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Abstract

The modelling and analysis of biological systems has deep roots in Mathe-
matics, specifically in the field of Ordinary Differential Equations (ODEs).
Alternative approaches based on formal calculi, often derived from process
algebras or term rewriting systems, provide a quite complementary way to
analyse the behaviour of biological systems. These calculi allow to cope in a
natural way with notions like compartments and membranes, which are not
easy (sometimes impossible) to handle with purely numerical approaches,
and are often based on stochastic simulation methods. Recently, it has also
become evident that stochastic effects in regulatory networks play a crucial
role in the analysis of such systems. Actually, in many situations it is neces-
sary to use stochastic models. For example when the system to be described
is based on the interaction of few molecules, when we are at the presence of a
chemical instability, or when we want to simulate the functioning of a pool of
entities whose compartmentalised structure evolves dynamically. In contrast,
stable metabolic networks, involving a large number of reagents, for which
the computational cost of a stochastic simulation becomes an insurmount-
able obstacle, are efficiently modelled with ODEs. In this paper we define
a hybrid simulation method, combining the stochastic approach with ODEs,
for systems described in the Calculus of Wrapped Compartments (CWC), a
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calculus on which we can express the compartmentalisation of a biological
system whose evolution is defined by a set of rewrite rules.

Keywords: Term Rewriting Systems, Stochastic/Deterministic Simulation
Methods, Hybrid Simulation, Biochemical Systems

1. Introduction

The most common approaches used by biologists to describe biological
systems have been mainly based on the use of deterministic mathematical
means like, e.g., Ordinary Differential Equations (ODEs for short). ODEs
make it possible to abstractly reason on the behaviour of biological systems
and to perform a quantitative in silico investigation. However, this kind of
modelling becomes more and more difficult, both in the specification phase
and in the analysis processes, when the complexity of the biological sys-
tems taken into consideration increases. More recently, the observation that
biological systems (for example in the case of chemical instability) are inher-
ently stochastic [1], has led a growing interest in the stochastic modelling of
chemical kinetics.

Besides, the concurrently interacting structure of biological systems has
inspired the possibility to describe them by means of formalisms developed in
Computer Science for the description of computational entities [2]. Different
formalisms have either been applied to (or have been inspired from) biolog-
ical systems. Automata-based models [3, 4] have the advantage of allowing
the direct use of many verification tools such as model checkers. Rewrite
systems [5, 6, 7] usually allow describing biological systems with a notation
that can be easily understood by biologists. Process calculi, including those
commonly used to describe biological systems [2, 8, 9], have the advantage
of being compositional, but their way of describing biological entities is of-
ten less intuitive. Quantitative simulations of biological models represented
with these kind of frameworks (see, e.g. [8, 10, 11, 12, 13, 14]) are usually
developed via a stochastic method derived from Gillespie’s algorithm [15].
These formalisms, in fact, are mainly used to represent interactions between
complex biological structures like cells, bacteria or genes whose results would
be hard to validate in the ODE approach.

The ODE description of biological systems determines continuous and
deterministic models in which variables describe the concentrations of the
species involved in the system as functions of the time. These models are

2



based on average reaction rates, measured from real experiments which relate
to the change of concentrations over time, taking into account the known
properties of the involved chemicals, but possibly abstracting away some
unknown mechanisms.

In contrast to the deterministic model, discrete and stochastic simulations
involve random variables. Since the basic steps of a molecular reaction are
described in terms of their probability of occurrence, the behaviour of a
reaction is not determined a priori but characterised statistically. Thus,
biological reactions fall in the category of stochastic systems and stochastic
models for their kinetics are widely accepted as the best way to represent and
simulate genetic and biochemical networks. In particular, when the system
to be described is based on the interaction of few molecules, or we want to
simulate the functioning of a little pool of cells, the system may expose several
different behaviour, observed with different probabilities. As a consequence,
the stochastic approach is always valid when the deterministic one is (i.e.
when the system is stable and exposes only one possible behaviour), and
it may be valid when the ordinary deterministic is not (i.e. in a nonlinear
system in the neighbourhood of a chemical instability).

Actually, in the last years it has become evident that stochastic effects in
regulatory networks play a crucial role in the analysis of multi-stable systems.
In contrast, metabolic networks involving large numbers of molecules are
most often modelled deterministically. Summing up, it may happen that a
purely deterministic model does not accurately capture the dynamics of the
considered system, and a stochastic description is needed.

However, the computational cost of a discrete stochastic simulation often
becomes an insurmountable obstacle. Instead, the ODEs method is extremely
more computationally efficient. Thus, when the deterministic approach is ap-
plicable and provides a good approximation of the system behaviour, it might
be profitable to take advantage of its efficiency, and move to the stochastic
approach when this is not true any more.

In a hybrid model, some reactions are modelled in a discrete way (i.e.
computed, probabilistically, according to an exact stochastic method) and
others in a continuous way (i.e. computed, in a deterministic way, by a set
of ODEs). These models for the simulation of biological systems have been
presented in the last few years for purely mathematical models [16, 17, 18],
i.e. models in which all reactions take place in single, “flat” ambient (without
compartmentalisation). In this paper we adapt the hybrid simulation tech-
nique within the programming language approach to describe and analyse
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the dynamics of biological systems.
Approximate methods of stochastic simulations have been developed, like

the ones employing stochastic differential equations (SDEs), in particular the
Langevin type [19], or the tau-leap technique introduced by Gillespie [20, 21].
On the one hand, in the analysis with stochastic differential equations, the
change in molecule concentrations is modelled in a continuous space. Such
an approximation is valid only when a sufficiently large number of molecules
is involved, since effects due to discreteness can bring the system in a state
that is not captured with a continuous analysis. On the other hand, the
tau-leaping method is no longer efficient if a system contains even a single
reaction with very small numbers of substrate molecules because the length
of the correct time step is of the order of waiting times occurring in exact
simulation algorithms.

The mentioned approximate methods, however, for systems involving
fast reactions and a large number of molecules converge, at the thermo-
dynamic limit, with the solution obtained with the exact discrete methods
(see e.g. [19]).

In this paper we will introduce an hybrid simulation algorithm for the Cal-
culus of Wrapped Compartments (CWC for short), a variant of the Calculus
of Looping Sequences (CLS for short) [7, 12] and develop a hybrid simulation
algorithm for it. Starting from an alphabet of atomic elements and from an
alphabet of labels (representing compartment types), CWC terms are de-
fined as multisets of elements and labelled compartments. Elements can be
localized by compartmentalisation and the structure of a compartment can
be specified by detailing the elements of interest on its membrane (as atomic
elements) and its type (as a label). This allows, for instance, to represent a
cell as a compartment and its nucleus with a separate, nested, compartment.
The evolution of the system is driven by a set of rewrite rules modelling the
reactions of interest that can be local to a single compartment, or involve
different compartments (for instance in the movement of a component from
a compartment to another). Compartments can be dynamically created or
destroyed.

We will apply our approach to a variant of Lotka-Volterra dynamics and
an HIV-1 transactivation mechanism.

The CWC simulator, currently under development at the Computer Sci-
ence department of Turin University, has been enriched with a prototype
implementation of the hybrid simulation algorithm [22]. It has been proven,
by means of several case studies, that hybrid simulations produce results con-
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sistent with those obtained by the exact stochastic simulation method, but
with a considerable gain in computing time. This paper surveys and extends
the preliminary results presented in [14, 23].

Summary. Section 2 introduces the CWC formalism. Section 3 recalls the
stochastic and the deterministic simulation methods. Section 4 introduces
the hybrid simulation technique and Section 5 applies it to the analysis of the
HIV-1 transactivation mechanism. Related work is discussed in Section 6.
We draw our conclusions in Section 7. Appendix A briefly discusses the
criterion for the dynamical partition of deterministic and stochastic rules.

2. The Calculus of Wrapped Compartments

Like most modelling languages based on term rewriting (notably CLS), a
CWC model consists of a term, representing the (biological) system and a set
of rewrite rules which model the transformations determining the system’s
evolution. Terms are defined from a set of atomic elements via an operator
of compartment construction. Compartments are enriched with a nominal
type, represented as a label, which identifies the set of rewrite rules that may
be applied to them.

2.1. Terms and Structural Congruence

Terms of the CWC calculus are intended to represent a biological system.
A term is a multiset of simple terms. Simple terms, ranged over by t, u, v, . . .
are built by means of the compartment constructor, (−c−)−, from a set A of
atomic elements (atoms for short), ranged over by a, b, c, . . . and from a set
L of compartment types (represented as labels attached to compartments),
ranged over by `, `′, `1, . . . and containing a distinguished element > which
characterises the top level compartment. The syntax of simple terms is given
in Figure 1. We write t to denote a (possibly empty) multiset of simple terms
t1 · · · tn. Similarly, with a we denote a (possibly empty) multiset of atoms.
The set of simple terms will be denoted by T .

Then, a simple term is either an atom or a compartment (a c t)` consisting
of a wrap (represented by the multiset of atoms a), a content (represented
by the term t) and a type (represented by the label `). Note that we do not
allow nested structures within wraps but only in compartment contents. We
write • to represent the empty multiset and denote the union of two multisets
u and v as u v. The notion of inclusion between multisets, denoted as usual
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Simple terms syntax
t ::= a

∣∣ (a c t)`

Structural congruence
t u w v ≡ t w u v
if u ≡ w then t u v ≡ t w v

if a ≡ b and t ≡ u then (a c t)` ≡ (b cu)`

Figure 1: CWC term syntax and structural congruence rules

(a) (b) (c)

Figure 2: (a) represents (a b c c •)`; (b) represents (a b c c (d e c •)`′)`; (c) represents
(a b c c (d e c •)`′ f g)`

by ⊆, is the natural extension of the analogous notion between sets. The set
of terms (multisets of simple terms) and the set of multisets of atoms will be
denoted by T and A, respectively. Note that A ⊆ T .

Since a term t = t1 · · ·tn is intended to represent a multiset we introduce a
relation of structural congruence between terms of CWC defined as the least
equivalence relation on terms satisfying the rules given in Figure 1. From now
on we will always consider terms modulo structural congruence. To denote
multisets of atomic elements we will sometime use the compact notation na
where a is an atomic element and n its multiplicity so for instance 3a 2b is a
notation for the multiset a a a b b.

An example of term is t = 2a 3b (c d c e f)` representing a multiset
consisting of two atoms a and three b (for instance five molecules) and an
`-type compartment (c d c e f)` which, in turn, consists of a wrap (a mem-
brane) with two atoms c and d (for instance, two proteins) on its surface,
and containing the atoms e (for instance, a molecule) and f (for instance a
DNA strand whose functionality can be modelled as an atomic element). See
Figure 2 for some graphical representations.
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Notation 2.1 (Top-level compartment). For sake of uniformity we as-
sume that the term representing the whole system is always a single compart-
ment labelled > with an empty wrap, i.e., all systems are represented by a
term of the shape (• c t)>, which we will also write as t for simplicity.

2.2. Contexts

The notion of reduction in CWC is formalised via the notion of reduction
context. To define them, the syntax of terms is enriched with a new element
� representing a hole which can be filled only by a single compartment.
Reduction contexts (ranged over by C) are defined by:

C ::= �
∣∣ (a cC t)`

where a ∈ A, t ∈ T and ` ∈ L. Note that, by definition, every context
contains a single hole �. The set of contexts is denoted by C.

Given a compartment t = (a cu)` and a context C, the compartment
obtained by filling the hole in C with t is denoted by C[t]. For instance, if
t = (a cu)` and C = (b c� c)`

′
, then C[t] = (b c (a cu)` c)`

′
.

The composition of two contexts C and C ′, denoted by C[C ′], is the
context obtained by replacing � with C ′ in C. For example, given C =
(a c� b)`, C ′ = (c c� d e)`

′
, we get C[C ′] = (a c (c c� d e)`

′
b)`.

2.3. Rewrite Rules and Qualitative Reduction Semantics

A rewrite rule is defined by a pair of compartments (possibly containing
variables), which represent the patterns along which the system transforma-
tions are defined. The choice of defining rules at the level of compartments
simplifies the formal treatment, allowing a uniform presentation of the system
semantics.

In order to formally define the rewrite rules, we introduce the notion of
open term (a term containing variables) and pattern (an open term that may
be used as left part of a rewrite rule). To respect the syntax of terms, we
distinguish between “wrap variables” which may occur only in compartment
wraps (and can be replaced only by multisets of atoms) and “content vari-
ables” which may only occur in compartment contents or at top level (and
can be replaced by arbitrary terms)

Let VT be a set of content variables, ranged over by X, Y, Z, and VA a set
of wrap variables, ranged over by x, y, z such that VT ∩VA = ∅. We denote by
V the set of all variables VT ∪VA, and with ρ any variable in V . Open terms
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are terms which may contain occurrences of wrap variables in compartment
wraps and content variables in compartment contents. Similarly to terms,
open terms are defined as multisets o of simple open terms defined in the
following way:

o ::= a
∣∣ X

∣∣ (q c o)`
q ::= a

∣∣ x

(i.e. q denotes a multiset formed only of atomic elements and wrap variables).
Let O and O denote the set of simple open terms and the set of open terms
(multisets of simple open terms), respectively. An open term is linear if each
variable occurs in it at most once.

An instantiation (or substitution) is defined as a partial function σ : V →
T . An instantiation must preserve the type of variables, thus for X ∈ VT
and x ∈ VA we have σ(X) ∈ T and σ(x) ∈ A, respectively. Given o ∈ O,
with o σ we denote the term obtained by replacing each occurrence of each
variable ρ ∈ V appearing in o with the corresponding term σ(ρ).

Let Σ denote the set of all the possible instantiations and Var(o) denote
the set of variables appearing in o ∈ O.

To define the rewrite rules, we first introduce the notion of patterns,
which are particular simple open terms representing the left hand side of a
rule. Patterns, ranged over by p, are the linear simple open terms defined in
the following way:

p ::= (a x c b p X)`

where a and b are multisets of atoms, p is a multiset of pattern, x is a wrap
variable, X is a content variable and the label ` is called the type of the pat-
tern. The set of patterns is denoted by P . Patterns are intended to match
with compartments. Note that we force exactly one variable to occur in each
compartment content and wrap. This prevents ambiguities in the instan-
tiations needed to match a given compartment.1 The linearity condition,
in biological terms, corresponds to excluding that a transformation can de-
pend on the presence of two (or more) identical (and generic) components in
different compartments (see also [24]).

Some examples of patterns are:

1The presence of two (or more) variables in the same compartment content or wrap,
like in (x c a X Y )`, would introduce the possibility of matching the same path in different
although equivalent ways. For instance we could match a term (x c a a b b)` with X =
a, Y = b b or X = a b, Y = b, etc.
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• (x c a b X)` which matches with all compartments of type ` containing
at least one occurrence of a and one of b.

• (x c (a y cY )`1 X)`2 which matches with compartments of type `2 con-
taining a compartment of type `1 with at least an a on its wrap.

A rewrite rule is a pair (p, o), denoted by p 7−→ o, where p = (a x c b p X)`

∈ P and o = (q c o)` ∈ O are such that Var(o) ⊆ Var(p). Note that rewrite
rules must respect the type of the involved compartments. A rewrite rule
p 7−→ o then states that a compartment pσ, obtained by instantiating vari-
ables in p by some instantiation function σ, can be transformed into the
compartment oσ with the same type ` of p. Linearity is not required in the
r.h.s. of a rule, thus allowing duplication or erasure.

A CWC system over a set A of atoms and a set L of labels is represented
by a set RA,L (R for short when A and L are understood) of rewrite rules
over A and L.

A transition between two terms t and u of a CWC system R (denoted
t −→ u) is defined by the following rule:

R = p 7−→ o ∈ R σ ∈ Σ C ∈ C
C[pσ]

R−→ C[oσ]

where C[pσ] ≡ t and C[oσ] ≡ u.
In a rule p 7−→ o the pattern p represents a compartment containing

the reactants of the reaction that will be simulated. The crucial point for
determining an application of the rule to a term t is to find the compartments
matching with p (i.e. the compartments in which the corresponding reaction
can take place).

Note that the applicability of a rewrite rule depends on the type of the
involved compartments but not on the context in which it occurs. This
corresponds to the assumption that only the compartment type can influence
the kind of reaction that takes place in them but not their position in the
system.

Note that a same pattern can have more than one match in a term.
Take for instance the term (a c 2b 2c)` (a b c 4b)` and the pattern p =
(a x c b X)`. Then p matches the first compartment with the substitution
σ1(x) = •, σ1(X) = b 2c and the second compartment with the substitution
σ2(x) = b, σ2(X) = 3b
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Remark 2.2. For some rewrite rules ` : p 7−→ o there may be, in general,
different substitutions σ such that pσ ≡ t (for some term t) but the results
oσ produced by them are different. Consider, for instance, the rewrite rule
(y c a (b x cX)` Y )> 7−→ (y c (a b x cX)` Y )> modelling a catalysed mem-
brane joining at top level. In this case, a term t = (• c a (b b c c)` (b c c)`)>
can make a transition in two different terms, depending on which membrane
will be joined by the element a. Namely, (• c (a b b c c)` (b c c)`)>, given an
instantiation σ such that σ(x) = b and (• c (b b c c)` (a b c c)`)>, given an
instantiation σ′ such that σ′(x) = •. We remark that this can happen only
when compartments are involved in the rewriting. We will need to take it
into account in the stochastic approach.

Notation 2.3 (Rules that involve only content or wrap). Usually, rules
involve only the content or the wrap of a compartment. Moreover, in a rule
(a x c b p X)` 7−→(q c o)` very often X has single occurrence, at top level, in
o and x in q. We therefore introduce the following notations:

• ` : a p 7−→c o (or simply ` : a p 7−→ o) as a short for (x c a p X)` 7−→
(x c o X)`, and

• ` : a 7−→w b as a short for (a x cX)` 7−→ (b x cX)`

where x and X are canonically chosen variables not occurring in a, p, o or
b. Note that, according to Notation 2.1, rules of the shape > : a 7−→w b
are forbidden (since the top level compartment must always have an empty
wrap).

2.4. Modelling Guidelines

In this section we give some explanations and general hints about how
CWC could be used to represent the behaviour of various biological systems.
Here, entities are represented by terms of the rewrite system, and events by
rewrite rules.

First of all, we should select the biomolecular entities of interest. Since
we want to describe cells, we consider molecular populations and membranes.
Molecular populations are groups of molecules that are in the same compart-
ment of the cells and inside them. As we have said before, molecules can
be of many types: we classify them as proteins, chemical moieties and other
molecules.
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Membranes are considered as elementary objects: we do not describe
them at the level of the phospholipids they are made of. The only interesting
properties of a membrane are that it may have a content (hence, create a com-
partment) and that in its phospholipid bilayer various proteins are embedded,
which act for example as transporters and receptors. Since membranes are
represented as multisets of the embedded structures, we are modelling a fluid
mosaic in which the membranes become similar to a two-dimensional liquid
where molecules can diffuse more or less freely [25].

Compartment labels are useful to identify the kind of a compartment and
the properties which are common for each compartment of that type. For
example, we may use compartment labels to denote the nuclei of a set of
cells, the different organelles, etc..

Table 1 lists the guidelines for the abstraction into CWC rules of some
basic biomolecular events, some of which will be used in our applications.
Entities are associated with CWC terms: elementary objects (genes, do-
mains, etc...) are modelled as atoms, molecular populations as CWC terms,
and membranes as atom multisets. Biomolecular events are associated with
CWC rewrite rules.

The simplest kind of event is the change of state of an elementary object.
Then, there are interactions between molecules: in particular complexation,
decomplexation and catalysis. Interactions could take place between simple
molecules, depicted as single symbols, or between membranes and molecules:
for example a molecule may cross or join a membrane. There are also in-
teractions between membranes: in this case there may be many kinds of
interactions (fusion, vesicle dynamics, etc. . . ). Finally, we can model a state
change of a compartment (for example a cell moving onto a new phase during
the cell cycle), by updating its label.2 Changing a label of a compartment im-
plies changing the set of rules applied to it. This can be used, e.g., to model
the different activities of a cell during the different phases of its cycle.

3. Quantitative Simulation Models for CWC

In this section we introduce two quantitative simulation methods for
CWC based respectively on a stochastic simulation method and on the de-

2Note that, like in the other cases, this reaction is intended to take place in a compart-
ment of a type `′′. Without the simplification made in Table 1 this rule should be written
as `′′ : (x cX)` 7−→ (x cX)`

′
.
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Biomolecular Event CWC Rewrite Rules

State change (in content) a 7−→c b
State change (on membrane) a 7−→w b
Complexation (in content) a b 7−→c c
Complexation (on membrane) a b 7−→w c

a (b x cX)` 7−→c (c x cX)`

(b x c a X)` 7−→c (c x cX)`

Decomplexation (in content) c 7−→c a b
Decomplexation (on membrane) c 7−→w a b

(c x cX)` 7−→c a (b x cX)`

(c x cX)` 7−→c (b x c a X)`

Membrane crossing a (x cX)` 7−→c (x c a X)`

(x c a X)` 7−→c a (x cX)`

Catalysed membrane crossing a (b x cX)` 7−→c (b x c a X)`

(b x c a X)` 7−→c a (b x cX)`

Membrane joining a (x cX)` 7−→c (a x cX)`

(x c a X)` 7−→c (a x cX)`

Catalysed membrane joining a (b x cX)` 7−→c (a b x cX)`

(b x c a X)` 7−→c (a b x cX)`

(x c a b X)` 7−→c (a x c b X)`

Compartment state change (x cX)` 7−→c (x cX)`
′

Table 1: Guidelines for modelling biomolecular events in CWC, written in the compact
notation of 2.3. The types (labels) associated to the rules are omitted for simplicity

terministic solution of ordinary differential equations (ODE).
In order to make the formal framework suitable for modelling quantita-

tive aspects of biological systems, each transition is usually associated with
a numerical parameter characterising the kinetic rate of the corresponding
reaction.

In a stochastic simulation algorithm, this parameter and the quantity
of reagents involved contribute stochastically to determine the next state of
the system and the time needed to reach it. The system is then described
as a Continuous Time Markov Chain (CTMC) [26]. This allows to simu-
late its evolution by means of standard simulation algorithms (see e.g.[15]).
Stochastic simulation techniques can be applied to all CWC systems but, in
several cases, at a high computational cost. The deterministic method based
on ODE is computationally more efficient, but can be applied, in general,
only to systems in which compartments are absent or have a fixed, time-
independent, structure. These two approaches, presented separately in this
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section, will be integrated in the next section defining an hybrid simulation
algorithm for CWC that keeps the generality of the stochastic approach but
can reduce its computational cost exploiting, when possible, the efficiency of
the ODE simulation method.

In our calculus we will associate to a reaction a rate function having a
parameter depending on the overall content of the compartment in which the
reaction takes place. This allows to tailor the reaction rates on the specific
characteristics of the system, as for instance when representing nonlinear
reactions as it happens for Michaelis–Menten kinetics, or to describe more
complex interactions involving compartments that may not follow the stan-
dard mass action rate. These latter, more classical, collision based stochastic
semantics (see [15]) can be encoded as a particular choice of the rate function
(see Section 3.1.1). A similar approach is used in [27] to model reactions with
inhibitors and catalysts in a single rule.

Obviously some care must be taken in the choice of the rate function: for
instance it must be complete (defined on the domain of the application) and
non-negative.

Definition 3.1. A quantitative rewrite rule is a triple (p, o, f), denoted p
f7−→

o, where (p, o) is a rewrite rule and f : Σ→ R≥0 is the rate function associ-
ated to the rule.3

The rate function takes an instantiation σ as parameter. Such an instan-
tiation models the actual compartment content determining the structure of
the environment in which the l.h.s. of a rule matches and that may actively
influence the rule application. Notice that, different instantiations that allow
the l.h.s. p of a rule to match a term t can produce different outcomes which
could determine different rates in the associated transitions.

In the following we will use the function Occ : A × T → N to count
the occurrences of an atom within the multiset of atoms at the top level of
a term. Namely, Occ(b, t) returns the number of occurrences of the atom b
at the top level of t.

3The value 0 in the codomain of f models the situations in which the given rule cannot
be applied, for example when the particular environment conditions forbid the application
of the rule.
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Example 3.2. Consider again the term given in Remark 2.2. If the rate
function of the rewrite rule is defined as f(σ) = 0.0002 · (Occ(b, σ(x)) + 1),
the initial term t results in (a b b c c)` (b c c)` with a rate 0.0004 and in the
term (b b c c)` (a b c c)` with rate 0.0002.

We already mentioned that equipping rewrite rules with a function leads
to the definition of a stochastic semantics that can abstract from the classical
one based on collision analysis (practical for very low level simulations, for
example chemical interactions), and allows defining more complex rules (for
higher simulation levels, for example cellular or tissue interactions) which
might follow different probability distributions. An intuitive example could
be a simple membrane interaction: in the presence of compartments, a system
could not be considered, in general, as well stirred. In such a case, the
classical collision based analysis could not always produce faithful simulations
and more factors (encapsulated within the context in which a rule is applied)
should be taken into account.

A quantitative CWC system over a set A of atoms and a set L of labels
is represented by a set RA,L (R for short when A and L are understood) of
quantitative rewrite rules over A and L.

3.1. Stochastic Evolution

In the stochastic framework, the rate of a transition is used as the pa-
rameter of an exponential distribution modelling the time spent to complete
the transition. A quantitative CWC system R defines a Continuous Time

Markov Chain (CTMC) in which the rate of a transition C[pσ]
R−→ C[oσ] is

given by f(σ), where the rule R = (p, o, f) ∈ R is the quantitative rule which
determines a transition.4 The so defined CTMC determines the stochastic
reduction semantics of CWC.

When applying a simulation algorithm to a CWC system we must take
into account, at a given time, all the system transitions (with their associated
rates) that are possible at that point. They are identified by:

• the rewrite rule applied;

• context which selects the compartment in which the rule is applied;

4When it does not give rise to ambiguities we omit the label R, identifying the rewrite
rule, from the stochastic transition.
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(a)

(b)

Figure 3: (a) t ; (b) t′

• the outcome of the transition.

Remark 3.3. We must take some care in identifying transitions involving
compartments. For instance, if we consider the CWC term

t = 25m 8a (10c c 24a 20b)` (10c c 24a 20b)`

shown in Figure 3 (a) there are two compartments that are exactly the same.
If we apply to t the rule ` : a b 7−→ c we obtain the term t′ shown in Figure 3
(b). Actually, starting from t there are two compartments on which the rule
can be applied, producing the same term t′ (up to structural congruence).
Although the transition is considered as one (up to structural congruence),
the quantitative evolution must take this possibility into account by counting
two transitions.

From the transition rates we can define, following a standard simulation
procedure [15], the exponential probability distribution of the moment in
which the next reaction will take place and the probability distribution of
the next transition that will take place.

In particular, given a term t and a global time δ, we first identify all
the transitions e1, . . . , eM that can be applied to t. Note that a transition

15



is identified by both the corresponding rewrite rule and the compartment in
which it takes place (see also Remarks 2.2 and 3.3). Let π1, . . . , πM be the
corresponding rates. Defining π =

∑M
i=1 πi, the simulation procedure allows

to determine, following Gillespie’s direct method:

1. The time δ + τ at which the next stochastic transition will occur, ran-
domly chosen with τ exponentially distributed with parameter π;

2. The transition ei that will occur at time δ + τ , randomly chosen with
probability πi

π
.

We will detail this technique in Section 4, where we will present the hybrid
simulation algorithm.

3.1.1. Mass Action Law

Gillespie’s stochastic simulation algorithm is defined essentially for well
stirred systems, confined to a constant volume and in thermal equilibrium at
some constant temperature. In these conditions we can describe the system
state by specifying only the molecular populations, ignoring the positions and
velocities of the individual molecules. Different approaches such as Molec-
ular Dynamics, Partial Differential Equations or Lattice-based methods are
required in case of molecular crowding, anisotropy of the medium or canali-
sation.

We might restrict CWC in order to match Gillespie’s framework. Namely,
since we just need to deal with simple molecular populations, we might re-
strict terms to multisets of atoms.

The usual notation for chemical reactions can be expressed by:

(1) n1a1 + . . .+ nρaρ
k
⇀n′1b1 + . . .+ n′γbγ

where, ai, . . . , aρ and bi, . . . , bγ are the reagents and product molecules, re-
spectively, ni, . . . , nρ and n′i, . . . , n

′
γ are the stoichiometric coefficients and k

is the kinetic constant.
We only consider now rewrite rules modelling chemical reactions as in

reaction 1. A chemical reaction of the form 1 (that takes place within a
compartment of type `) can be expressed by the following CWC rewrite rule:

(2) ` : n1a1 . . . nρaρ
f7−→ n′1b1 . . . n′γbγ
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which is short for (x cn1a1 . . . nρaρ X)`
f7−→ (x cn′1b1 . . . n′γbγ X)`,

where the rate function f of rule 2 should be suitably defined to model
Gillespie’s assumption of well stirred systems. In particular, the framework
defined by Gillespie, based on molecular collision analysis, leads to binomial
distributions of the reagents involved. Namely, we define the rate function f
as:

(3) f(σ) =

(
Occ(a1, σ(X)) + n1

n1

)
· . . . ·

(
Occ(aρ, σ(X)) + nρ

nρ

)
· k

where k is the kinetic constant of the modelled chemical reaction.
When the stoichiometric coefficients are low (e.g. ≤ 2) and the molecular

populations are high, this can be approximated as:

(4)
(Occ(a1, σ(X)) + n1)

n1 · . . . · (Occ(aρ, σ(X) + nρ))
nρ

n1 · . . . · nρ
· k

By construction, the following holds.

Fact 3.4. Molecular populations defined as multisets of atoms that evolve
according to a fixed set of transformations of the form given by reaction 1,
represented by rule 2, interpret into the stochastic semantics of CWC the law
of mass action within Gillespie’s framework for the evolution of chemically
reacting systems.

Notation 3.5. We will denote biochemical rewrite rules as defined in rule 2
with the simplified notation:

` : a
k7−→ b

where a and b are multisets of atomic elements, and the rate function
is represented by just the kinetic constant of the chemical reaction. We will
use this notation also for non strictly biochemical rules in which the rate is
calculated following the mass action law.

When the counting is done with the law of mass action, we will extend
the simplified notation for biochemical rewrite rules (using a constant rate
instead of a function) also for rules involving compartments:

` : a p
k7−→ o
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Example 3.6. Given a term t = 100a 50b 9c, the biochemical rewrite rule

> : 2a b
0.0027−→ c generates the transition: t

k−→ 98a 49b 10c. The rate k is
computed in the exact way (according to Equation 3) as k =

(
100
2

)
·
(
50
1

)
·0.002 =

495 · 50 · 0.002 = 495 and in the approximate way (according to Equation 4)
as k = 1002·50

2·1 · 0.002 = 500.

3.1.2. Running Example: Stochastic Simulations

In order to illustrate the quantitative semantics of CWC we consider,
as a running example, a toy case study derived from a Lotka-Volterra prey-
predator dynamics. Let us consider the prey-predator oscillatory dynamics
to be confined into a compartment IN interfered with rare events causing
dramatic changes in the species evolution. A rare event like these could be
schematically represented as a viral epidemic entering and exiting compart-
ment IN with a relatively slow rate. Once inside the compartment IN the
viral epidemic has the capability of killing some preys.

The set of CWC rules modelling this example is given in Figure 4. The
preys (atoms a) and predators (atoms b) are located in compartment IN and
follow a dynamics given by the rules (B1),(B2) and (B3). The viral epidemic
(atom Vir) enters and leaves the compartment with rules (N1) and (N2)
respectively, and kills the preys with rule (B4).

(N1) > : Vir (x c X)IN
0.037−→ (x cVir X)IN

(N2) > : (x cVir X)IN
0.17−→ Vir (x c X)IN

(B1) IN : a X
17−→ a a X

(B2) IN : a b X
0.0017−−→ b b X

(B3) IN : b X
17−→ X

(B4) IN : Vir a X
0.17−→ Vir X

Figure 4: CWC rules for the prey-predator dynamics

The simulations are performed for 60 time units, with the starting term:

Vir (• c 1200a 1200b)IN.

Several stochastic simulations of the toy case study were performed, showing
different possible system evolutions of the dynamics of the species inside the
compartment IN depending on the viral epidemic factor. Two of these runs
are shown in Figure 5. A characteristic of this example is that the evolution
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Figure 5: Two different runs obtained with a purely stochastic simulation showing the
different behaviour of the dynamics of the species inside the compartment IN depending
on the viral epidemic factor

of the system is strongly determined by the virus epidemic random event
that can change dramatically the dynamics of the species.

3.2. Deterministic Evolution

The standard way to express the evolution of a biochemical system is
via ODEs. We define the deterministic reduction semantics for the subset of
CWC quantitative rewrite rules, presented in Section 3.1.1, that we called
biochemical rewrite rules and express simple biochemical reactions.

Biochemical reactions are local to a single compartment. Reactions that
invoke and/or change the structure of compartments cannot be expressed
with biochemical rewrite rules. Actually, referring to Table 1, we notice that
biochemical rewrite rules can be used to model state change, complexation
and decomplexation: these are exactly the kinds of reactions naturally eligible
to be simulated with ODEs.

A CWC system R consisting of r biochemical rewrite rules represents a
system of r biochemical reactions. Its deterministic semantics is defined by
extracting from R a system of ODEs to be used for simulating the evolution
of the involved multisets of atoms [28]. For every label `, let

• a1, . . . , an` denote the n` species of atoms that may occur at top level
within a compartment of type `, and

• R` denote the set of rules with label `.
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The i-th rule in the set R` is denoted by

` : āi
ki7−→c b̄i i = 1, 2, . . . , |R`|

For all species aj (j = 1, 2, . . . , n`) let α−i,j be the number of atoms of species
aj consumed by the i-th rule and α+

i,j the number of atoms of species aj
produced by the i-th rule. The n` × |R`| stoichiometric matrix Λ` is defined
by νi,j = α+

i,j − α−i,j.5
Let [a] denote the number of the atoms of species a occurring at top

level in a given compartment of type `. If āi = ni1ai1 . . . niriairi (ri ≥ 1), the
evolution of the given compartment of type ` is modelled by the following
system of ODEs:

` :
d[aj]

dt
=

|R`|∑
i=1

νi,j · ki · [ai1 ]ni1 · . . . · [airi ]
niri

Computationally, ODEs are well studied and understood. They can be
solved using a variety of numerical methods, from the Euler method to higher-
order Runge-Kutta methods or stiff methods, many of which are readily
available in software packages that can be easily incorporated into existing
simulation code. In all the examples presented in this paper we use a GNU
library implementing an explicit embedded Runge-Kutta Prince-Dormand
method. We do not need, however, to employ a particular library. Actually,
we could change method according to the features of the particular system
under consideration.

3.2.1. Running Example: Deterministic Simulations

To perform a deterministic simulation of the toy case study we have to
remodel the Lotka-Volterra dynamics presented in Section 3.1.2 by elimi-
nating the stochastic influence of the virus epidemics. The equation system
governing the population evolution is:

da

dt
= a− 10−3a · b

db

dt
= −b+ 10−3a · b

5Many of the α−i,j , α
+
i,j are usually 0.
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Figure 6: Deterministic simulation of the Lotka-Volterra dynamics (left figure) and the
mean of 100 stochastic simulations (right figure)

with an initial condition of a(0) = b(0) = 1200.
The evolution of the system is represented in Figure 6. Notice that the

mean of 100 stochastic simulations of the Lotka-Volterra dynamics without
the viral epidemics interference tends to the deterministic simulation.

4. Hybrid Evolution

The stochastic approach is based on a probabilistic simulation method
that manages the evolution of exact integer quantities and often requires a
huge computational time to complete a simulation. The ODEs numerical
approach computes a unique deterministic and fractional evolution of the
species involved in the system and achieves very efficient computations.

A numerical background for the hybrid evolution in which fast reactions
are approximated using a deterministic evolution while slow reactions are
treated as stochastic events can be found in [29, 30]. This schema allows to
accurately solve fast reactions using an ODE solver at the thermodynamic
limit. This condition is of course ideal and unattainable in biological sys-
tems. However, the analytical knowledge of the system allows the use of this
approximation if the variation of the species affected by slow reactions are
almost insensitive with respect to species affected by fast reactions.

In this section we adapt this approximation method within CWC, defin-
ing a hybrid simulation technique. Given a CWC system R we partition it
into a set of biochemical rewrite rules B and a set of non-biochemical rewrite
rules N . Rules in N are always applied by using the stochastic method.
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Rules in B might be applied with the ODEs approach. In general B might
contain both rules that model evolution of large numbers of molecules ac-
cording to very fast reactions (whose execution is suitable to be correctly
computed with ODEs) and rules that model very slow reactions or reactions
that involve a very small number of reagents. In the latter case it is con-
venient to compute the execution of the associated rule according to the
stochastic approach.

According to the state of the system, a rule might be dynamically inter-
preted either as stochastic or deterministic. For instance, during a simulation,

it might happen that a given biochemical rewrite rule ` : āi
ki7−→ b̄i ∈ B is

applied initially according to the stochastic semantics, since the associated
compartment contains a very small number of reagents. After the system
has evolved for some time, however, the number of the reagents involved in
the rule can be substantially increased and it becomes convenient to model
the corresponding reaction according to the deterministic approach.

Actually, at the beginning of each simulation step we build, for each com-
partment in the term, a system of ODEs for the simulation of the biochemical
rules in that compartment which (1) are sufficiently fast and (2) involve a
sufficient number of reagents. For the remaining rules the evolution is deter-
mined by the stochastic simulation algorithm.

In order to describe the hybrid semantics we assume that, given a CWC
term t, each compartment of t is univocally identified by an index ι. The
index of the (implicit) compartment at the top level will be denoted by ι0.
The biochemical reagents of a compartment (a c t)` with index ι, written
BR(ι), are expressed by the multiset of the atomic elements appearing in
the top level of t. For example, given the term

t = 2a (b c (c d c •)`′ e)` (b c d e)`

and assuming that the compartment (b c (c d c •)`′ e)` has index ι1, the
compartment (c d c •)`′ has index ι2 and the compartment (b c d e)` has index
ι3, we have that BR(ι0) = 2a, BR(ι1) = e, BR(ι2) = • and BR(ι3) = d e
where ι0 is the index of the to level compartment.

A basic point of our hybrid approach is the criterion to determine, at
each computation stage, the reductions to compute in the stochastic or in
the deterministic way. In this paper we have chosen simply to put a threshold
on the number of possible reagents and on the speed of the reaction, but other
more sophisticated criteria should be investigated.
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Let t denote the whole term and let I denote the set of compartment indexes
occurring in t.

1. For each compartment ι ∈ I:

• Let ` be the label of ι, let Sι = B` and let Dι = ∅.

• For each biochemical rule Bi = ` : āi
ki7−→ b̄i ∈ B` let āi =

ni1ai1 . . . niriairi (ri ≥ 1) and let [aij ]ι denote the number of aij
atoms occurring in BR(ι). Let πιi = ki · ([ai1 ]

ni1
ι /ni1) · . . . ·

([airi ]
niri
ι /niri ) be the rate of the rule Bi in the compartment ι.

If πιi > φ and minrij=1 [aij ]ι > ψ remove Bi from Sι and put it into
Dι.

2. Considering the rules in
⋃
ι∈I Sι ∪ N selected according to Gillespie’s

method and to the semantics given in Section 3.1 a stochastic transition

step C[pσ]
f(σ)−→ C[oσ], where R = ` : p

f7−→ o ∈ Sι′ ∪N`.
Let τ be the corresponding time interval.†

3. For each compartment ι in I:

• Let Eι denote the system of ODEs for the rules in Dι in the com-
partment ι as explained in Section 3.2 without considering, in the
compartment ι′ where the stochastic transition step takes place,
the active reagents appearing in the left part p of the stochastically
applied rule. (If Dι = ∅ then Eι = ∅.)
• Apply the system of ODEs Eι to the biochemical reagents BR(ι)

of the compartment for a time duration τ .

4. Update the term t according to the right part o of the chosen stochastic
rule and to the applications of the systems of ODEs.

† It may happen that no rule in (
⋃
ι∈I Sι)∪N is applicable. In such cases the evolution of

the system must be determined for some time τ according to the deterministic semantics
only. In our implementation we choose as τ the maximum time calculated by Gillespie’s
algorithm for each of the applicable biochemical rules in

⋃
ι∈I Dι.

Figure 7: Steps performed by an hybrid simulation iteration
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These two thresholds are named:

φ defining a minimum rate to consider a rule deterministically,

ψ defining a minimum quantity to consider the involved rule deterministi-
cally.

A method for the choice of ψ and φ is presented in Appendix A. Notice that
these thresholds must be hold during all deterministic evolution in order to
validate the hybrid approach.

Given as input a term t to reduce, a rate threshold φ and a quantity
threshold ψ, each iteration of the hybrid reduction semantics performs the
four steps listed in Figure 7. For every label `, the subsets of B and N
containing the rules with label ` are denoted by B` and N`, respectively.
The first step identifies, for each compartment ι ∈ I (where I is the set
of all compartment indexes occurring in t), two disjoint sets of biochemical
rules, namely Dι (to be applied deterministically) and Sι (to be applied,
together with the rules in N , according to the stochastic method). The
second step selects, considering only the rules in

⋃
ι∈I Sι ∪ N , the next rule

to be applied stochastically. When the stochastic transition is chosen, we
“lock” the reagents involved in such a reaction. They will not contribute to
the ODEs evolution (since they are already active in the stochastic sense),
and their product is added at the end of the stochastic time step. The
third step computes a system of ODEs Eι for each compartment ι ∈ I and
applies the ODEs for the time duration selected by the stochastic step. The
calculation are performed in the same units as the stochastic computation,
namely in terms of number of molecules and time. The fourth step updates
the terms according to the results of the simulation.

Note that during the deterministic step there was the implicit assump-
tion that the evolution of the species involved in fast reactions, calculated
with the ODEs, did not significantly alter the propensity of the slow reac-
tions changing their priority with respect to fast reactions. Omission of this
hypothesis requires a control on the evolutionary trajectory of species calcu-
lated by the ODEs in order to stop deterministic evolution if the priorities
of the reactions have changed its structure.

Before computing the next stochastic step after the deterministic one,
the fractional numbers of molecules computed by the ODEs need to be con-
verted into integer numbers. As suggested by [31], fractions can be handled
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Figure 8: Two different runs of the hybrid simulations showing the different behaviour of
the dynamics of the species inside the compartment IN depending on the virus epidemic
factor

by the two following methods: rounding to the nearest integer and proba-
bilistic rounding. Rounding to the nearest integer may introduce a bias. For
example, if the number of molecules is 200.3, it will always be rounded to 200
and this bias may be amplified during the whole simulation. With a proba-
bilistic rounding, instead, a molecular number of 200.3 is rounded up to 201
with probability 30%, and down to 200 with probability 70%. Using such a
technique, the average number of the molecular counts becomes identical to
the one obtained using deterministic calculations.

In general, if reactions are fast enough, the deterministic ODEs simulation
approximate better the exact stochastic simulations. This is the idea behind
the use of the threshold φ. The use of ψ, instead, allows to prevent the
rounding approximation error that may derive when we are dealing with
species of few elements. Combined together, the thresholds φ and ψ affect
the level of approximation we want to use in our simulations. Notice that
with φ = +∞ all reactions will be considered too slow and the simulation
will be computed with the purely stochastic method.

4.1. Running Example: Hybrid Simulations

Hybrid simulations of the system presented in Section 3.1.2 were per-
formed by using thresholds φ = 0.5 and ψ = 10. In Figure 8 we report two
runs of the hybrid simulations showing two different evolutions of the species.

Notice that until the viral epidemic factor does not reach the compart-
ment, the prey-predator dynamics (rules (B1),(B2) and (B3) of the model in
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Figure 4) is treated deterministically since high propensities drive the sub-
system. Conversely, a rare viral outbreak introduces a stochastic change
inside the compartment influencing the amount of preys (and, consequently,
the predators dynamics) through the rule (B4).

The long period of evolution, waiting for the epidemic rare event given by
the rules (N1) and (N2), allows an efficient deterministic computation. In this
case, other approximation techniques, such as τ -leaping, could not take the
full advantage of ODEs since in such an oscillating scenario the propensities
of the fast rules change rapidly and repeatedly over the time intervals and
the length of leap is bound by the frequency of the oscillations.

A comparison of the computational time needed to perform 100 runs
using the hybrid method versus the stochastic simulation technique provided
a dramatic improvement on the computational effort. The relative speed-
up, measured as the ratio of the computational run time of the stochastic
simulations to that of hybrid simulations, was about 80.

4.2. Further Examples

In this section the results of the hybrid algorithm, when compared with
the stochastic simulation algorithm, are presented on two benchmark models
collected from the literature. The two models are a simple crystallisation
system [16, 30, 17] and a model of intracellular viral infection [32, 30, 17]
whose quantitative behaviours have been accurately reproduced by the hy-
brid simulation.

The first benchmark is a simplified model for the crystallisation of species
A, consisting of two reactions, one occurring many more times than the other.
The rules and rates are taken from [16], Table 3. Our partitioning scheme,
setting the thresholds φ = 6 · 10−4 and ψ = 100, allow to classify the fast
reaction as continuous and the other as discrete.

Figure 9(a) compares the averages of species A and B computed by 100
runs of the hybrid and pure stochastic simulation algorithms. In this example
an implicit step (instead of an explicit one) for the ODEs solver could further
improve the approximation.

The second benchmark is a general model of the infection of a cell by
a virus. This model includes the genomic and template viral nucleic acids
(gen and tem respectively) and the viral structural protein (struct). This
model has two interesting features: (i) the three components of the model
exhibit fluctuations that vary by several orders of magnitude; and (ii) the
model solution exhibits a bimodal distribution either a “typical” infection in

26



0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Time

# 
M

ol
ec

ul
es

ODE
stoch
hybr

A Molecules

B Molecules

(a) Simple Crystallisation results

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

20

25

30

Time

# 
M

ol
ec

ul
es

 (
te

m
)

stoch
hybr

Aborted Infection

Typical Infection

(b) Virus infection results

Figure 9: Comparison of the hybrid and pure stochastic simulations on the examples. Fig.
(a) shows the average of 100 runs of the hybrid and pure stochastic simulations compared
with the ODE solution. Fig. (b) shows two exemplificative solutions computed by the
hybrid and pure stochastic simulations.

which all species become populated, or an “aborted” infection in which all
species are eliminated from the cell. The rules and rates are taken from [32],
Table 1.

Figure 9(b) shows two exemplificative solutions computed by the hybrid
(using φ = 10 and ψ = 25) and pure stochastic simulations corresponding to
a “typical” and “aborted” infection of species tem.

Based on 100 runs of the hybrid and pure stochastic simulation algorithms
the speedup was around 500% for the first benchmark and around 200% for
the second benchmark. Note, however, that the presence of data structures to
handle compartmentalisation introduces in our simulator an overhead which
can reduce the efficiency differences between the two algorithms with respect
to other hybrid simulators.

5. A Real Model of Different Cellular Fate

To assess the soundness and efficiency of our hybrid approach on a real
biological problem we decided to apply it to a well known system where
stochastic effects play a fundamental role in determining its development:
the HIV-1 transactivation mechanism.

After a cell has been infected, the retrotransposed DNA of the virus is
integrated in the host genome and it begins its transcription into mRNA
and then the translation to yield viral proteins; the initial speed of this
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mechanism, however, is fairly slow. The speedup of the viral production
process is determined by a regulation system driven by the viral protein TAT :
this protein is capable of binding cellular factors of the host to produce the
pTEFb complex which in its acetylated form is able to bind to the integrated
viral genome and speed up the transcription machinery, thus ending in more
viral proteins and, therefore, more TAT, determining a positive loop.

The time scale during which this loop is triggered is affected by several
factors e.g. the initial low TAT production and the rate of its degradation,
the equilibrium between the active (acetylated) and inactive form of pTEFb.
As a consequence, the stochastic fluctuations in this events are considered
pivotal in determining when viral proteins are produced in a sufficient quan-
tity to determine cellular lysis and viral spreading. Since HIV is known to
stay dormant and inactive in some types of cells and since the time between
the infection and the high viral production rate related to the active phase of
AIDS is variable, this transactivation mechanism is of great interest. Viral
latency is also believed to be the cause of the persistent low level viremia
observed in patients treated with antiretroviral therapies, therefore under-
standing its molecular bases is fundamental in order to be able to circumvent
it and hopefully find a way to completely eradicate the virus avoiding lifelong
therapies [33].

We decided to follow the direction taken in a previous study about this
system (see [34]), in which an experimental setting is developed where a
fluorescent protein, GFP, is the only one encoded by an engineered viral
genome, along with TAT. In [34] they were able to identify different evolutions
in the GFP level over time: cellular clones with exactly the same genome
showed two different behaviours, one produced a high quantity of GFP (they
called it “bright”) and the other one with very little GFP (“off”). This work
also reported that a purely stochastic simulation was able to individuate this
bistability; a later work (see [17]) confirmed these results performing purely
stochastic and mixed deterministic-stochastic simulations.

Since CWC systems are able to represent compartments, we slightly
modified the original set of rules used in these works to explicitly repre-
sent the cytoplasm and the nucleus of an infected cell; all the kinetic rates
were maintained, the one for TAT nuclear import has been determined from
the literature (see [35]). The set of rules we adopted is given in Figure 10,
where we refer to the cytoplasm as the > compartment while η is the label
used for the nucleus. As regards the rules: (B1) represents the slow basal
rate of viral mRNA transcription; (N1) describes the mRNA export from
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(B1) η : LTR
10−9

7−→ LTR mRNA

(N1) > : (x cmRNA X)η
7.2·10−4

7−−−→ (x cX)η mRNA

(B2) > : mRNA
0.57−→ mRNA GFP

(B3) > : mRNA
1.32·10−3

7−−−−→ mRNA TAT

(N2) > : (x cX)η TAT
8.5·10−3

7−−−→ (x cTAT X)η

(N3) > : (x cTAT X)η
7.2·10−4

7−−−→ (x cX)η TAT

(B4) η : TAT LTR
1.5·10−4

7−−−→ pTEFb

(B5) η : pTEFb
17·10−3

7−−−→ TAT LTR

(B6) η : pTEFb
10−3

7−→ pTEFb ac

(B7) η : pTEFb ac
0.137−→ pTEFb

(B8) η : pTEFb ac
0.17−→ LTR TAT mRNA

(B9) > : GFP
3.01·10−6

7−−−−→ •
(B10) > : TAT

4.3·10−5

7−−−→ •
(B11) >, η : mRNA

4.8·10−5

7−−−→ •

Figure 10: CWC rules for the TAT transactivation system

the nucleus to the cytoplasm; (B2) and (B3) express the translations of this
mRNA into GFP and TAT proteins, respectively; (N2) and (N3) represent
the nuclear import and export of TAT ; (B4) and (B5) model the binding
and unbinding of TAT with (not represented here) host cellular factors and
the viral genome portion LTR that forms pTEFb which, when acetylated
(by rule (B6)) determines an higher transcriptional activity, which is repre-
sented in (B8) by the unbinding that releases LTR and TAT and creates an
mRNA molecule (note the higher rate with respect to (B1)); (B7) represents
the pTEFb deacetylation and (B9), (B10) and (B11) model the degradation
processes of the proteins and the mRNA (note that mRNA degrades both
in the nucleus and in the cytoplasm, the other proteins only degrade in the
cytoplasm; also note how the compartment labelling mechanism allows to
express this fact in a simple and elegant way).

We performed 200 purely stochastic simulations (i.e. setting φ = +∞)
and 200 hybrid simulations (using φ = 0.5 and ψ = 10). The initial term of
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Figure 11: Two different simulations pure stochastic (on the left) and hybrid (on the right)
started with the same parameters: “bright” and “off” behaviour

our simulations is represented by the CWC term

75000GFP 5TAT (• cLTR)η,

while the time interval of our simulations has been fixed to 106 seconds
(the same parameters are used in [34, 17]). Both our stochastic and hybrid
simulations clearly showed the two possible evolutions of the system which
correspond to the “bright” and the “off” cellular populations (in order to
display the double destiny, almost all the biochemical rewrite rules have to
be simulated with the stochastic approach). Figure 11 shows two exempli-
ficative runs of “bright” and “off” behaviour resulting from pure stochastic
and hybrid simulations. Figure 12 reports the centroids of two clusters ob-
tained using the k-means algorithm [36] on the 200 runs performed using the
pure stochastic and hybrid simulations using a sampling step size ∆t = 10.
In both cases a 4% of simulations showed an “off” behaviour and this re-
sults confirm the statistical analysis reported in [17]. The stochasticity of
the centroids corresponding to the “off” behaviour is due to the few points
belonging to the cluster. As could be seen in Figures 11 and 12, the hybrid
simulations are comparable to the purely stochastic ones and, even with the
relatively high thresholds used in this particular case, the hybrid simulations
were computationally more efficient (almost 40% faster).6

6Comparisons are made using the same stochastic engine, in both cases with no par-
ticular optimisation.
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Figure 12: Centroids comparison of the two clustered results obtained from 200 simulations
pure stochastic and hybrid showing the “bright” and “off” behaviour

6. Related Work

In this section we will put our paper in the framework of qualitative,
stochastic and hybrid models for the description and analysis of biological
systems.

6.1. Qualitative Models

In the last few years many formalisms originally developed by computer
scientists to model systems of interacting components have been applied to
Biology. Among these, there are Petri Nets [4], Hybrid Systems [3], and the
π-calculus [8, 37, 38]. Moreover, new formalisms have been defined for de-
scribing biomolecular and membrane interactions [7, 9, 39, 5, 10, 40]. Others,
such as P systems [6], have been proposed as biologically inspired compu-
tational models and have been later applied to the description of biological
systems.

The π-calculus and new calculi based on it [10, 40] have been particularly
successful in the description of biological systems, as they allow describing
systems in a compositional manner. Interactions of biological components are
modelled as communications on channels whose names can be passed; sharing
names of private channels allows describing biological compartments.

These calculi offer very low-level interaction primitives, but may cause
the models to become very large and difficult to read. Calculi such as those
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proposed in [9, 39, 5] give a more abstract description of systems and offer
special biologically motivated operators. However, they are often specialised
to the description of some particular kinds of phenomena such as membrane
interactions or protein interactions.

P systems [6] have a simple notation and are not specialised to the de-
scription of a particular class of systems, but they are still not completely
general. For instance, it is possible to describe biological membranes and
the movement of molecules across membranes, and there are some variants
able to describe also more complex membrane activities. However, the for-
malism is not so flexible to allow describing easily new activities observed on
membranes without extending the formalism to model such activities.

CWC can describe situations that cannot be easily captured by the pre-
viously mentioned formalisms, which consider membranes as atomic objects
(extensions of P systems with objects on membranes can be found in [41, 42]).
Representing the membrane structure as a multiset of the elements of interest
allows the definition of different functionalities depending on the type and
the number of elements on the membrane itself.

Danos and Laneve [5] proposed the κ-calculus. This formalism is based
on graph rewriting where the behaviour of processes (compounds) and of
set of processes (solutions) is given by a set of rewrite rules which account
for, e.g., activation, synthesis and complexation by explicitly modelling the
binding sites of a protein.

CLS [7] has no explicit way to model protein domains (however they can
be encoded, and a variant with explicit binding has been defined in [43, 44]),
but accounts for an explicit mechanism (the looping sequences) to deal with
compartments and membranes. Thus, while the κ-calculus seems more suit-
able to model protein interactions, CLS allows for a more natural description
of membrane interactions. Another feature lacking in many other formalisms
is the capacity to express ordered sequences of elements. While we might en-
code ordered structures in CWC with nested compartments, CLS offers such
a feature in an explicit way, thus allowing to naturally operate over proteins
or DNA fragments which should be frequently defined as ordered sequences
of elements.

6.2. Stochastic Models

Our stochastic semantics is defined in terms of the collision-based paradigm
introduced by Gillespie. A similar approach is taken in the quantitative vari-
ant of the κ-calculus ([45]) and in BioSPi ([8]). Motivated by the law of
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mass action, here we need to count the number of the reactants present in a
system in order to compute the exact rate of a reaction. In [11], a stochastic
semantics for bigraphs has been developed. An application in the field of
systems biology has been provided by modelling a process of membrane bud-
ding. Compartmentalised stochastic simulations, addressing the problem of
dynamic structure, have also been investigated in the domain of P systems,
see, e.g., [46, 47].

In the following, we would like to compare our work with two closer ones,
namely [12] and [48].

A stochastic semantics for CLS (SCLS) has been defined in [12]. Such a
semantics computes the transition rates by resorting to a complete counting
mechanism to detect all the possible occurrences of patterns within a term.
Our rules, similar to what happens in [47] for P systems, in Bio-PEPA [49],
in [48] for a variant of the ambient calculus and in [27] for CLS, are equipped
with rate functions, rather than with rate constants. Such functions may
allow the definition of kinetics that are more complex than the standard
mass-action ones. In particular, equipping the rewrite rules of our calculus
with a function leads to the definition of a stochastic semantics that can
abstract from the classical one based on collision analysis (based on con-
stant rates and practical for a very low level analysis, for example chemical
interactions), and allows defining more complex rules (for higher simulation
levels, for example cellular or tissue interactions) which might follow different
probability distributions.

Indeed, CWC has been originally proposed in [14] as a variant of (S)CLS
with the aim of strongly simplifying the development of efficient automatic
tools for the analysis of biological systems, while keeping the same expres-
siveness. The main simplification consists in the removal of the sequencing
operator, thus lightening the formal treatment of the patterns to be matched
in a term (whose complexity in SCLS is strongly affected by the variables
matching in the sequences). Then, in [23] we extended CWC with compart-
ment labels, a feature that is not present in (S)CLS.

BioAmbients [40], is a calculus in which biological systems are modelled
using a variant of the ambient calculus. In BioAmbients both membranes
and elements are modelled by ambients, and activities by capabilities (enter,
exit, expel, etc.). In [48], BioAmbients are extended by allowing the rates
associated with rules to be context dependent. Dependency is realised by
associating to a rule a function which is evaluated when applying the rule,
and depends on the context of the application. The context contains the
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state of the sibling ambients, that is the ambients in parallel in the inner-
most enclosing ambient (membrane). The property of the context used to
determine the value of the function is its volume that synthesises (with a real
number) the elements present in the context.

MGS [50, 51], is a domain specific language for simulation of biological
processes. The state of a dynamical system is represented by a collection.
The elements in the collection represent either entities (a subsystem or an
atomic part of the dynamical system) or messages (signal, command, infor-
mation, action, etc.) addressed to an entity. The dynamics is defined by
rewrite rules specifying the collection to be substituted through a pattern
language based on the neighbourhood relationship induced by the topology
of the collection. It is possible to specify stochastic rewrite strategies. In [52],
this feature is used to provide the description of various models of the ge-
netic switch of the λ phage, from a very simple biochemical description of
the process to an individual-based model on a Delaunay graph topology.

Finally, we would like to mention the recent framework proposed by Oury
and Plotkin [24] which is based on stochastic multi-level multiset rewriting
and is similar to our CWC. Their models, constructed from species and
agents (representing, respectively, atoms and compartments in CWC) evolve
according to a stochastic semantics associating rates to rewrite rules. As
pointed out in [24], the main difference with respect to CWC is that the
analysis is strongly term rewriting oriented and compartment wrappings may
not be specified explicitly (an encoding based on nested agents is shown to
do the work).

6.3. Hybrid Models

Stochastic formulation of chemical kinetics is mainly based on Gillespie’s
algorithm [15], which explicitly accounts for the individual reactive collisions
among the molecules. However, it is problematic to use exact simulation
methods to study systems containing a large number of molecules affected
by fast reactions due to the computational cost of accounting for individual
molecular collisions.

The problem of efficient simulation of systems involving reactions vary-
ing across multiple scales of time and molecular concentrations employing a
mixed stochastic–deterministic method to approximate system dynamics is
not new, and has been already addressed by several recent studies. Gillespie,
in [20], presented the “τ–leap” method, an approximate technique for accel-
erating stochastic simulation, in which the occurrence of some fast reactions
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can be eliminated by taking time steps that are larger than a single reaction.
An improved procedure for selecting the value of τ has also been presented
in [53].

Haseltine and Rawlings [30] partition the system into the subsets of slow
and fast reactions, and approximate the fast reactions either deterministically
or as Langevin equations. In the method of Rao and Arkin [54], some of the
reactions are explicitly simulated with Gillespie’s algorithm whereas others
are described by random variables distributed according to the probability
density functions at quasi-stationary state. The last two methods require
direct intervention of the modeller to partition the system into reaction sets
covering different time and concentration regimes. Similarly to our hybrid
approach Salis and Kaznessis [16] proposed two parameters to define how
many reactions occur within a time step and how fine grained the species
must be to appear continuous-valued. They approximate fast reactions using
a chemical Langevin equation. Our method, instead, simplifies the stochastic
integration ignoring the fluctuations in fast reaction dynamics using ODEs.

Bortolussi and Policriti [55] provide a Stochastic Concurrent Constraint
Programming (sCCP) algebra with a semantics based on hybrid automata
combining discrete and continuous steps. A similar technique is developed
in [56] for the Stochastic π-Calculus. In [57], a hybrid analysis technique,
combining stochastic simulations with ODEs is presented in the context of
PEPA precess algebra.

In [58], the HYPE process algebra, developed to model hybrid systems in
which the continuous behaviour of a subsystem does not need to be under-
stood in advance of the modelling process, is used to model the repressilator
genetic regulatory network.

In [59] a hybrid technique, computing ODE with the Runge-Kutta nu-
merical approximation method, is adapted in the Real-Time Maude rewriting
logic.

The state of the art approaches, methods and tools in hybrid modelling
cut down the computational cost of large stochastic exact simulations. How-
ever, they introduced new forms of complexities. In particular: (i) when
different scales are taken into consideration, a deep consistency study on the
system under analysis should be carried out, (ii) new parameters have to be
defined to control the degree of the approximation, (iii) there is no commonly
understood policy to partition the set of rules.
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7. Conclusions

In this paper we have defined a hybrid simulation technique for systems
described in CWC, which combines the stochastic approach with the deter-
ministic one obtained through ODEs. The method alternates discrete tran-
sitions, computed probabilistically according to the stochastic method, and
continuous transitions, computed in a deterministic way by a set of ODEs.
Our technique turns out to accurately capture the dynamics of systems that
exhibit stochastic effects and takes advantage, whenever the deterministic
approach is applicable, of the efficiency of the ODEs integration method.

The running example used to make comparisons between the different
quantitative simulation methods, and the HIV-1 transactivation mechanism
are challenging tests for our hybrid methodology. On the one hand, the
modified Lotka-Volterra systems allows us to take a full advantage of the
computational gain possible with the hybrid method. On the other hand,
the simulation of the HIV-1 transactivation mechanism follows a simulation
which is almost purely stochastic: only a few rules pass the threshold con-
dition, thus the computational gain of the deterministic approach is, in this
particular case, very limited (though still sensible).

Compartment labels introduced in this paper are a novelty with respect
to the original CWC calculus presented in [14]. As we have seen, these
labels are necessary when building a system of ODEs for a compartment
of type `. In future work, we plan to exploit these labels as an intrinsical
information about the properties of a compartment. For example, assuming
that compartments of the same type have approximatively the same volume,
we might use the compartment type to define a set of biochemical rules whose
kinetics incorporate the information about the volume of the compartment
on which the rule could be applied. Suppose, in practice, to analyse a system
in which two different kinds of cells may interact. Let us call `1 and `2 the
compartment types of the two kinds of cells. Suppose, then, that particles
a and b are free to float between these cells and the top level interspace
hosting all the cells. Finally, particles a and b may interact by complexation
and produce the particle c. If it holds that the top level interspace on which
the different cells float has around 100x the volume of a cell of type `1 and if
a cell of type `1 has around 3x the volume of a cell of type `2, we can express
the different speeds of the a− b complexation in the different compartments
(according to their volumes) with the three following rules:

> : a b
k7−→ c, `1 : a b

k·1007−→ c, `2 : a b
k·3007−→ c.
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Actually, it is crucial to consider in detail the volumes of the involved
compartments and to consider adequate kinetics for the biochemical rules
used to simulate the system behaviour. We notice, in particular, that the
approach based on ODEs directly translates chemical reactions into mathe-
matical equations and computes the concentrations over time of the involved
species (usually the molar concentration, which denotes the number of moles
of a given substance per litre). Models based on the stochastic approach, in-
stead, simulate the activity of each single individual involved in the evolution
of the system. Such a delicate difference between the two methods should be
carefully taken into account when developing the set of rules to be simulated
with the hybrid approach.

In Appendix A we provide a preliminary analysis about a possible method
to automatically and dynamically partition the set of reactions between de-
terministic and stochastic calculations. Such a technique could also be used
to estimate the approximation error of our method. As a future work we
plan to investigate more deeply these kinds of methods.

Acknowledgements

We gratefully acknowledge the helpful comments and suggestions received
from the anonymous reviewers of MeCBIC 2010 and TCS. We thank Marco
Aldinucci for the useful discussions on the simulator implementation issues
and for providing us computing resources (Intel workstations with 2 quad-
core Xeon). The authors also wish to thank Sergio Rabellino and the ICT
staff of the Computer Science Department of the University of Torino for
providing technical support and assistance in running the simulations. Fi-
nally, we thank Prof. Nello Balossino (University of Torino) who made us
available the computing resources of the Laboratory of Signals and Images
“G. Tamburelli”.

References

[1] M. Elowitz, A. Levine, E. Siggia, P. Swain, Stochastic gene expression
in a single cell, Science 297 (5584).

[2] A. Regev, E. Shapiro, Cells as computation, Nature 419 (2002) 343.

[3] R. Alur, C. Belta, F. Ivancic, Hybrid Modeling and Simulation of
Biomolecular Networks, in: HSCC, Vol. 2034 of LNCS, Springer, 2001,
pp. 19–32.

37



[4] H. Matsuno, A. Doi, M. Nagasaki, S. Miyano, Hybrid Petri net repre-
sentation of gene regulatory network, in: Prooceedings of Pacific Sym-
posium on Biocomputing, World Scientific Press, 2000, pp. 341–352.

[5] V. Danos, C. Laneve, Formal molecular biology, Theor. Comput. Sci.
325 (1) (2004) 69–110.
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Appendix A. Dynamical Partition of Deterministic and Stochas-
tic Rules

A basic point of our hybrid approach is the criterion to determine, at
each computation step, the reductions to compute in the stochastic or in the
deterministic way. In this paper we have chosen simply to put a threshold on
the number of possible reagents (ψ) and on the propensity of a reaction (φ).
The thresholds are set by our accuracy requirements following a consistency
check on quantities and probabilities [31]. We now present a criterion for the
choice of the threshold φ of our algorithm to divide the reactions in fast and
slow by satisfying the conditions explained in Section 4.

Assume a single reaction ri:

(A.1) ` : āi
ki7−→ b̄i

where, for simplicity, we assume that āi does not contain duplicated atoms.
The probability that reaction ri does not occur in a time τ is given by

e−πri ·τ where πri = ki · [ai1 ]ι · . . . · [airi ]ι.

In order to bind the propensity of a reaction to the probability of that
reaction to not occur in a given time τ , and to correlate this quantities, we
apply the power series approximation:

e−x =
∞∑
n=0

(−x)n

n!
≈ 1− x+

x2

2!
− x3

3!
+ . . . .

When x � 1, for instance when x < 0.2, the approximation error goes
as o(x2) and is under 5%, and can be truncated in the second order term
(namely e−x ≈ 1− x). Thus, given x = πri · τ we get the following:

(A.2) e−πri ·τ ≈ 1− πri · τ if πri · τ < 0.2

On the contrary, the probability that reaction ri occurs within the time τ is
given by:

1− e−πri ·τ ≈ πri · τ

The above discussion suggests a possible schema to estimate at each step
of our simulation algorithm the threshold φ. According to [60], given a set

43



of reactions {ri}i, the probability that no reaction at all occurs in a time
[t, t+ τ ] is:

(A.3) p(τ) = e−τ ·
∑
ri
πri

Let us consider the expectation time τm for the probability density A.3:

(A.4) τm = E[τ ] =
∑
ri

πri

∫ ∞
0

τ · e−τ ·
∑
ri
πridτ =

1∑
ri
πri

Introducing τm into the approximation A.2, the probability that a certain
reaction ri occurs in time τm is approximated as:

(A.5) πri · τm

Therefore we could consider as slow a reaction whose probability to take
place before the expected time of the first reaction in the system is low, say
lower than 0.2.

On the contrary we might consider as fast a reaction ri, and compute it
deterministically, when πri · τm > 0.2 , which gives

πri ≥
0.2

τm
= 0.2 ·

∑
ri

πri

thus, for any φ ≥ 0.2 ·
∑

ri
πri we obtain the required accuracy level.

This result could be exploited to improve the consistency of our hybrid
algorithm by providing a mean to compute at runtime the value for the
threshold φ, this increases the robustness of the computational framework.
Also note that, in this case, the threshold φ could be parametrized by the de-
sired level of accuracy. The thresholds φ used in the examples in Sections 4.1
and 5 have been chosen according to the above method.

The reason for considering the threshold ψ on the number of possible
reagents is explained by situations, such as the one described in the fol-
lowing example. In this case a reaction of kind A.1 contains at least one
substrate j with a small number [aij ]ι of molecules but the other substrates
have a number of molecules large enough to make πri > φ.

Example B. Let us consider the reaction:

(r) A B
107−→ C
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and assume that [A] = 1000, [B] = 1. We therefore have a reaction propensity
relative to a time step τ :

πr · τ = 10 · 1000 · 1 · τ = φ · τ = 10000 · τ

We can exploit Euler first-order criterion (the error term is the square of the
probability of an individual molecule reacting). In order to achieve an error
approximation of 5% we have:(

πr
[B]

)2

≤ 0.05

that is
πr · τ ≤

√
0.05 ⇒ τ ≤ 2.24 ∗ 10−5

Therefore, deterministic computation is clearly inappropriate for a selected
time step τ ∼ 2.24 ∗ 10−5 (even if φ = 10000 is large), because stochas-
tic phenomena involving species B would be neglected. Furthermore, since
small numbers of molecules are involved, we are very far from the thermo-
dynamic limit. This situation shows that we must set a cut-off number of
molecules below which all calculations involving that molecule should be done
stochastically. We should specify a cut-off ψ on molecular number, which is
sufficiently large so that the change in standard deviation is tolerable.

An additional refinement to the use of sharp thresholds φ and ψ is to
consider two intervals [φlow, φhigh] e [ψlow, ψhigh] in order to use additional in-
formation on the rate and population size, such as their gradient, in uncertain
situations of oscillatory behaviour.
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