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Thompson sampling for species discovery
Thompson sampling per la scoperta di nuove specie

M. Battiston, S. Favaro and Y.W. Teh

Abstract This work proposes a new methodology for discovering new species,
when observations are sampled from different populations. Using a metaphor, we
imagine J populations of animals to be available and we can sequentially choose
from which of these populations to collect further samples. Both labels and fre-
quencies of these species are unknown a priori. At each time step, the proposed
strategy suggests where to collect the next observation in order to maximize the
number of total species observed. This strategy is based on a joint use of the Hier-
archical Pitman-Yor process, to estimate the unknown distributions of animals, and
of Thompson Sampling for the sequential allocation problem. Performances of the
algorithm are compared to those of other three strategies through simulations.
Abstract Questo lavoro propone una nuova metologia per scoprire nuove specie,
quando le osservazioni sono campionate da diverse popolazioni. Utilizzando una
metafora, immaginiamo J popolazioni di animali essere presenti e che si possa es-
trarre campioni da quest’ultime in maniera sequenziale. I nomi e le frequenze di
ogni specie non sono note a priori. Ad ogni passo, la strategia proposta suggerisce
da quale popolazione estrarre l’osservazione successiva, in modo da massimizzare
il numero totale di specie osservate. Questa strategia si basa su un’uso congiunto
dello Hierarchical Pitman-Yor process, per stimare le distribuzioni di animali nelle
popolazioni, e del Thompson Sampling per il problema di selezionare sequenzial-
mente dove allocare ulteriori risorse. Le prestazioni dell’aloritmo sono comparate
con quelle di altre tre strategie attraverso simulazioni.
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1 Introduction

Species sampling problems initially arose in the ecological and biological literature
long time ago, but have recently found a renew interest, due to applications in many
other fields, like machine learning, genetics and linguistics. All these problems can
be described using a species metaphor. We imagine a (discrete) population G of
animals to be available and a sample of size n is collected from it. Each observation
represents an animal and its observed value is its own species. Given this sample,
interest usually lies either in predicting the realization of future observations or in
estimating some particular feature of G. The frequentist literature on these problems
is old and rich and a complete review on it is [3]. Whereas, contributions to the
problem using a Bayesian approach are relatively recent, see e.g. [9], [4], [5] and
[6].

In this work, we consider a different setting, in which J populations are available,
{G1, . . . ,GJ}, and we can sequentially choose from which of these populations to
collect further samples. We assume the populations to share the same species of an-
imals and their labels and frequencies are unknown a priori. Also, the frequency of
each species may vary across populations. Hence, when sampled, some populations
will be more likely to display new species than others. In this work, we propose a
sequential rule that, at every time step, suggests a population from which to col-
lect the next observation, when the goal is maximizing the total number of species
discovered.

The sequential allocation problem analysed in this work resemble the so-called
multi-armed bandit problem, popular in the reinforcement learning literature. In the
latter problem, J unknown rewards distributions are available and, at each time step,
a player must choose which of these distributions to sample next, in order to max-
imize the total reward obtained. Inherent to this problem is a trade-off between ex-
ploiting distributions that performed well in the past or exploring those which have
not been much played. In the reinforcement learning literature, the two most pop-
ular sequential strategies are the Upper Confidence Bound, which is a frequentist
algorithm initially introduced in [8] and further developed by [1], and Thompson
sampling (TS), which a Bayesian procedure proposed by [15]. TS prescribes to as-
sign priors to the unknown parameters of the J distributions and, at every time step,
to play an arm according to its posterior probability of being the best one.

The problem analysed in this work can be traced back to a similar bandit for-
malization. Indeed, we can think a reward of one unit to be collected any time we
observe a new species and zero otherwise. Hence, rewards are Bernoulli distributed
with parameters varying over time, since every time a new species is observed, the
probability of observing another one in the next steps decreases. Our proposed so-
lution to the problem is made of two elements: a Bayesian nonparametric procedure
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for the estimation of the {G1, . . . ,GJ} using a Hierarchical Pitman-Yor (HPY) prior,
together with a TS strategy for the sequential choice of the best arm. We refer to this
strategy as the HPY-TS algorithm.

The structure of the article is as follows. In next section, we recall the HPY model
and present the HPY-TS algorithm. In Section 3, we compare the performances of
the HPY-TS algorithm against three competing alternatives in different scenarios.

2 The HPY-TS

The problem of sequential species discovery in presence of many populations can
be described as follows. Let {G1, . . . ,GJ} denote J discrete distributions, supported
on the same countable set, assumed to be unknown a priori. The mass functions of
each of these J distribution are assumed unknown too and the mass of each support
point can vary across different distributions. We assume that, at each time step,
we can choose one of these distributions to sample the next observation from. As
mentioned before, the goal is observing as many distinct points as possible from the
unknown common support.

This problem can be traced back to a stochastic bandit problem by regarding
a discovery as a unitary reward. The reward of arm j at time t is then Bernoulli
distributed with parameter the missing mass (i.e. the sum over all masses of the
not already observed support points) of that arm at that time point. To solve this
allocation problem, we proposed a strategy based on TS. TS prescribes to assign
priors to the unknown parameters of each distribution and, at each time step, to
play an arm according to its posterior probability of being the best one. This can be
easily implemented by computing at each time the posteriors of the J mean rewards,
drawing a sample from each of them and then play the arm corresponding to the
highest realisation.

In our setting, the unknown parameters are the whole distributions {G1, . . . ,GJ}
and we assign a HPY prior to them. This prior for {G1, . . . ,GJ} clearly induces a
prior also for the J missing masses. Given this prior choice and given a set of data
from {G1, . . . ,GJ}, we derive the joint posterior of the J missing masses, which is
used to implement TS. We derive this posterior distribution and we describe the al-
gorithm in subsection, after briefly reviewing the HPY model. We refer to proposed
strategy as HPY-TS algorithm.

2.1 The HPY model

The HPY is a model introduced in [13], as an extension of the Hierarchical Dirichlet
Process of [14]. It is a useful tool for modelling groups of data coming from different
distributions, when we wish to introduce probabilist dependence among them. The
HPY assigns to each distribution, G j, a Pitman-Yor process, [11], all with the same
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base measure G0. This latter hyperparameter is not fixed by the modeller, but is
considered as a random element to be inferred from data. Another Pitman-Yor prior
is used as prior for G0. This recursive construction has the effect that the support of
the G js is contained in that of G0. As a consequence, all populations share the same
random support of G0. Denoting with {θ j1, . . . ,θ jn j··} the vector of observations
from the j− th population, taking values on a measurable space (Θ ,ℑ), the HPY
model is described as follows

θ j,i|G j ∼ G j i = 1, . . . ,n j··

G j|d j,α j,G0 ∼ PY (d j,α j,G0) j = 1, . . . ,J
G0|η ,γ,H ∼ PY (η ,γ,H)

where n j·· is the number of observations from the j− th population, H is a fixed
and diffuse probability measure and the J + 1 couples of hyperparameters (d j,α j)
and (η ,γ) are chosen to satisfy the conditions d j,η > 0, α j > −d j and η > −γ ,
∀ j ∈ {1, . . . ,J}. Also, the hyperparameters d j, α j, η and γ are usually assumed to
be unknown and endowed with priors.

The HPY admits the following representation in terms of Chinese Restaurant
Franchise (See [12] for a detailed description of this culinary metaphor)

θ j,i|θ j,1, . . . ,θ j,i−1,α j,d j,G0 ∼
m j·

∑
t=1

n jt·−d j

α j +n j··
δθ∗j,t

+
α j +m j· ·d j

α j +n j··
G0 (1)

θ
∗
j,t |θ ∗1,1, . . . ,θ ∗1,m1· , . . . ,θ

∗
j,t−1,γ,η ,H ∼

K

∑
k=1

m·k−η

γ +m··
δθ∗∗k

+
γ +K ·η
γ +m··

H (2)

where n jtk denotes the number of customers in restaurant j, sitting at table t
and trying dish k, while m jk is the number of tables at restaurant j serving dish
k, {θ ∗j,1, . . . ,θ ∗j,m j·

} are the dishes served at the m j· tables at restaurant j and K
stands for the number of franchise-wide distinct dishes with corresponding labels
{θ ∗∗1 , . . . ,θ ∗∗K }. As in [12], dots in the indexes denote that we are summing over that
index, e.g. m j· is the total number of tables in restaurant j.

2.1.1 The missing masses a posteriori and the algorithm

In order to implement the HPY-TS algorithm, the joint posterior of the J missing
masses given all observations must be derived. Denoting with θn the joint sample
(the array containing observations from all populations), with θn j·· be the vector of
observations from population j and with A = {θ ∈Θ : θ /∈ θn} the set of possible
new species, what is needed is the joint distribution of

{G1 (A) , . . . ,GJ (A)}|θn,η ,γ,H,d1, . . . ,dJ ,α1, . . . ,αJ
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For easiness of notation, now on we omit the reference to the hyperparameters of
the HPY, η ,γ,H,d j,α j, when conditioning on them. The density of this joint dis-
tribution is provided in the following proposition. In the statement, we adopt the
notation for tables counts and distinct values previously introduced for the Chinese
Franchise Representation of the HPY. Also, beta(g|a,b) stands for a beta density
function with parameters a and b, evaluated at g.

Proposition 1. Let θn denote the joined sample from a HPY and let A =
{θ ∈Θ : θ /∈ θn}. Then, {G1 (A) , . . . ,GJ (A)}|θn admits the following multivariate
density

f{G1(A),...,GJ(A)}|θn (g1, . . .gJ) =
∫ 1

0

J

∏
j=1

f j (g j|β0,m j·,n j··) · f0 (β0|K,m··)dβ0

where

f j (g j|β0,m j·,n j··)= beta(g j|(α j +m j·d j) ·β0,(α j +m j·d j) · (1−β0)+n j··−d j ·m j·)

and
f0 (β0|K,m··) = beta(β0|γ +Kη ,m··−ηK)

Proof From the Chinese Franchise Represtation of the HPY, the franchise-wide
distinct values {θ ∗∗1 , . . . ,θ ∗∗K } are governed by G0 and G0 ∼ PY (η ,γ,H). Applying
[10], Corollary 20, the posterior distribution of G0, given the observations, satisfies
the distributional equation

G0|θn =
K

∑
k=1

βk ·δθ∗∗k
+β0 ·G

′
0

where

G
′
0|θn ∼ PY (η ,γ +Kη ,H)

β |θn = (β0, . . . ,βK) |θn ∼ Dir (γ +Kη ,m·1−η , . . . ,m·K −η)

Similarly, we can apply the same result of [10] to G j to find a distributional equation
for G j, conditionally on G0 and the data. Also, using the distributional equation for
the posterior of G0, we find the following distributional equation for G j

G j|β ,G
′
0,θnm =

K

∑
k=1

π j,k ·δθ∗∗k
+π j,0 ·G

′
j (3)

where

G
′
j|G

′
0,θn ∼ PY (d j,(α j +m j·d j) ·β0,G

′
0)(

π j,0, . . . ,π j,K
)
|β ,θn ∼ Dir((α j +m j·d j) ·β0,(α j +m j·d j) ·β1 +n j·1−d j ·m j1, . . .

. . . ,(α j +m j·d j) ·βK +n j·K −d j ·m jK)
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So, the distribution of G j (A) |θn,G0 satisfies

G j (A) |β ,G
′
0,θn =

K

∑
k=1

π j,k ·δθ∗∗k
(A)+π j,0 ·G

′
j (A)

∀ j ∈ {1, . . . ,J}, which implies

G j (A) |β0,θn ∼ beta((α j +m j·d j) ·β0,(α j +m j·d j) · (1−β0)+n j··−d j ·m j·)

where we made use of the following facts:
1. δθ∗∗k

(A) = 0 ∀k = 1, . . . ,K: since {θ ∗∗1 , . . . ,θ ∗∗K }= Ac.

2. G
′
j (A) = 1 a.s.: G

′
j can be rewritten as G

′
j = ∑i≥1 γi ·δθi for some weights {γi}i≥1

and some atoms {θi}i≥1 i.i.d. from H. Then, P(∩i≥1 {θi ∈ Ac})=∏i≥1 P(θi ∈ Ac)=

∏i≥1 1 = 1, since H is diffuse. Finally, P(∩i≥1 {θi ∈ Ac}) = 1⇒ G
′
j (A

c) = 0 a.s.,
hence G

′
j (A) = 1 a.s..

3. π j,0|β0,θn ∼ beta((α j +m j·d j) ·β0,(α j +m j·d j) · (1−β0)+n j··−d j ·m j·): by
the aggregation property of Dirichlet distribution.

Also, since we are conditioning on G0 (through β ,G
′
0), G j (A) |β0,θn is independent

of Gi (A) |β0,θn ∀i, j ∈ {1, . . .J}, i 6= j. Hence, their joint distribution is simply the
product of the marginals. The last step is to integrate β0 out

{G1 (A) , . . . ,GJ (A)}|θn =
∫ 1

0

J

∏
j=1

G j (A) |β0,θn ·dFβ0 (β0)

where the distribution of β0 is another beta (again by aggregation of Dirichlet dis-
tribution). So, {G1 (A) , . . . ,GJ (A)}|θn admits a density as stated.

�

The HPY-TS algorithm can now be easily described. At each time step, it draws a
sample from the joint posterior distribution of Proposition 1 and collects the next ob-
servation from the the population corresponding to the highest realized value. This
strategy outperforms the greedy one that selects the arm with the highest posterior
point estimate since it better balances the exploration step. To provide the intuition,
suppose to have only a few observations, with an unlucky sample, from a ’winning’
arm (a population with a very high species variety), resulting in a low point estimate
for its missing mass. This population will not be chosen by the greedy strategy,
which only exploits arms with good past behaviour. Whereas, with HPY-TS, the
posterior distribution of the missing mass of this population will have high variabil-
ity, due to the small sample size. This implies a positive probability for that arm to
be chosen, if its Thompson draw results in a high value. The HPY-TS is summarized
in Algorithm 1.
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Algorithm 1: (HPY-TS algorithm)
for i in 1:additional sample do

draw β0 ∼ beta(γ +Kη ,m··−ηK) ;
for j in 1:J do

draw g j ∼ beta((α +m j·d) ·β0,(α +m j·d) · (1−β0)+n j··−d ·m j·) ;
end
Compute j∗ = argmax{g j : j ∈ {1, . . .J}} ;
Sample the next observation from population j∗;
Update table counts and estimates of the HPY hyperparameters;

end

3 Simulated Results

In this section we assess the performances of the HPY-TS algorithm through simu-
lations. We compare it to three alternative strategies

• An Oracle strategy that knows the {G1, . . . ,GJ} generating the data and always
picks the arm with the highest missing mass.

• An Uniform strategy that selects the next population uniformly at random.
• A UCB algorithm recently proposed by [2] in the context of security analysis. It

is based on the Good and Turing missing mass estimator, derived in [7], and we
will refer to it as Good-Turing strategy.

We assume as true data generating process J Zipf laws, each one supported on
a set of size 2500, randomly chosen from a total number of 3000 possible species,
hence allowing for a partial sharing of the supports. The parameter of each distribu-
tion, s j > 1, controls how the total mass is spread along the support points. If s j is
large, the total mass is concentrated on a few points, while, as s j approaches 1, the
total mass is more spread, with many points of high mass. In the species discovery
context, an arm with low parameter s j is a winning arm.

We consider three different scenarios, corresponding to different levels of het-
erogeneity or homogeneity in species variety across arms. In presence of hetero-
geneity, a good strategy must be able to detect winning arms soon and play them
only. Whereas, in presence of homogeneity, a strategy must be able not to get stuck
exploiting only a few arms, but to carefully explore all of them. In our simulations,
we fix J = 8 and consider the following three scenarios:

1. Pure Exploitation, Zipf parameters=(1.3,1.3,2,2,2,2,2,2): in this scenario, there
are two ’winning’ arms. A good strategy should be able to intensively exploit
these two arms, without exploring much the other six suboptimal arms.

2. Pure Exploration, Zipf parameters=(1.3,1.3,1.3,1.3,1.3,1.3,2,2): in this scenario,
the majority of arms are equally profitable. A good strategy should not get stuck
exploiting just a few of them, but continue to explore all the six good arms.
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3. Exploration plus Exploitation, Zipf parameters=(1.3,1.3,1.3,1.3,2,2,2,2): in this
scenario, there are four good arms and four bad ones. A good strategy should
adequately balance exploitation and exploration, by stopping to play the four
suboptimal arms soon, but continuing to play all the other four.

Figure 1 reports the results of simulations in these three scenarios. Each panel in
Fig. 1 displays the average number of species discovered by the four algorithms, as a
function of the additional observed samples. In particular, the results are averages of
60 runs. For each run, we assume an initial sample of 30 observations per arm to be
available and collect further 300 observations, following the four possible strategies.
The hyperparameters of the HPY are endowed with priors, η ,d1, . . . ,dJ ∼ β (1,2)
i.i.d. and γ,α1, . . . ,αJ ∼ exp(1) i.i.d..

In the simulations, HPY-TS algorithm performs well in all scenarios, discover-
ing less new species than the Oracle strategy, but more than the Uniform and to the
Good-Turing strategy. Figure 1 shows how these latter strategies seem to balance
the exploration-exploration trade-off worse than HPY-TS. They perform relatively
well only in the two extreme cases of pure exploration or pure exploitation, charts
(a) and (b) in Fig. 1. On the one hand, the Good-Turing strategy does too much
exploitation. It focuses on exploiting just a few arms (those with good past perfor-
mances), without continuing to explore the others. In fact, it performs quite well in
the pure exploitation scenario, Fig. 1 (a), but quite poorly, in presence of more ’win-
ning’ arms, panel (b) and (c) of Fig. 1. On the other hand, as expected, the Uniform
strategy does too much exploration. It continues to play all arms, irrespectively of
their past behaviours. Its performances are very poor, except in the extreme scenario
of pure exploration, Fig. 1 (b). Instead, the HPY-TS algorithm seems to be robust
to changes in species variety across arms, without the need of any tuning parameter
to regulate the exploration and exploitation levels. In all scenarios, it performs well,
standing behind only to the Oracle strategy. In particular, in the intermediate sce-
nario, Fig. 1 (c), its results are very close to the Oracle’s ones, while in the extreme
cases, Fig. 1 (a) and (b), it is still as good as or better than both the Uniform and the
Good -Turing strategies.

Fig. 1 (a) Pure Exploitation scenatio; (b) Pure Exploration scenario; (c) Exploration and Exploita-
tion Scenario.
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