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Complex Structures on SOg(M)

Tommaso Pacini
Dept. of Mathematics, Pisa University, Italy

e-mail: pacini@dm.unipi.it

Abstract

Data una varieta’ Riemanniana orientata (M, g), il fibrato princi-
pale SOg(M) di basi ortonormali positive su (M, g) ha una paralleliz-
zazione canonica dipendente dalla connessione di Levi-Civita. Questo
fatto suggerisce la definizione di una classe molto naturale di strutture
quasi-complesse su (M, g). Dopo le necessarie definizioni, discutiamo
qui l’integrabilita’ di queste strutture, esprimendola in termini della
struttura Riemanniana g.

1 Introduction

Let M be a smoothly parallelizable m-dimensional differentiable manifold.
A parallelization of M is, basically, the choice of an isomorphism between
the tangent plane TxM and IRm that varies smoothly with respect to the
parameter x ∈ M . Such a choice allows one to smoothly transfer a fixed
structure, such as a complex structure, from IRm to the tangent bundle TM
over M , thus giving M the additional structure of, for example, an almost
complex manifold.

This is enough to prove that any even-dimensional parallelizable mani-
fold admits an almost complex structure.

Let us now consider, for a fixed oriented m-dimensional Riemannian
manifold (M, g), the SO(m)-principal fibre bundle of positively oriented
orthonormal frames on (M, g): call it SOg(M), and let π : SOg(M) −→ M
be the usual projection.

It is well known that SOg(M) possesses a standard parallelization. It is
defined as follows.

Given a principal fibre bundle P (M,G), the action of the Lie group G
on the total space P induces a homomorphism σ of the Lie algebra g of G
into the Lie algebra Λ0(TP ) of vector fields on P .
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For A ∈ g, we will denote σ(A) by A∗.
For u ∈ P , let Vu be the tangent space to the fibre in u.
Since the action of G sends each fibre into itself, for each u ∈ P σ

induces a homomorphism σu : g −→ Vu defined by A 7−→ A∗u which is an
isomorphism because G acts freely on P and dim(g)=dim(Vu).

We have thus proved that for each u ∈ SOg(M), Vu is canonically iso-
morphic to the Lie algebra o(m) of SO(m).

Consider now a connection on SOg(M), i.e. a right-invariant distribution
H on SOg(M) such that for all u ∈ SOg(M), Hu ⊕ Vu = TuSOg(M).

The differential of π at u, π∗[u] : TuSOg(M) −→ Tπ(u)M , restricts to an
isomorphism between Hu and Tπ(u)M , which we will continue to denote by
π∗[u]. Remember that each u ∈ SOg(M) is a basis of Tπ(u)M ; the frame
u = {ui} pulls back to a frame of Hu and thus defines the isomorphism

Bu : IRm −→ Hu

ei 7−→ π∗[u]−1(ui)

where {ei} is the standard basis of IRm.
We have thus shown that any connection defines an isomorphism (which

is smoothly dependent on u) between TuSOg(M) = Hu⊕Vu and IRm⊕o(m),
i.e. a parallelization of SOg(M).

In what follows we will sometimes not specify the subscripts of the above
isomorphisms, so as to avoid a too cumbersome notation.

The particular structure of this parallelization suggests a refinement of
the previous construction. Namely, we define an almost complex structure
on SOg(M) by transfering a fixed structure on IRm to Hu and a fixed struc-
ture on o(m) to Vu, via the above isomorphisms. This requires, as only
additional hypotheses, that IRm and o(m) admit complex structures, i.e.
that they be even-dimensional. A quick calculation shows this to be true
when m = 4n.

The goal of this article is to examine the integrability of such a class
of almost complex structures. To do this, we fix the connection to be the
Levi-Civita connection on SOg(M) induced by g and the structure on IR4n

to be the standard complex structure J0. The structure J on o(4n) has,
instead, no a priori restrictions.

It quickly becomes apparent that integrability requires additional hy-
potheses on J , i.e. that J be compatible both with J0 and with g in the
sense defined by theorem 1. Though clearly expressed, these conditions are
of a fairly technical nature. We therefore proceed to show how a natural
strengthening of our initial hypotheses suffices to express the above condi-
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tions in a much more elegant manner: theorem 2 basically states that, under
the right hypotheses, the class of almost complex structures on SOg(M) is
integrable if and only if{

n = 1: (M, g) is an autodual Einstein manifold
n > 1: (M, g) has constant sectional curvature

The author wishes to thank professor de Bartolomeis for suggesting the
problem and for his help in reaching this solution.

2 Preliminaries

Let (M, g) be an oriented 4n-dimensional Riemannian manifold.
Let SOg(M) be the associated SO(4n)-bundle of positive orthonormal

frames.
We will adopt the following notation:

P := SOg(M)
o(4n):= Lie algebra of SO(4n): antisymmetric IR-valued matrices

R : SO(4n) −→ Diff(P ) action of SO(4n) on P
g 7−→ Rg

Let B and π∗ be the isomorphisms defined in par. 1 and let x := π[u].
Then the following diagram is commutative:

IR4n

6

id
IR4n

-π∗ TxM

?

u−1

TuP

-

Bu

where u−1 simply associates to each vector in TxM its coordinates with
respect to u.

Notice that, as u is an orthonormal frame, u−1 is an isometry between
(TxM, gx) and IR4n with the standard euclidean metric.

Let H be the Levi-Civita connection on P and Ω be its curvature. We
recall that Ω ∈ Λ2(P )⊗ o(4n), i.e. is a o(4n)-valued 2-form on P .

In a standard way, each Ωu can be alternatively viewed as an element of
End(o(4n)). Let us review the reasoning.
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Ω has the property that Ωu(X, Y ) = 0 if Y ∈ Vu. It follows that Ωu can
be viewed, with no loss of information, as Ωu ∈ Λ2(H∗

u)⊗ o(4n) or, through
the isomorphism B, as Ωu ∈ Λ2(IR4n)∗ ⊗ o(4n).

If we now identify Λ2(IR4n) with o(4n) via the canonical isomorphism

Λ2(IR4n) −→ o(4n)
ξ ∧ η 7−→ 1

2(ξtη − ηtξ) (matrix multiplication)

we get Ωu ∈ o(4n)∗ ⊗ o(4n), i.e. Ωu ∈ End(o(4n)).
It may be useful to underline the fact that, according to the above con-

ventions, Ωu(Bξ, Bη) = Ωu(ξ ∧ η) ∀ξ, η ∈ IR4n.
The following lemma translates the usual properties of Ω into this new

setting:

lemma 1

1. ∀g ∈ SO(4n), Ωu ◦ ad(g) = ad(g) ◦ Ωug

2. Ωu is symmetric with respect to the standard metric on o(4n)

Proof:
1) Let us first prove that (Rg)∗[u]Buξ = Bug(g−1ξ):
the fact that the connection H is R-invariant shows that

(Rg)∗[u]Buξ = Bugη for some η ∈ R4n

the fact that π ◦Rg = π shows that

π∗[u]Buξ = π∗[ug](Rg)∗[u]Buξ = π∗[ug]Bugη

finally, the commutativity of the above diagram implies that

η = (ug)−1π∗[ug]Bugη = (ug)−1π∗[u]Buξ = g−1u−1π∗[u]Buξ = g−1ξ

The proof of the first claim is then based upon the fact (cfr. [KN]) that
Ω has the property that

∀g ∈ SO(4n), ∀X, Y ∈ TuP,
Ωug((Rg)∗[u]X, (Rg)∗[u]Y ) = ad(g−1)Ωu(X, Y )

This leads to:

ad(g)◦Ωu(ξ∧η) = ad(g)Ωu(Bξ, Bη) = Ωug−1((Rg−1)∗[u]Buξ, (Rg−1)∗[u]Buη) =
Ωug−1(Bug−1(gξ), Bug−1(gη)) = Ωug−1(gξ ∧ gη) = Ωug−1 ◦ ad(g)(ξ ∧ η)
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2) The standard metric on o(4n) is (M,N) := −trMN . It is easy to
check that

∀M ∈ o(4n), ∀α, β ∈ IR4n, (M,α ∧ β) = −(Mα,β)

where the product on the right-hand side is now the usual metric on
IR4n.

Let ξ, η, α, β ∈ IR4n and let X, Y,A, B be the corresponding vectors in
Tπ(u)M .

Let R be the curvature tensor on (M, g) of type (4, 0), so that R(X, Y,A, B) =
(Ωu(ξ ∧ η)α, β).

The proof of the second claim is then based upon the well known fact
that R(X, Y,A, B) = R(A,B, X, Y ):

(Ωu(ξ∧η), α∧β) = −(Ωu(ξ∧η)α, β) = −R(X, Y,A, B) = −R(A,B, X, Y ) =
−(Ωu(α ∧ β)ξ, η) = (Ωu(α ∧ β), ξ ∧ η) = (ξ ∧ η, Ωu(α ∧ β))

It is well known that (M, g) has constant sectional curvature c if and
only if

R(X, Y )Z = c(g(Z, Y )X − g(Z,X)Y )

where R is now the curvature tensor of type (3, 1) on (M, g).
The following lemma translates this in terms of Ωu ∈ End(o(4n))

lemma 2
(M, g) has constant sectional curvature if and only if Ω = λId

Proof:
Recall that, according to the usual definitions, if ξ, η, ζ ∈ IR4n are the

coordinates of X, Y, Z ∈ TxM with respect to the basis u, then Ωu(ξ ∧ η) is
simply the matrix with respect to u of R(X, Y ) ∈ End(TxM).

It follows that u−1R(X, Y )Z = Ωu(ξ ∧ η)ζ, so that

Ω(ξ ∧ η) = λ(ξ ∧ η) ⇐⇒ Ω(ξ ∧ η)ζ = λ(ξ ∧ η)ζ ∀ζ ∈ IR4n ⇐⇒
u−1R(X, Y )Z = λ/2(ξtηζ−ηtξζ) = λ/2(ξg(Y, Z)−ηg(X, Z)) ∀ζ ∈ IR4n ⇐⇒
R(X, Y )Z = λ/2(g(Z, Y )X − g(Z,X)Y )
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Let us end this section with the following

Definition 1
(M, g) is an Einstein manifold if Ric = λg, where Ric is the Ricci tensor

and λ is a constant.

It is a well known fact that, if dimM ≥ 4, (M, g) is an Einstein manifold
if and only if Ric = λg where λ ∈ C∞(M).

3 Some almost complex structures on SOg(M) and
their integrability

Let J0 denote both the 4n× 4n (or 2n× 2n, as needed) matrix

[
O −I
I O

]
and the complex structure on IR4n defined by:

IR4n −→ IR4n

x 7−→ Jox (matrix multiplication)

Let J be any complex structure on o(4n).
As seen in the introduction, we define an almost complex structure J

on P in the following way:

J : TuP −→ TuP
J |Hu

:= Bu ◦ Jo ◦B−1
u

J |Vu
:= σu ◦ J ◦ σ−1

u

We will call J the constant almost complex structure induced by a com-
plex structure of type (Jo, J).

We want to investigate the integrability of J . The main tool for this is
provided by a classical theorem by Newlander and Nirenberg (cfr. [NN]),
which states that an almost complex structure J on a manifold is integrable
if and only if NJ ≡ 0, where NJ is the Nijenhuis tensor defined by

NJ (X, Y ) := [JX,J Y ]− [X, Y ]− J [JX, Y ]− J [X,J Y ]

Performing this calculation in our case requires a closer look at the struc-
ture of o(4n) and of the curvature tensor. For this purpose, we introduce
the following notation.

Sym(n) := {n× n real symmetric matrices}
Symo(n) := {A ∈ Sym(n) : trA = 0}
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u(n) := {A ∈ o(2n) : AJo = JoA} = {
[

S −T
T S

]
: S ∈ o(n), T ∈

Sym(n)}

uo(n) := {
[

S −T
T S

]
: S ∈ o(n), T ∈ Symo(n)}

s(n) := {A ∈ o(2n) : AJo = −JoA} = {
[

S T
T −S

]
: S, T ∈ o(n)}

It is well known that u(n) is the Lie algebra of the group of unitary
matrices U(n) and that uo(n) is the Lie algebra of the group of special
unitary matrices SU(n).

Let o(4n) have the usual metric:

(A,B) := trAtB = −trAB

Then the equality

A = A−JoA
2 + A+JoA

2 ∀A ∈ o(2n)

shows that

o(2n) = u(n)⊕ s(n) orthogonal decomposition

Notice also that

u(n) = uo(n)⊕ IRJo orthogonal decomposition

The algebra uo(n) is simple.
The algebra o(n) is simple if and only if n 6= 4.
The algebra o(4) is semisimple with orthogonal decomposition

o(4) = o+(4)⊕ o−(4)

where o+(4) and o−(4) are simple ideals defined as the eigenspaces of the
involution

φ : o(4) −→ o(4)
0 a b c
−a 0 d e
−b −c 0 f
−c −e −f 0

 7−→


0 f −e d
−f 0 c −b
e −c 0 a
−d b −a 0


It can easily be seen that o+(4) = uo(4) and that o−(4) = IRJo⊕s(2); this

leads us quickly to a characterization of the corresponding normal subgroups
of SO(4).
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The subgroup corresponding to o+(4) is obviously SU(2).
Let SU(2) be the subgroup corresponding to o−(4).
Since e

π
2
J0 = J0, J0 ∈ exp(o−(4)) so J0 ∈ SU(2).

As SU(2) is normal in SO(4), ad(g)J0 ∈ SU(2) ∀g ∈ SO(4).
As SU(2) is simple, it can thus be described as the closure of the Lie

subgroup generated by {ad(g)J0 : g ∈ SO(4)}.
Finally, it is interesting that neither the adjoint action of SU(2) on o−(4)

nor of SU(2) on o+(4) are irriducible.
Let us now go back to the curvature tensor Ω.
Let Sym(o(4n)) := {φ ∈ End(o(4n)) symmetric with respect to the

standard metric on o(4n)}.
Lemma 1 shows that Ωu ∈ Sym(o(4n)).
Referring the reader to [Be] for further details, we recall that Ωu admits

a canonical decomposition as sum of three elements in Sym(o(4n)); we will
write Ωu = Eu + Zu + Wu.

The decomposition shows that Eu = λId while Zu and Wu are traceless.
Furthermore, it shows that Zu = 0 if and only if (M, g) is an Einstein
manifold, and that Wu = Zu = 0 if and only if (M, g) has constant sectional
curvature. Wu is known as the Weyl tensor.

When n = 1 and one considers the splitting o(4) = o+(4)⊕ o−(4), it can
be shown that Wu(o+(4)) ⊆ o+(4), Wu(o−(4)) ⊆ o−(4), Zu(o+(4)) ⊆ o−(4),
Zu(o−(4)) ⊆ o+(4). Furthermore, Zu|o+(4)

=t Zu|o−(4)
.

If follows that, with respect to the above splitting of o(4) and omitting
the subscripts, Ωu admits the block-matrix representation

Ω '
[

W+ + λId Z
tZ W− + λId

]

where W+ := W|o+(4), W− := W|o(4) and Z := Z|o−(4).
It is also true that W+ and W− are traceless operators; they are the

positive and negative Weyl tensors, respectively.
We can now go back to our initial problem of studying the integrability

of J .

Definition 2
A complex structure J on a Lie algebra g is integrable if the left-invariant

almost complex structure induced by J on the corresponding Lie group G is
integrable, or, equivalently, if

NJ(X, Y ) := [JX, JY ]− [X, Y ]− J [JX, Y ]− J [X, JY ] = 0 ∀X, Y ∈ g
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We can now prove the following

Theorem 1
Let (M, g) be a 4n-dimensional oriented Riemannian manifold.
Let J be the constant almost complex structure on SOg(M) induced by

a structure of type (J0, J).
Then J is integrable if and only if the following two conditions are sat-

isfied:

1. J is integrable and satisfies the following compatibility condition with
respect to Jo:

∀X ∈ o(4n), [Jo, X] = J(X) + JoJ(X)Jo

2. Ωu(JoX) = JΩu(X) ∀u ∈ P,∀X ∈ s(2n)

Proof:
The proof is basically the calculation of the Nijenhuis tensor NJ on P

defined above.
As NJ is a tensor, NJ ≡ 0 if and only if the following three cases are

true:

1. NJ (X∗, Y ∗) = 0 ∀X, Y ∈ o(4n)

2. NJ (X∗, Bξ) = 0 ∀ξ ∈ IR4n,∀X ∈ o(4n)

3. NJ (Bξ, Bη) = 0 ∀ξ, η ∈ IR4n

We will consider the three cases separately.

1) NJ (X∗, Y ∗) = [JX∗,J Y ∗]−[X∗, Y ∗]−J [JX∗, Y ∗]−J [X∗,J Y ∗] =
= [(JX)∗, (JY )∗]− [X∗, Y ∗]− J [(JX)∗, Y ∗]− J [X∗, (JY )∗] =
= [JX, JY ]∗ − [X, Y ]∗ − (J [JX, Y ])∗ − (J [X, JY ])∗

where the final identity follows from the fact that the above mentioned
σ : o(4n) −→ Λ0(TP ) is a Lie algebra homomorphism.

Therefore

NJ (X∗, Y ∗) = 0 ⇐⇒ [JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ] = 0

so that

NJ (X∗, Y ∗) = 0 ∀X, Y ∈ o(4n) ⇐⇒ J is integrable
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2) We first show that [X∗, Bξ] = B(Xξ)
Let αt := exp(tX).
Notice that X∗ is, by definition, the vector field induced by the 1-

parameter group of diffeomorphisms Rαt .
Remember (cfr. proof of lemma 1) that dRg[u](Buξ) = Bug(g−1ξ).

Then:

[X∗, Bξ] = limt→0
Bξ−dRαt [α(−t)](Bξ)

t = limt→0
Bξ−B(α(t)−1ξ)

t = B(limt→0
ξ−exp(−tX)ξ

t ) =
B d

dt(−exp(−tX)ξ)|t=0
= B(Xξ)

Consequently:

NJ (X∗, Bξ) = [JX∗,JBξ]− [X∗, Bξ]− J [JX∗, Bξ]− J [X∗,JBξ] =
= [(JX)∗, B(Joξ)]−B(Xξ)− J [(JX)∗, Bξ]− J [X∗, B(Joξ)] =
= B(J(X)Joξ)−B(Xξ)−B(JoJ(X)ξ)−B(JoXJoξ)

Therefore

NJ (X∗, Bξ) = 0 ⇐⇒ J(X)Joξ −Xξ − JoJ(X)ξ − JoXJoξ = 0

so that

NJ (X∗, Bξ) = 0 ∀ξ ⇐⇒ J(X)Jo −X − JoJ(X)− JoXJo = 0

Left multiplication by Jo proves that

NJ (X∗, Bξ) = 0 ∀ξ, ∀X ⇐⇒ [Jo, X] = J(X) + JoJ(X)Jo ∀X

3) We first prove that [Bξ, Bη]u ∈ Vu.
Let θ be the unique IR4n-valued 1-form on P such that

θ(X) = 0 ∀X ∈ Vu and θ(Bξ) = ξ.

θ defines a IR4n-valued 2-form, called the torsion of the connection, in
the following way:

Θ(X, Y ) := dθ(Xh, Y h)

or, equivalently,

Θ(X, Y ) := 1
2{X

hθ(Y h)− Y hθ(Xh)− θ[Xh, Y h]}

where Xh, Y h denote the horizontal components of X, Y .
Recall that, by definition, the Levi-Civita connection has Θ ≡ 0.
Since θ(Bξ) and θ(Bη) are constant, it then follows that
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θ[Bξ, Bη] = −2Θ(Bξ, Bη) = 0

that is,

[Bξ, Bη] ∈ Vu

Let ω be the o(4n)-valued 1-form defined on P by the connection. We
recall that

ω(X) = 0 ∀X ∈ Hu

and that

Ω(X, Y ) = dω(Xh, Y h) = 1
2{X

hω(Y h)− Y hω(Xh)− ω[Xh, Y h]}

From the preceding result it follows that NJ (Bξ, Bη) ∈ Vu, so that

NJ (Bξ, Bη) = 0 ⇐⇒ ωNJ (Bξ, Bη) = 0

Noticing that ω[Bξ, Bη] = −2Ω(Bξ, Bη) and ωJ = Jω proves that

NJ (Bξ, Bη) = 0 ⇐⇒ Ω(BJoξ,BJoη) − Ω(Bξ, Bη) − JΩ(BJoξ,Bη) −
JΩ(Bξ, BJoη) = 0

Let us now use the identification described in par. 1, viewing Ωu as
Ωu : Λ2(IR4n) −→ o(4n).

The above translates as

NJ (Bξ, Bη) = 0 ⇐⇒ Ω(Joξ ∧ Joη − ξ ∧ η) = JΩ(Joξ ∧ η + ξ ∧ Joη)

We now, as before, identify Λ2(IR4n) with o(4n). Then J0ξ ∧ J0η− ξ ∧ η
corresponds to an element X ∈ s(2n), as can easily be seen by proving that
it anticommutes with J0, and J0ξ ∧ η + ξ ∧ J0η = −J0X, so that

NJ (Bξ, Bη) = 0 ⇐⇒ Ω(X) = JΩ(−JoX)

We can then conclude that

NJ (Bξ, Bη) = 0 ∀ξ, η ⇐⇒ Ω(JoX) = JΩ(X) ∀X ∈ s(2n)

The two conditions appearing in theorem 1 are of different nature. The
first is algebraic, in the sense that, being J0 fixed, it concerns only the
complex structure J on the Lie algebra o(4n). The second is twistor-like,
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in the sense that it implies a compatibility between the metric g and the
complex structure J .

The canonical splitting o(4n) = u(2n) ⊕ s(2n) suggests restricting our
attention to those J ’s such that J(u(2n)) ⊆ u(2n), J(s(2n)) ⊆ s(2n), i.e. de-
fined as the sum of a complex structure J1 on u(2n) and a complex structure
J2 on s(2n): we will say that J is of type (J1, J2).

The following lemma shows that, when J is of type (J1, J2), condition
(1) of theorem 1 can be reformulated in a much simpler manner:

lemma 3
Let J be a complex structure on o(4n) of type (J1, J2).
The following conditions are equivalent:

1. J1 is integrable;

∀A ∈ s(2n), J2(A) = J0A (matrix multiplication)

2. ∀A ∈ o(4n), [J0, A] = J(A) + J0J(A)J0;

J is integrable.

Proof:
1 =⇒ 2:

∀A ∈ s(2n), [Jo, A] = JoA−AJo = J(A)+Jo
2AJo = J(A)+JoJ(A)Jo

∀A ∈ u(2n), [Jo, A] = 0 = J(A) + JoJ(A)Jo

∀A,B ∈ s(2n), NJ(A,B) = [J0A, J0B]−[A,B]−J [J0A,B]−J [A, J0B] =
J0AJ0B − J0BJ0A−AB + BA− J(J0AB −BJ0A + AJ0B − J0BA) = 0

∀A,B ∈ u(2n), NJ(A,B) = 0 by hypothesis
∀A ∈ u(2n),∀B ∈ s(2n), NJ(A,B) = [J1(A), J0B]−[A,B]−J0[J1(A), B]−

J0[A, J0B] = J1(A)J0B− J0BJ1(A)−AB + BA− J0J1(A)B + J0BJ1(A)−
J0AJ0B −BA = 0

2 =⇒ 1:

as NJ1 = NJ |u(2n), J1 is obviously integrable;

∀A ∈ s(2n), 2JoA = [Jo, A] = J(A) + JoJ(A)Jo = 2J(A) = 2J2(A)

Definition 3 A complex structure on IR4n ⊕ o(4n) is of type (J0, J1, J2) if
it is given by the sum of the standard complex structure on IR4n, of any
complex structure J1 on u(2n) and of any complex structure J2 on s(2n).
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A complex structure (J0, J1, J2) is of integrable type if J1 is integrable
and J2 is the standard structure on s(2n) defined by J2(X) = J0X (matrix
multiplication).

It is important to mention that integrable structures on u(2n) exist (cfr.
[Mo]) and have been extensively studied (cfr. [Sn]).

We will now examine the integrability of constant almost complex struc-
tures on SOg(M) induced by structures of type (J0, J1, J2).

Theorem 2
Let (M, g) be a 4n-dimensional oriented Riemannian manifold.
Let J be the constant almost complex structure on SOg(M) induced by

a structure of type (J0, J1, J2).
Then J is integrable if and only if

1. (J0, J1, J2) is of integrable type

2. (M, g) has the following property:

n = 1: (M, g) is an autodual Einstein manifold (i.e. Z ≡ W− ≡ 0)

n > 1: (M, g) has constant sectional curvature.

Proof:
Given the additional hypotheses on J , the preceding lemma shows that

condition (1) is equivalent to the first condition of theorem 1. We therefore
only need to prove that condition (2) is equivalent to the second condition
of theorem 1.

As usual, let J := J1 ⊕ J2 denote the complex structure on o(4n).
Notice that, as J(s(2n)) ⊆ s(2n), the second condition of theorem 1 may

be simply expressed by [Ω, J ]|s(2n)
= 0.

On the other hand, lemma 2 shows that (M, g) has constant sectional
curvature if and only if Ω = λId, while previous considerations prove that,
in the case n = 1, (M, g) is an Einstein manifold with W− ≡ 0 if and only
if Ω|o−(4) = λId.

To prove the theorem, it is thus sufficient to prove that [Ω, J ]|s(2n) = 0
if and only if

n = 1: Ω|o−(4) = λId

n > 1: Ω = λId
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One of the two implications is obvious: that Ω|o−(4)
= λId and Ω = λId

imply [Ω, J ]|s(2n)
= 0.

We will prove the viceversa in two steps, by showing

1. [Ω, J ]|s(2n)
= 0 =⇒ Ω(ad(g)s(2n)) ⊆ ad(g)s(2n) ∀g ∈ SO(4n)

2. Ω(ad(g)s(2n)) ⊆ ad(g)s(2n) ⇐⇒
{

n = 1 : Ω|o−(4)
= λId

n > 1 : Ω = λId

1) Let [Ωu, J ]|s(2n) = 0 ∀u ∈ P .
In particular, [Ωug, J ]|s(2n) = 0 ∀g ∈ SO(4n).
We saw that Ωug = ad(g−1) ◦ Ωu ◦ ad(g) ∀g ∈ SO(4n).
Let X ∈ s(2n) and g ∈ U(2n). Then

ad(g)X ∈ s(2n) and ad(g)J(X) = ad(g)JoX = Joad(g)X =
Jad(g)X

so that, combining the above expressions,

0 = [Ωug, J ]|s(2n) = [ad(g−1)Ωuad(g), J ]|s(2n) = [ad(g−1), J ]|Ωu(s(2n)) ∀g ∈
U(2n)

This is enough to prove that Ω(s(2n)) ⊆ s(2n): by denoting with ∆
the projection of Ω(s(2n)) onto u(2n) with respect to the decomposition
o(4n) = u(2n)⊕ s(2n), all we must do is to show that ∆ = 0.

As [ad(g), J ]|s(2n) = 0, the above expression implies that

[ad(g), J ]|∆ = 0 ∀g ∈ U(2n)

Let ∆̃ := {X ∈ u(2n) : [ad(g), J ]X = 0} ∀g ∈ U(2n).
It is easy to show that ∆̃ is an ideal of u(2n) and that J(∆̃) ⊆ ∆̃. In

particular, ∆̃ has even dimension. As u(2n) is reductive with decomposition
uo(2n) ⊕ IRJo and uo(2n) is a simple odd-dimensional ideal, ∆̃ = o(2n) or
∆̃ = 0.

Suppose ∆̃ = o(2n), so that the Lie group associated to ∆̃ would be
U(2n). J would define on U(2n) a (left invariant) complex structure which,
because [ad(g), J ] ≡ 0, would make U(2n) a complex Lie group. This is
impossible, as U(2n) is compact and any compact complex Lie group is
abelian.

If follows that ∆̃ = 0, so, in particular, ∆ = 0.
This proves that Ωu(s(2n)) ⊆ s(2n) ∀u ∈ P .
In particular,
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Ωug(s(2n)) ⊆ s(2n) ∀g ∈ SO(4n), i.e. Ωu(ad(g)s(2n)) ⊆ ad(g)s(2n) ∀g ∈
SO(4n).

2) Remembering that Ω is symmetric, it is essentially the content of the
final lemma.

lemma 4
Let Ω ∈ End(o(4n)) be symmetric with respect to the standard metric on

o(4n). Then the following conditions are equivalent:

1. Ω(ad(g)s(2n)) ⊆ ad(g)s(2n) ∀g ∈ SO(4n)

2.

{
n = 1 : Ω|o−(4)

= λId

n > 1 : Ω = λId

Proof:
1 =⇒ 2: Let us define

P : o(4n) −→ u(2n) orthogonal projection

The definition of u(2n) shows that P = 1
2 [I + ad(Jo)]

Since ad(g) is an isometry of o(4n), Ω is symmetric and u(2n) ⊥ s(2n),

Ω(ad(g)s(2n)) ⊆ ad(g)s(2n) =⇒ Ω(ad(g)u(2n)) ⊆ ad(g)u(2n)

It follows that s(2n) and u(2n) are invariant for the family ad(g−1) ◦Ω ◦
ad(g), i.e.

[ad(g−1) ◦ Ω ◦ ad(g), P ] = 0, i.e.
[Ω, ad(g) ◦ P ◦ ad(g−1)] = 0, i.e.
[Ω, ad(gJog

−1)] = 0 ∀g ∈ SO(4n)

Let H :=< {gJog
−1 : g ∈ SO(4n)} >.

H is, algebraically, a normal subgroup of SO(4n) so H is a normal Lie
subgroup of SO(4n).

We must now distinguish between the cases n = 1, n > 1.
If n > 1, SO(4n) is a simple Lie group so H = SO(4n). It is easy to see

that

[Ω, ad(h)] = 0 ∀h ∈ H, i.e. [Ω, ad(g)] = 0 ∀g ∈ SO(4n)

By Shur’s lemma, Ω = λI + µJ for some J : J2 = −Id.
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Since Ω is symmetric, Ω is diagonalizable; as J isn’t diagonalizable, it
must be µ = 0, i.e. Ω = λI.

If instead n = 1, as seen above, H is the normal proper subgroup of
SO(4) corresponding to o−(4).

As before, this implies that

[Ω, ad(h)] = 0 ∀h ∈ H

Notice now that

span{ad(g)s(2n) : g ∈ SO(4)} = o−(4)

as s(2n) ⊆ o−(4) and o−(4) is a simple ideal of o(4). It follows that
Ω(o−(4)) ⊆ o−(4), so that

Ω|o−(4), ad(h)|o−(4)] = 0 ∀h ∈ H

Applying Shur’s lemma to Ω|o−(4), we find Ω|o−(4) = λI.

2 =⇒ 1: Obvious, because ad(g)s(2) ⊆ o−(4) ∀g ∈ SO(4).

The second condition of theorem 2 requires a final consideration.
Up to Riemannian covering space equivalence and connectedness, com-

plete Riemannian manifolds with constant sectional curvature k have been
classified: depending on the sign of k (and disregarding an eventual normal-
ization of the metric), they are either Sn, IRn, or the hyperbolic space with
their standard metrics.

When (M, g) is one of these three models, it is well known that SOg(M)
is a Lie group, as it is diffeomorphic to the group of isometries of (M, g).

In general, when (M, g) is a generic Riemannian manifold with constant
sectional curvature, SOg(M) is modelled on a Lie group, in the sense of
having an atlas in which the transition functions are Lie group isomorphisms.

Regarding autodual Einstein manifolds, note that the scalar curvature s
is constant. In the compact case (again disregarding metric normalization),
Hitchin provides a classification when s ≥ 0:

s > 0 : (M, g) is isometric to S4 or CP 2 with their standard metrics
s = 0 : (M, g) is either flat or its universal covering space is a K3
surface with the Calabi-Yau metric

For further details, cfr. [Be].
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No such classification is known for the case s < 0; the only known ex-
amples of such manifolds are the compact quotients of the real and complex
hyperbolic spaces.
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