C. Fiorucci, F. Mangani, P. Palma, H. Trufelli, S. Decesari, M.C. Facchini, S. Fuzzi, Molecular characterization of the water-soluble organic compounds in fogwater by ESIMS/MS, Environ. Sci. Technol. 37 (2003) 1229-1240.
- [14] R.M.B.O. Duarte, C.A. Pio, A.C. Duarte, Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions, Anal. Chim. Acta 530 (2005) 7-14.

- [15] R.M.B.O. Duarte, A.C. Duarte, A critical review of advanced analytical techniques for watersoluble organic matter from atmospheric aerosols, Trac - Trends Anal. Chem. 30 (2011) 1659-1671.
- [16] O. Laskina, M.A. Young, P.D. Kleiber, V.H. Grassian, Infrared optical constants of organic aerosols: Organic acids and model humic-like substances (HULIS), Aerosol Sci. Technol. 48 (2014) 630-637.
- [17] C.L. Muller, C. Kidd, I.J. Fairchild, A. Baker, Investigation into clouds and precipitation over an urban area using micro rain radars, satellite remote sensing and fluorescence spectrophotometry, Atmos. Res. 96 (2010) 241-255.
- [18] R.G. Pinnick, E. Fernandez, J.M. Rosen, S.C. Hill, Y. Wang, Y.L. Pan, Fluorescence spectra and elastic scattering characteristics of atmospheric aerosol in Las Cruces, New Mexico, USA: Variability of concentrations and possible constituents and sources of particles in various spectral clusters, Atmos. Environ. 65 (2013) 195-204.
- [19] S. Net, L. Nieto-Gligorovski, S. Gligorovski, B. Temime-Rousell, S. Barbati, Y.G. Lazarou, H. Wortham, Heterogeneous light-induced ozone processing on the organic coatings in the atmosphere, Atmos. Environ. 43 (2009) 1683-1692.
- [20] S. Net, E. Gómez Alvarez, S. Gligorovski, H. Wortham, Heterogeneous reactions of ozone with methoxyphenols, in presence and absence of light, Atmos. Environ. 45 (2011) 3007-3014.
- [21] L. Nieto-Gligorovski, S. Net, S. Gligorovski, C. Zetzsch, A. Jammoul, B. D'Anna, C. George, Interactions of ozone with organic surface films in the presence of simulated sunlight: Impact on wettability of aerosols, Phys. Chem. Chem. Phys. 10 (2008) 2964-2971.
- [22] L. Nieto-Gligorovski, S. Net, S. Gligorovski, H. Wortham, H. Grothe, C. Zetzsch, Spectroscopic study of organic coatings on fine particles, exposed to ozone and simulated sunlight, Atmos. Environ. 44 (2010) 5451-5459.
- [23] E. De Laurentiis, B. Sur, M. Pazzi, V. Maurino, C. Minero, G. Mailhot, M. Brigante, D. Vione, Phenol transformation and dimerisation, photosensitised by the triplet state of 1nitronaphthalene: A possible pathway to humic-like substances (HULIS) in atmospheric waters, Atmos. Environ. 70 (2013) 318-327.
- [24] J. P. Aguer, C. Richard, Photochemical behaviour of humic acid synthesized from phenol, J. Photochem. Photobiol. A: Chem. 84 (1994) 69-73.
- [25] D. Vione, V. Maurino, C. Minero, Photosensitised humic-like substances (HULIS) formation processes of atmospheric significance: A review, Environ. Sci. Pollut. Res. 21 (2014) 11614-11622.
- [26] P.G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation– emission spectroscopy, Mar. Chem. 51 (1996) 325-346.
- [27] S.K.L. Ishii, T.H. Boyer, Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review. Environ. Sci. Technol. 46 (2012) 2006-2017.

- [28] F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons, NY, 1999, ISBN 0-471-98425-98426.
- [29] R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, 1989.
- [30] W. Kohn, A.D. Becke, R.G. Parr, Density functional theory of electronic structure, J. Phys. Chem. 100 (1996) 12974-12980.
- [31] R. Bauernschmitt and R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory, Chem. Phys. Lett. 256 (1996) 454-464.
- [32] A. Dreuw, M. Head-Gordon, Single-reference ab initio methods for the calculation of excited states of large molecules, Chem. Rev. 105 (2005) 4009-4037.
- [33] D. Jacquemin, E.A. Perpète, O.A. Vydrov, G.E. Scuseria, C. Adamo, Assessment of longrange corrected functionals performance for $n \rightarrow \pi^*$ transitions in organic dyes, J. Chem. Phys. 127 (2007) 094102.
- [34] D. Jacquemin, V. Wathelet, E.A. Perpète, C. Adamo, Extensive TD-DFT benchmark: Singletexcited states of organic molecules, J. Chem. Theory Comput. 5 (2009) 2420-2435.
- [35] A. D. Laurent, D. Jacquemin, TD-DFT Benchmarks: A Review, Int. J. Quantum Chem. 113 (2013) 2019–2039.
- [36] B. Mennucci, J. Tomasi, Continuum solvation models: a new approach to the problem of solute's charge distribution and cavity boundaries, J. Chem. Phys. 106 (1997) 5151-5158.
- [37] M. Cossi, N. Rega, G. Scalmani, V. Barone, Polarizable dielectric model of solvation with inclusion of charge penetration effects, J. Chem. Phys. 114 (2001) 5691-5570.
- [38] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (2009) 6378–6396.
- [39] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies, J. Phys. Chem. B 113 (2009) 4538-4543.
- [40] C. Adamo, V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, J. Chem. Phys. 108 (1998) 664-675.
- [41] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785-789.
- [42] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr, Chem. Phys. Lett. 157 (1989) 200-206.
- [43] W.J. Hehre, R. Ditchfield, J.A. Pople, Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules, J. Chem. Phys. 56 (1972) 2257-2261.

- [44] T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.v.R. Schleyer, Efficient diffuse functionaugmented basis-sets for anion calculations. 3. The 3-21+G basis set for 1st-row elements, Li-F, J. Comput. Chem. 4 (1983) 294-301.
- [45] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.
- [46] G. Schaftenaari, J.H. Noordik, Molden: a pre- and post-processing program for molecular and electronic structures, J. Comput.-Aided Mol. Des. 14 (2000) 123-134.
- [47] N.J. Turro, V. Ramamurthy, W. Cherry, W. Farneth, The effect of wavelength on organic photoreactions in solution. Reactions from upper excited states, Chem. Rev. 78 (1978) 125-145.
- [48] D. B. Jones, G. B. da Silva, R. F. C. Neves, H. V. Duque, L. Chiari, E. M. de Oliveira, M. C. A. Lopes, R. F. da Costa, M. T. do N. Varella, M. H. F. Bettega, M. A. P. Lima and M. J. Brunger, An experimental and theoretical investigation into the excited electronic states of phenol, J. Chem. Phys. 141 (2014) 074314.
- [49] R. A. Livingstone, J. O. F. Thompson, M. Iljina, R. J. Donaldson, B. J. Sussman, M. J. Paterson, and D. Towsend, Time-resolved photoelectron imaging of excited state relaxation dynamics in phenol, catechol, resorcinol, and hydroquinone, J. Chem. Phys. 137 (2012) 184304.
- [50] O. P. J. Vieuxmaire, Z. Lan, A. L. Sobolewski, and W. Domcke, Ab initio characterization of the conical intersections involved in the photochemistry of phenol, J. Chem. Phys. 129 (2008) 224307.
- [51] L. Zhang, G. H. Peslherbe and H. M. Muchall, Ultraviolet Absorption Spectra of Substituted Phenols: A Computational Study, Photochem. Photobiol. 82 (2006) 324-331.
- [52] C. Ratzer, J. Kupper, D. Spangenberg and Michael Schmit, The structure of phenol in the S1state determined by high resolution UV-spectroscopy, Chem. Phys. 283 (2002) 153–169.
- [53] N. W. Larsen, Microwave spectra of the six mono-carbon-13-substituted phenols and of some monodeuterated species of phenol. Complete substitution structure and absolute dipole moment, J. Mol. Struct. 51 (1979) 175-190.

- [54] A. Albinet, C. Minero, D. Vione, Photochemical generation of reactive species upon irradiation of rainwater: Negligible photoactivity of dissolved organic matter, Sci. Total Environ. 408 (2010) 3367-3373.
- [55] C.M. Sharpless, N.V. Blough, The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties, Environ. Sci.: Processes Impacts 16 (2014) 654-671.
- [56] A. Bianco, M. Minella, E. De Laurentiis, V. Maurino, C. Minero, D. Vione, Photochemical generation of photoactive compounds with fulvic-like and humic-like fluorescence in aqueous solution, Chemosphere 111 (2014) 529-536.

SUPPLEMENTARY MATERIAL

Computational assessment of the fluorescence emission of phenol oligomers: A possible insight into the fluorescence properties of humic-like substances (HULIS).

Francesco Barsotti,^a Giovanni Ghigo,^{b,} Davide Vione*^{*a,**} Dipartimento di Chimica, Università di Torino Via Giuria 5^a and/or 7^b, 10125 Torino, Italy.

* Address correspondence to either author: *giovanni.ghigo@unito.it* (G. Ghigo, Phone +39-011-6707872), *davide.vione@unito.it* (D. Vione, Phone +39-011-6705296)

- 1. Benchmark study
- 2. Optimized structures

4-Phenoxyphenol (4PP)

4-(4-Phenoxy)phenoxyphenol (4PPP)

4-(4-(4-Phenoxy)phenoxy)phenoxyphenol (4PPPP)

- 3. Weight function and simulated spectra
- 4. References

<u>1. Benchmark study</u>

The aim of the benchmark phase was to identify the proper combination of functional/basis set that could best describe the system, minimizing the calculation time but still allowing a good accuracy. All the benchmark tests were carried out using phenol as sample molecule. Every functional-basis set couple was used to optimize the geometry and calculate the absorption energy, within TD-DFT.

The nature of the critical points was checked by vibrational analysis, and absorption was calculated just on minimums. The first step of this work was the choice of the basis set, using two different functionals. The results showed that the basis set is not so important because absorption does not change significantly when the basis set is modified. Because the larger basis sets make the calculation time longer and because the present work involves the study of rather large phenol oligomers, the chosen basis was the one that allowed the fastest calculations.

The second step was the choice of the functional. After trying with some couples of combination and exchange algorithms, the final choice involved the couple giving UV-visible absorption that was nearer to the experimental data (phenol absorption spectrum in water, obtained by spectrophotometric measurements with a Varian Cary 100 Scan instrument using quartz cuvettes with 1 cm path length). The final goal was to simulate fluorescence. In agreement with Kasha's rule (Kasha, 1950), the considered transition in the choice of the functional-basis set couple, to be compared with experiment, was the one with the lowest energy. The absorption of radiation that is observed experimentally in the condensed phase (solution) shows rather large bands, while the calculations give a single value that would coincide with the maximum of the band. Phenol absorption in the UV-Visible range has two main peaks, one around 270 nm and another around 210 nm. The latter absorption peak is common to all aromatic compounds that show a similar behaviour in the relevant spectral region. Therefore, this work was focused on the low-energy transition (~270 nm), which is peculiar of phenol and which could approach the visible range within the studied oligomers.

The functionals BLYP and PBEhPBE were tested with two Pople's basis sets (6-31+G(d)) and 6-311+G(d,p) and with two correlation-consistent basis sets (Cc-pVTZ and Aug-Cc-pVTZ). A minimal variation of the calculated transition energy was achieved with a considerable increase of the calculation time, thus the Pople's basis sets were chosen.

Other eight functionals were tested with these two basis sets. Considering the small variations of the predicted signal and the differences in calculation time, other seven functionals were additionally tested just with the smaller Pople's basis set.

After the screening it was decided to use the mPWLYP functional (modified Perdew-Wang exchange functional and Lee-Yang-Parr correlation) with the Pople basis set 6-31+G(d), because this method gives a suitable approximation of the experimental values and requires reasonable calculation time.

The following chart reports the results obtained with the different combinations of functionals and basis sets.

Functional	Basis Set	<u>λ (nm)</u>	<u>λ. (nm)</u>	<u>λ (nm)</u>	<u>λ (nm)</u>	<u>λ (nm)</u>	f,	f,	ţ,	ţ.	ť,
BLYP	6-31+G(d)	263,14	234,05	226,21	222,20	208,43	0,0395	0,0000	0,0762	0,0032	0,0004
	6-311+G(d,p)	263,69	232,48	226,48	220,13	208,47	0,0376	0,0005	0,0786	0,0084	0,0004
	Cc-pVTZ	260,89	221,66	199,72	194,52	194,41	0,0404	0.0734	0,0002	0,0006	0.2817
	Aug-Co-pVTZ	263,49	248,78	233,99	227,63	224,80	0.0373	0.0009	0,0032	0.0757	0,0004
PBENPBE	6-31+G(d)	260,60	225,85	222,85	214,01	201,36	0,0420	0,0000	0,0889	0,0031	0,0004
	6-311+G(d,p)	261,37	224,73	223,61	212,15	200,52	0,0406	0,0005	0,0900	0,0083	0,0005
	Cc-pVTZ	259,18	219,16	193,38	192,46	188,05	0,0431	0,0827	0,0004	0,2746	0,0004
	Aug-Cc-pVTZ	261,49	238,55	224,57	223,63	214,99	0,0401	0,0009	0,0855	0,0082	0,0005
B3LYP	6-31+G(d)	244,39	214,45	213,76	201,69	190,75	0,0461	0,0000	0,0553	0,0055	0,0004
	6-311+G(d,p)	245,18	214,70	213,89	200,67	190,38	0,0455	0.0571	0,0003	0,0055	0,0004
B3PW91	6-31+G(d)	242,20	211,04	201,63	190,87	185,40	0,0475	0,0640	0,0000	0,0051	0,4985
	6-311+G(d,p)	243,01	212,03	202,40	190,71	185,81	0,0478	0,0643	0,0004	0,0053	0,5202
CAM-B3LYP	6-31+G(d)	235,89	207,00	202,28	186,73	178,81	0,0486	0,0495	0,0001	0,0078	0,0006
	6-311+G(d,p)	236,69	208,08	201,92	186,50	178,99	0,0482	0,0504	0,0001	0,0082	0,0005
mPWLYP	6-31+G(d)	263,95	248,35	233,83	226,95	221,07	0,0406	0,0000	0,0028	0,0738	0,0004
	6-311+G(d,p)	264,47	248,29	233,58	227,62	221,48	0,0394	0,0004	0,0035	0,0758	0,0005
M06	6-31+G(d)	246,56	233,75	218,98	214,61	202,24	0,0514	0,0005	0,0018	0,0004	0,0002
	6-311+G(d,p)	247,58	238,99	226,22	221,03	207,39	0,0498	0,0001	0,0029	0,0007	0,0001
M06-L	6-31+G(d)	245,11	213,38	201,85	193,44	185,80	0,0474	0,0001	0,0019	0,0002	0,0000
	6-311+G(d,p)	246,54	214,22	206,88	198,30	191,47	0,0445	0,0608	0,0005	0,0019	0,0003
M06-2X	6-31+G(d)	233,56	202,38	202,13	186,75	179,59	0,0526	0,0734	0,0005	0,0061	0,0009
	6-311+G(d,p)	233,92	203,89	203,74	189,05	181,90	0,0522	0,0650	0,0000	0,0079	0,0010
TPSS	6-31+G(d)	254,23	219,26	219,14	208,12	196,75	0,0416	0,0785	0,0000	0,0083	0,0004
	6-311+G(d,p)	254,79	220,05	218,96	207,26	196,81	0,0405	0,0790	0,0005	0,0035	0,0004
TPSSh	6-31+G(d)	245,81	213,70	211,04	199,54	189,19	0,0447	0,0684	0,0000	0,0042	0,0004
WPBEhLYP	6-31+G(d)	263,40	246,94	232,01	227,20	217,84	0,0411	0,0000	0,0035	0,0761	0,0005
WPBEHPBE	6-31+G(d)	260,62	225,54	222,86	213,99	201,34	0,0420	0,0000	0,0888	0,0031	0,0004
mPW1LYP	6-31+G(d)	242,25	223,85	208,54	198,45	195,05	0,0483	0,0001	0,0054	0,0005	0,0005
mPWPBE	6-31+G(d)	260,33	228,21	222,81	216,68	205,21	0,0416	0,0000	0,0853	0,0026	0,0003
mPWLYP	6-31+G(d)	239,07	209,24	206,82	194,06	184,92	0,0505	0,0588	0,0000	0,0052	0,0005
PBEMPBE	6-31+G(d)	239,18	209,12	204,45	191,96	182,25	0,0505	0,0606	0,0000	0,0060	0,0005
Experimental	Data	270	nm								

Basis sets used are:

- 6-31+G(d) (Petersson et al., 1988; Petersson et al., 1991)
- 6-311+G(d,p) (McLean et al., 1980; Raghavachari et al., 1980)
- Cc-pVTZ (Dunning, 1989; Kendall et al., 1992; Davidson, 1996)
- Aug-Cc-pVTZ (Dunning, 1989; Kendall et al., 1992; Davidson, 1996)

Functional used are:

- BLYP: Becke exchange functional (Becke, 1988) and the correlation functional of Lee, Yang, and Parr (Lee et al., 1988)
- PBEhPBE: exchange functional of Perdew, Burke and Ernzerhof (Perdew et al., 1996) revisioned (M. Ernzerhof et al, 1998) and the gradient corrected correlation functional of Perdew, Burke and Ernzerhof (Perdew et al., 1996; Perdew et al., 1997)
- B3LYP: Becke Three Parameter Hybrid Functionals (Becke, 1993) and the correlation functional of Lee, Yang, and Parr. (Lee et al., 1988)

- B3PW91: Becke Three Parameter Hybrid Functionals (Becke, 1993) and the gradientcorrected correlation functional of Perdew and Wang (Perdew et al., 1996; Burke et al., 1998)
- CAM-B3LYP: a long range corrected version of B3LYP using the Coulomb-attenuating method (Yanai et al., 2004; Becke, 1993; Lee et al., 1988)
- mPWLYP: Perdew-Wang 1991 exchange functional modified by Adamo and Barone (Adamo and Barone, 1998) and the correlation functional of Lee, Yang, and Parr (Lee et al., 1988)
- M06: the hybrid functional of Truhlar and Zhao (Zhao et al., 2006)
- M06-L: the pure functional of Truhlar and Zhao (Zhao et al., 2006)
- M06-2X: a variation of the hybrid functional of Truhlar and Zhao (Zhao et al., 2006)
- TPSS: the τ-dependent gradient-corrected functional of Tao, Perdew, Staroverov, and Scuseria (Tao et al., 2003)
- TPSSh: the hybrid functional using the TPSS functionals (Tao et al., 2003)
- wPBEhLYP: the exchange part of screened Coulomb potential-based final of Heyd, Scuseria and Ernzerhof (Heyd et al., 2003; Izmaylov et al., 2006; Henderson et al., 2009) and the correlation functional of Lee, Yang, and Parr (Lee et al., 1988)
- wPBEhPBE: the exchange part of screened Coulomb potential-based final of Heyd, Scuseria and Ernzerhof (Heyd et al., 2003; Izmaylov et al., 2006; Henderson et al, 2009) and the gradient corrected correlation functional of Perdew, Burke and Ernzerhof (Perdew et al, 1996; Perdew et al., 1997)
- mPW1LYP: Perdew-Wang hybrid functional exchange modified by Adamo and Barone (Adamo and Barone, 1998) and the correlation functional of Lee, Yang, and Parr. (Lee et al., 1988)
- mPWPBE: Perdew-Wang 1991 exchange functional modified by Adamo and Barone (Adamo and Barone, 1998) and the gradient corrected correlation functional of Perdew, Burke and Ernzerhof (Perdew et al., 1996; Perdew et al, 1997)
- mPWLYP: the Perdew and Wang functional exchange modified by Adamo and Barone (Adamo and Barone, 1998) and the correlation functional of Lee, Yang, and Parr. (Lee et al., 1988)
- PBEh1PBE: the hybrid functional that use a revised form of PBE pure functional (exchange and correlation) (Ernzerhof et al., 1998)

2. Optimized structures

4-Phenoxyphenol (4PP)

Differently from phenol, 4PP has three different stable conformations: two of them are very similar in energy, while the third is quite different. The main difference regards the dihedral angles between the aromatic rings. The dihedral angles are reported below (units are in degrees), together with the relevant structures.

Theta (θ) is measured considering two carbon atoms of the first aromatic ring, the oxygen and one carbon atom on the second ring. The omega (ω) angle is measured considering one carbon atom of the first ring, the oxygen and two carbon atoms of the second ring. The first ring is the one with the OH function, the other one is the second ring.

The theta (θ) angle is the one identified by a-b-c-d atoms, while omega (ω) angle is identified by b-c-d-e atoms.

Name	Structure	(θ)	(w)	ΔG (Kcal/mol)	Weight
2a		88	4	0.305	0.32

Ground State - 4PP

Excited state - 4PP

Name	Structure	(θ)	(ω)	ΔEnergy (Kcal/mol)	Fluorescence (nm)
2aS1		53	17	8.88	359

Figure SM2. Differential electronic density map between state S_1 and S_0 in the different conformations of 4PP.

The chart below shows the calculated transitions for the different conformers of 4PP (wavelengths and the force constants f are reported).

Calculated transitions of 2rings structures (4PP)										
	<u>2a</u>	-	<u>2b</u>		<u>2c</u>					
λ (nm)	f	λ (nm)	f	λ (nm)	f					
301	0,027	315	0,028	318	0,025					
297	0,007	296	0,012	296	0,021					
275	0,009	289	0,105	293	0,117					
2/3	0,001	2/1	0,003	2/2	0,001					
267	0,033	209	0,024	269	0,030					
257	0.001	258	0.001	261	0.001					
254	0,008	256	0,014	255	0,021					
252	0,001	252	0,024	251	0,020					
247	0,005	243	0,016	243	0,003					
242	0,010	243	0,005	243	0,025					
242	0,001	240	0,003	239	0,001					
230	0,302	237	0,005	230	0,001					
233	0,032	233	0,000	233	0,000					
232	0,017	232	0,005	231	0,008					
228	0,003	230	0,014	229	0,015					
227	0,004	228	0,135	228	0,080					
225	0,020	226	0,078	226	0,014					
222	0,004	224	0,016	225	0,118					
221	0,073	221	0,001	221	0,002					
219	0.002	217	0.014	215	0.006					
214	0,004	214	0,001	214	0,003					
214	0,001	213	0,010	214	0,001					
213	0,001	212	0,002	213	0,002					
210	0,002	212	0,043	211	0,028					
208	0,024	210	0,013	210	0,004					
207	0,017	207	0,030	208	0,030					
200	0,000	207	0,007	207	0,002					
205	0,031	204	0,006	206	0,018					
203	0,169	203	0,150	202	0,316					
202	0,042	202	0,252	202	0,215					
202	0,141	202	0,060	201	0,094					
201	0,083	201	0,449	200	0,257					
200 107	0,031	198	0,150	198	0,140					
197	0.026	196	0,003	196	0.090					
196	0,034	195	0,179	195	0,008					
196	0,007	195	0,022	195	0,108					
195	0,049	194	0,038	194	0,015					
194	0,144	194	0,009	194	0,050					
193	0,054	193	0,024	193	0,022					
192	0,103	193	0,040	192	0,021					
191	0,026	189	0,022	190	0,016					
188	0,012	189	0,016	189	0,018					
188	0,006	188	0,016	189	0,016					
187	0,002	188	0,001	189	0,026					
186	0,001	187	0,004	187	0,001					
185	0,003	186	0,009	186	0,127					
184	0,010	184	0,100	184	0,011					
183	0,000	184	0,002	184	0,021					
183	0,002	183	0,017	183	0,001					
182	0,020	181	0,000	181	0,003					
181	0,003	180	0,001	180	0,006					
180	0,003	180	0,010	180	0,003					
180	0,001	179	0,009	179	0,014					
178	0,008	179	0,039	178	0,003					
177	0,040	178	0.003	178	0,003					
177	0,006	177	0,001	178	0,019					
177	0,007	177	0,005	177	0,005					
176	0,010	176	0,004	177	0,001					
176	0,032	176	0,004	176	0,004					
1/5	0,017	175	0,025	175	0,007					

4-(4-Phenoxy)phenoxyphenol (4PPP)

For this molecule, three different stable conformational isomers have been found. In this case as well, the difference among the optimized structures concerns the dihedral angles between the aromatic rings. The name of these angles is the same as that used for 4PP, with the difference that θ' and ω' represent the angles between the second and the third rings.

The theta (θ) angle is identified by atoms a-b-c-d, omega (ω) is identified by atoms b-c-d-e, theta' (θ') is identified by atoms f-g-h-i, and omega' (ω') is identified by atoms g-h-i-j.

Figure SM3. The 3a conformer of 4PPP.

Name	(θ)	(ω)	(θ')	(ω')	ΔG (Kcal/mol)	Weights
3 a	88	4	117	165	0	0.47
3b	-123	-159	-66	-20	0.607	0.25
3c	-60	159	129	156	0.513	0.28

Table SM1. Structure parameters and relative free energies of the 4PPP conformers.

Name	(θ)	(ω)	(θ')	(ω')	ΔEnergy (Kcal/mol)	Fluorescence (nm)
3aS1	3	83	117	162	0,071	447
3bS1	-3	97	69	163	0,024	448
3cS1	117	-106	-67	162	0	448

Table SM2. Structure parameters, relative electronic energies and emission wavelengths of the4PPP excited state conformers

The pictures in the next page report the structures of the ground (3x) and excited states (3xS1) of the three conformers of 4PPP.

Figure SM4. Differential electronic density map between state S_1 and S_0 in the different conformations of 4PPP.

The chart below shows the calculated transitions for the different conformers of 4PPP (wavelengths and the force constants f are reported).

Calculated transitions for 3 rings structures											
) (nm)	<u>3a</u>	<u>3</u>	ib f) (pm)	3 <u>c</u>						
v (uuu) 334	1 0.050	A (nm)	1	V (UUU)	I 0.013						
313	0,000	320	0,025	324	0,013						
306	0,000	309	0,010	311	0,004						
296	0,001	304	0,001	309	0 158						
290	0.024	300	0.003	301	0.017						
289	0.001	291	0.070	294	0.082						
285	0.044	287	0.020	288	0.002						
284	0,041	284	0,001	284	0,017						
281	0.050	278	0.002	279	0.003						
274	0,015	277	0,003	277	0,010						
270	0,023	275	0,015	274	0,099						
269	0,000	269	0,010	271	0,001						
267	0,026	269	0,026	269	0,028						
266	0,037	265	0,082	267	0,038						
263	0,018	263	0,045	262	0,036						
262	0,000	260	0,008	259	0,013						
261	0,010	257	0,020	258	0,004						
257	0,000	256	0,001	258	0,007						
256	0,013	256	0,000	254	0,002						
255	0,013	204	0,055	200	0,077						
230	0,002	202	0,012	250	0,002						
248	0,004	243	0,002	248	0,002						
245	0.010	246	0.027	247	0,020						
245	0.004	245	0.041	244	0.047						
241	0.001	242	0.003	242	0.001						
240	0,112	241	0,006	242	0,007						
239	0,004	240	0,002	241	0,003						
238	0,034	240	0,000	240	0,005						
238	0,149	238	0,013	240	0,003						
237	0,006	238	0,001	240	0,002						
237	0,005	238	0,001	238	0,001						
236	0,060	236	0,000	236	0,010						
235	0,018	236	0,003	235	0,005						
234	0,023	233	0,009	234	0,009						
231	0,140	231	0,002	230	0.012						
231	0.084	230	0.250	230	0.012						
230	0,016	230	0,025	229	0,018						
229	0,015	229	0,003	229	0,006						
228	0,011	228	0,048	228	0,050						
228	0,001	226	0,018	227	0,008						
225	0,007	226	0,003	226	0,046						
224	0,022	225	0,064	225	0,011						
224	0,002	224	0,004	224	0,049						
223	0,000	224	0,003	223	0,010						
222	0.001	222	0.001	222	0.022						
221	0,007	221	0,002	222	0,006						
220	0,010	221	0,003	220	0,000						
219	0,005	219	0,007	218	0,002						
217	0,001	217	0,002	217	0,001						
217	0,001	217	0,002	217	0,002						
216	0,005	215	0,014	216	0,003						
215	0,048	215	0,007	215	0,010						
214	0,005	214	0,013	214	0,027						
213	0,011	210	0,001	213	0,003						
213	0,001	212	0,005	212	0,005						
212	0.000	211	0.002	212	0.007						
211	0.011	210	0.007	211	0.020						
210	0,028	209	0,001	210	0,038						
209	0,003	209	0,057	209	0,010						
208	0,001	208	0,078	208	0,008						
207	0,009	208	0,025	208	0,003						
207	0,083	208	0,005	208	0,056						
207	0,028	207	0,003	206	0,015						
206	0,015	206	0,017	206	0,018						
205	0,111	200	0,002	200	0,152						
203	0,002	205	0,132	205	0,033						
204	0,113	203	0.124	203	0.087						
203	0.174	203	0.115	203	0.042						
203	0,035	202	0,067	202	0,288						
202	0,071	202	0,054	202	0,269						
202	0,218	202	0,696	201	0,279						
201	0,162	201	0,068	201	0,020						
201	0,195	200	0,064	201	0,027						
201	0,238	199	0,052	200	0,026						
200	0,190	199	0,000	200	0,019						

4-(4-(4-Phenoxy)phenoxy)phenoxyphenol (4PPPP)

Six different stable conformational isomers of 4PPPP have been found. In this case as well, the difference among the optimized structures concerns the dihedral angle between the aromatic rings. The name of these angles is the same used in the case of 4PP, adding an apostrophe for the corresponding angles between the second and the third rings and inverted commas for the angles between the third and the fourth ring.

Table SM3. Structure parameters and relative free energies of the 4PPPP conformers.

Name	(θ)	(ω)	(θ')	(ω')	(0")	(ω")	ΔEnergy (kcal/mol)	Fluorescence (nm)
4aS1	161	-41	-176	89	64	23	0	448
4bS1	53	35	103	-5	-14	-61	3.038	434
4cS1	-163	-141	4	89	119	-23	0.044	447
4dS1	-22	-46	-2	97	69	18	0.036	446
4eS1	22	41	-4	-87	-62	-24	0.038	446
4fS1	-19	-47	-4	102	73	14	0.017	448

Table SM4. Structure parameters, relative electronic energies and emission wavelengths of the4PPPP excited state conformers.

The pictures below show the structures of the ground (4x) and excited states (4xS1) of the conformers of 4PPPP.

Figure SM6. Differential electronic density map between state S_1 and S_0 in the different conformations of 4PPPP.

The chart below shows the calculated transitions for the different conformers of 4PPPP (wavelengths and the force constants f are reported).

					<u>Calcula</u>	ted transition	s for 4 rings	structures	_			
) (nm)	<u>4a</u>		<u>4b</u>	£	<u>4c</u>) (nm)	<u>4d</u>) (nm)	<u>e</u>) (mm)	<u>41</u>
240	(1	A (IIII)	0.027	A (IIII)	0.010	A (IIII)	0.040	A (IIII)	0.007	257	0.000
330		042	342	0,027	332	0,019	335	0,040	342	0,007	342	0,000
323	(004	320	0,003	327	0,013	323	0,003	322	0,015	332	0,007
320		0,004	317	0,002	321	0,003	316	0,003	31/	0,020	302	0,000
320		0,009	200	0,004	321	0,129	210	0,001	200	0,039	327	0,17
211		0,200	309	0,020	211	0,008	202	0,107	309	0,018	216	0,008
206		003	304	0,020	200	0,023	306	0,005	307	0,004	310	0,007
306		0,004	303	0,149	309	0,022	306	0,006	304	0,029	311	0,125
304		1,046	301	0,004	306	0,097	302	0,043	302	0,002	310	0,050
301		0,005	298	0,001	301	0,043	301	0,005	301	0,002	304	0,00
299	(0,018	297	0,005	300	0,024	298	0,028	298	0,005	301	0,002
297		1,002	296	0,019	298	0,007	294	0,012	294	0,057	298	0,002
294		J, 122	291	0,000	290	0,034	290	0,041	291	0,007	292	0,165
287	(0,004	288	0,002	288	0,012	289	0,004	288	0,009	290	0,030
280		000	284	0,003	280	0,086	285	0,004	280	0,133	290	0,008
284		,007	282	0,037	285	0,040	283	0,091	285	0,025	286	0,00
283		1,005	282	0,002	284	0,005	281	0,018	281	0,021	285	0,012
2/9		,040 000	279	0,001	283	0,000	280	0,001	276	0,002	283	0,010
2//		,000	278	0,001	2//	0,000	276	0,002	276	0,005	279	0,000
2/5		1,005	270	0,001	2/5	0,007	276	0,016	275	0,008	274	0,003
2/5		1,013	274	0,118	2/4	0,078	274	0,027	273	0,049	273	0,105
2/4		,013	272	0,011	273	0,023	273	0,005	271	0,047	272	0,008
2/1		1,029	2/1	0,001	270	0,021	270	0,028	270	0,001	270	0,002
269		0,010	269	0,039	208	0,007	270	0,005	269	0,001	269	0,000
207		0,005	200	0,027	207	0,000	200	0,002	200	0,003	200	0,010
200		1,007	207	0,029	207	0,003	200	0,010	267	0,013	267	0,005
200		0,007	200	0,032	200	0,013	265	0,005	267	0,021	200	0,025
263	(0,047	264	0,003	266	0,003	264	0,030	266	0,011	265	0,006
263	(1,055	262	0,001	262	0,016	264	0,020	264	0,034	264	0,002
262	(),054 x 000	260	0,020	261	0,058	262	0,070	262	0,001	261	0,013
260	(0,028	259	0,000	261	0,004	260	0,010	260	0,001	260	0,042
257	(0,001	258	0,001	260	0,016	259	0,000	259	0,023	258	0,017
256	(0,001	258	0,005	256	0,004	258	0,035	257	0,003	257	0,00
255	(0,001	257	0,067	255	0,002	257	0,012	256	0,009	255	0,003
255	(0,003	256	0,003	255	0,021	255	0,001	255	0,075	255	0,000
254	(0,021	253	0,006	254	0,037	254	0,033	254	0,006	253	0,023
253	(0,008	253	0,040	252	0,047	253	0,000	254	0,004	253	0,004
252	(0,015	253	0,003	252	0,005	252	0,009	252	0,044	252	0,076
252	(0,020	252	0,000	252	0,014	252	0,017	252	0,004	252	0,004
250		1,006	252	0,005	250	0,020	251	0,045	251	0,020	251	0,064
250		0,079	201	0,004	250	0,000	250	0,001	250	0,002	249	0,017
249		,000	201	0,002	249	0,002	250	0,010	248	0,001	248	0,012
248		1,003	247	0,002	247	0,002	248	0,026	246	0,028	247	0,000
240		0,000	240	0,002	240	0,001	247	0,012	240	0,003	247	0,00
247		,010	240	0,008	240	0,002	240	0,002	240	0,001	240	0,000
240),UZZ	244	0,014	240	0,070	240	0,023	240	0,005	240	0,008
240		0.000	244	0,004	240	0,055	240	0,001	243	0,001	240	0,002
244		0,002	240	0,020	240	0,009	244	0,002	243	0,002	243	0,00
243		007	240	0,020	244	0,004	243	0,004	243	0,003	244	0,00
243	((007	242	0,007	240	0,002	242	0,005	242	0,003	240	0,017
2/1		005	240	0,002	242	0,010	2/1	0,000	240	0,000	242	0,010
241	(0005	240	0,000	242	0,000	240	0,004	240	0,012	242	0,010
240	0	0,000	238	0,000	241	0,014	239	0,000	230	0,004	241	0,012
240		013	238	0,104	230	0,000	238	0,000	238	0,001	2/1	0,040
230	0	0.005	238	0,011	238	0,001	238	0,007	238	0,000	240	0,010
239	(009	238	0,006	238	0,008	238	0.008	237	0,007	238	0,020
238	(054	237	0,006	237	0,003	237	0,000	237	0,000	238	0,007
237	(0.003	236	0,000	237	0,000	237	0,001	236	0,000	238	0,01-
236	(018	236	0,001	237	0.012	237	0.002	236	0.062	237	0,002
235	(013	236	0,001	236	0,006	236	0,000	235	0.004	236	0,00
235	0	013	236	0,001	236	0,000	235	0,000	235	0,004	236	0,002
234	0	0.004	234	0,003	234	0,001	234	0,002	235	0,003	236	0,010
233	(017	234	0,002	233	0,000	233	0.012	235	0,000	235	0,000
233	(056	233	0,002	233	0,000	233	0.001	234	0,002	235	0,001
232	(013	232	0,002	233	0,007	232	0.048	233	0,000	234	0,002
232	0	0.003	232	0,041	232	0,000	232	0,040	232	0.026	233	0,010
231	0	007	231	0,010	232	0,000	232	0,041	232	0,020	233	0,000
231	(002	231	0.023	231	0,029	231	0.021	231	0 142	231	0,007
230	, () ()	003	230	0.014	231	0.007	230	0.041	231	0 225	231	0,007
230	r c	043	230	0,001	230	0,008	229	0.030	231	0.063	231	0,01-
230	r c	003	230	0.015	229	0.022	229	0.026	230	0,009	230	0,002
229	, ,	002	229	0.012	229	0.001	229	0.077	229	0.046	229	0,002
228	c c	008	229	0.016	228	0.005	229	0.016	229	0,005	227	0,002
228	r c	0.014	228	0.005	228	0 011	228	0 121	229	0 021	227	0.010
228	, () ()	018	227	0 121	227	0.077	228	0.016	228	0 001	226	0.000
227	r c	0.102	227	0.028	227	0.032	227	0.049	228	0 008	226	0,000
226	r c	0.047	226	0,000	227	0,002	227	0.007	227	0.003	226	0,000
226	((008	226	0.027	226	0,010	226	0.042	226	0.018	225	0,000
226	c c	055	226	0.027	225	0.031	226	0,042	226	0,010	225	0,00
225	((002	225	0.044	225	0.041	225	0,000	225	0,000	225	0,021
	, c	,002	-20	0,077		0,041		0,002		0,010		0,00

Figure SM7. Differential electronic density map between state S₁ and S₀ in 4PPPPP.

3. Weight function and simulated spectra

The calculation of each structure required 80 transitions to be taken into account, starting from the lowest energy one. Such transitions were combined as Gaussian functions with the maximum on the wavelength of each transition. The combination was carried out by using the R language for statistical computing (R Development Core Team, 2008).

As an example, the R script used to combine the absorption spectra of the 2a conformation of PhOPhOH is shown below.

a=c(0.0270,0.0068,0.0085,0.0007,0.0328,0.0232,0.0005,0.0079,0.0007,0.0051,0.010 0,0.0006,0.3019,0.0164,0.0318,0.0171,0.0033,0.0042,0.0199,0.0039,0.0729,0.0001, 0.0015,0.0042,0.0014,0.0005,0.0019,0.0237,0.0165,0.0001,0.1806,0.0307,0.1687,0. 0421,0.1413,0.0833,0.6587,0.0310,0.0256,0.0335,0.0071,0.0487,0.1438,0.0543,0.10 29,0.0065,0.0258,0.0118,0.0059,0.0023,0.0012,0.0025,0.0097,0.0001,0.0000,0.0021 ,0.0203,0.0029,0.0027,0.0012,0.0076,0.0398,0.0030,0.0059,0.0073,0.0104,0.0324,0 .0173,0.0033,0.0023,0.0665,0.0266,0.0324,0.0017,0.0077,0.0024,0.0168,0.0144,0.0 057,0.0074)

b=c(301,297,275,273,267,263,257,254,252,247,242,242,236,235,233,232,228,227,225,222,221,221,219,214,214,213,210,208,207,206,205,205,203,202,202,201,200,197,197,196,196,195,194,193,192,191,191,188,188,187,186,185,184,184,183,183,182,181,180,180,179,178,177,177,177,176,176,175,174,173,173,173,172,172,171,171,170,170,169,169)

c=c(3.5)

xmin<c(200)

```
xmax<c(360)
x<seq(xmin,xmax,length.out=200)
nx=length(x)
ng=length(b)
y=data.frame(NULL)
for (i in 1:ng) {
    for (j in 1:nx) {
      y[i,j]=(a[i]*exp(((x[j]b[i])^2)/(c^2))) }}
colsum<colSums(y)
tabella<data.frame(x,colsum)
write.csv(tabella,file="PhOPhOH_acqua.csv")
```

The spectra of the different conformations were then linearly combined, by weighting for the different energy of the structures. The weight of each conformation was calculated as shown in the equation below:

$$w_i = \frac{e^{\frac{E_i}{RT}}}{\sum e^{\frac{E_i}{RT}}}$$

where E_i is the energy of the ith conformation and N is the number of considered conformations, three in this case (2a, 2b and 2c). In this way one obtains the simulated absorption spectra, which give some insight into the possible absorption of radiation by compounds for which standards are not available. The figures below show the simulated absorption spectra of 4PPP and 4PPPP.

Figure SM8. Spectra of the different conformations of 4PPP and their linear combination (simulated spectrum).

Figure SM9. Spectra of the different conformations of 4PPPP and their linear combination (simulated spectrum).

4. References

- Adamo, C., Barone, V., 1998. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 108, 664-675.
- Becke, A. D., 1988. Density-functional exchange-energy approximation with correct asymptoticbehavior Phys. Rev. A 38, 3098-3100.
- Becke, A. D., 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652.
- Burke, K., Perdew, J. P., Wang, Y., 1998. Electronic Density Functional Theory: Recent Progress and New Directions. Dobson, J. F., Vignale, G., Das, M. P. (eds.), Plenum Press.
- Davidson, E. R., 1996. Comment on "Comment on Dunning's correlation-consistent basis sets". Chem. Phys. Lett. 260, 514-518.
- Dunning T. H. Jr., 1989. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007-1023.
- Ernzerhof, M., Perdew, J. P., 1998. Generalized gradient approximation to the angle- and systemaveraged exchange hole. J. Chem. Phys. 109, 3313-3320.
- Henderson, T. M., Izmaylov, A. F., Scalmani, G., Scuseria, G. E., 2009. Can short-range hybrids describe long-range-dependent properties? J. Chem. Phys. 131, 044108.
- Heyd, J., Scuseria, G., Ernzerhof, M., 2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207-8215.
- Izmaylov, A. F., Scuseria, G., Frisch, M. J., 2006. Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems. J. Chem. Phys. 125, 104103.
- Kendall, R. A., Dunning, T. H. Jr., Harrison, R. J., 1992. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796-6806.
- Lee, C., Yang, W., Parr, R. G., 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785-789.
- McLean, A. D., Chandler, G. S., 1980. Contracted Gaussian-basis sets for molecular calculations. 1. 2^{nd} row atoms, Z = 11-18, J. Chem. Phys. 72, 5639-5648.
- Perdew, J. P., Burke, K., Ernzerhof, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868.
- Perdew, J. P., Burke, K., Wang, Y., 1996. Generalized gradient approximation for the exchangecorrelation hole of a many-electron system. Phys. Rev. B 54, 16533-16539.
- Perdew, J. P., Burke, K., Ernzerhof, M., 1997. Errata: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396.
- Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A., Mantzaris, J., 1988. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J. Chem. Phys. 89, 2193-2218.

- Petersson, G. A., Al-Laham, M. A., 1991. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081-6090.
- Raghavachari, K., Binkley, J. S., Seeger, R., Pople, J. A., 1980. Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions, J. Chem. Phys. 72, 650-654.
- Tao, J. M., Perdew, J. P., Staroverov, V. N., Scuseria, G. E., 2003. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401.
- Yanai, T., Tew, D., Handy, N., 2004. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51-57.
- Zhao, Y., Truhlar, D. G., 2006. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215-241.