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On a class of smoothed Good–Turing estimators
Su una classe di stimatori di Good–Turing lisciati

Stefano Favaro, Bernardo Nipoti and Yee Whye Teh

Abstract Under the assumption of a two parameter Poisson-Dirichlet prior, we show
that Bayesian nonparametric estimators of discovery probabilities are asymptoti-
cally equivalent, for a large sample size, to suitably smoothed Good–Turing esti-
mators. A numerical illustration is presented to compare the performance between
Bayesian nonparametric estimators with corresponding smoothed Good–Turing es-
timators.
Abstract Nell’ipotesi di una distribuzione a priori Poisson-Dirichlet a due parametri,
mostriamo che gli stimatori Bayesiani nonparametrici per probabilità di scoperta
sono asintoticamente equivalenti, per un campione grande, a stimatori di Good–
Turing opportunamente lisciati. Un’illustrazione è presentata per confrontare gli
stimatori Bayesiani nonparametrici con i corrispondenti stimatori di Good–Turing
lisciati.

Key words: Bayesian nonparametrics, discovery probability, smoothed Good–
Turing estimator

1 Introduction

The problem of estimating discovery probabilities is typically associated to situa-
tions where an experimenter is sampling from a population of individuals (Xi)i≥1
belonging to an (ideally) infinite number of species (X∗i )i≥1 with unknown propor-
tions (qi)i≥1. Given a sample (X1, . . . ,Xn), which is assumed to be observed, interest
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lies in estimating the probability that the (n+ 1)-th draw coincides with a species
with frequency l in (X1, . . . ,Xn), for any l = 0,1, . . . ,n. This probability is denoted
by Dn(l) and commonly referred to as the l-discovery. In terms of the species pro-
portions qi’s, one has Dn(l) = ∑i≥1 qi1{l}(Ni,n), where Ni,n denotes the frequency
of the species X∗i in the sample. Clearly Dn(0) is the proportion of yet unobserved
species or, equivalently, the probability of discovering a new species. See [1] for an
up-to-date review on the full range of statistical approaches, parametric and non-
parametric as well as frequentist and Bayesian, for estimating the l-discovery and
related quantities.

An early approach for estimating the l-discovery was developed by Alan M. Tur-
ing and Irving J. Good during their collaboration at Bletchley Park in the 1940s.
This approach first appeared in [5]. Specifically, let H be a parametric statistical
hypothesis on the qi’s, that is H determines the species composition of the pop-
ulation by specifying a distribution function over species and with a finite number
of unknown parameters. Let (X1, . . . ,Xn) be a random sample from H , and let us
denote by Ml,n the number of species with frequency l in Xn. According to [5], an
estimator of Dn(l) is

Ďn(l;H ) = (l +1)
EH [Ml+1,n+1]

(n+1)
.

where EH is the expected value with respect to the distribution H . In order to dis-
pense with the specification of the parametric statistical hypothesis H , [5] proposed
to replace EH [Ml+1,n+1]/(n+1) with ml+1,n/n, where ml,n denotes the number of
species with frequency l in the observed sample. The resulting nonparametric esti-
mator is

Ďn(l) = (l +1)
ml+1,n

n
,

which is typically referred to as the Good–Turing estimator. Note that Ďn(l;H )
does not depend on (X1, . . . ,Xn), unless the parameters characterizing H are esti-
mated using such a sample; several examples of statistical hypothesis H are thor-
oughly discussed in [5] and, among them, we mention the Zipf-type distributions
and the discretized Pearson distributions. Differently from Ďn(l;H ), the Good–
Turing estimator Ďn(l) depends directly on (X1, . . . ,Xn) through the frequency count
ml+1,n. That is, Ml+1,n is a sufficient statistic for estimating the l-discovery via the
Good–Turing approach.

A peculiar feature of Ďn(l) is that it depends on ml+1,n, and not on ml,n as one
would intuitively expect for an estimator of the l-discovery. Such a feature, com-
bined with the irregular behaviour of the ml,n’s for large l, makes Ďn(l) a sensible
approximation only if l is sufficiently small with respect to n. Indeed for some large
l one might observe that ml,n > 0 and ml+1,n = 0, which provides the absurd esti-
mate Ďn(l) = 0, or that ml,n < ml+1,n although the overall observed trend for ml,n
is to decrease as l increases. In order to overcome these drawbacks [5] suggested
to smooth the irregular series of ml,n’s into a more regular series to be used as a
proxy. If m′l,n’s are the smoothed ml,n’s with respect to a smoothing rule S , then
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Ďn(l;S ) = (l+1)m′l+1,n/n is a more accurate approximation than Ďn(l). Common
smoothing rules consider m′l,n, as a function of l, to be approximately parabolic or,
alternatively, m′l,n to be a certain proportion of the total number of species in the
sample.

2 A smoothed Ďn(l) via Bayesian nonparametrics

A Bayesian nonparametric approach for estimating the l-discovery was proposed
in [6] and [3]. Specifically, let Q = ∑i≥1 qiδX∗i

be a random probability measure,
namely (qi)i≥1 are nonnegative random weights such that ∑i≥1 qi = 1 almost surely,
and (X∗i )i≥1 are random locations independent of (qi)i≥1 and independent and iden-
tically distributed as a nonatomic distribution. Then, the sample (X1, . . . ,Xn) is as-
sumed to be drawn from Q, namely X1, . . . ,Xn |Q are independent and identically
distributed as Q, and Q is distributed according to some distribution Q. In particu-
lar, Q takes on the interpretation of a prior distribution on the species composition.
A common choice for Q is the two parameter Poisson-Dirichlet prior in [7]. Specif-
ically, such a choice corresponds to set p1 =V1 and pi =Vi ∏1≤ j≤i−1(1−Vj) where
the Vj’s are independent Beta random variables with parameter (1− σ ,θ + jσ),
for any σ ∈ (0,1) and θ > −σ . We shorten “two parameter Poisson-Dirichlet”
by PD(σ ,θ), and we denote by Qσ ,θ a random probability measure distributed as
PD(σ ,θ) prior.

Under a PD(σ ,θ) prior, [3] introduced a Bayesian nonparametric estimator
D̂n(l), with respect to a squared loss function, of Dn(l). This estimator is obtained
by a straightforward application of the predictive distribution characterizing Pσ ,θ ,
namely the conditional distribution of Xn+1 given (X1, . . . ,Xn), for any n ≥ 1. See
[7] for details. Specifically, let (X1, . . . ,Xn) be a sample from Qσ ,θ featuring Kn = kn
species with corresponding frequency counts (M1,n, . . . ,Mn,n) = (m1,n, . . . ,mn,n).
Then,

D̂n(0) =
θ + knσ

θ +n
(1)

and
D̂n(l) = (l−σ)

ml,n

θ +n
, (2)

for any l = 1, . . . ,n. The estimators (1) and (2) provide Bayesian nonparametric
counterpart of the Good–Turing estimator Ďn(l). Note that the most notable dif-
ference between the Good–Turing estimator and its Bayesian nonparametric coun-
terpart can be traced back to the different use of the information contained in the
observed sample. In particular, i) Ďn(0) is a function of m1,n while D̂n(0) is a func-
tion of kn; ii) Ďn(l) is a function of ml+1,n while D̂n(l) is a function of ml,n, for any
l = 1, . . . ,n.

Let an'bn as n → +∞ mean that limn→+∞ an/bn = 1, namely an and bn are
asymptotically equivalent. When one either of an and bn is a random quantity, the
notation an

a.s' bn means that the asymptotic relation holds with probability one. By
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an application of Theorem 3.8 and Lemma 3.11 in [8], one obtains Ml,n
a.s.' σ(1−

σ)l−1Kn/l! as n→+∞. That is, under a PD(σ ,θ) prior, as the sample size n tends to
infinity the number of species with frequency l becomes a proportion σ(1−σ)l−1/l!
of the total number of species. Such a result, suitably combined with (1) and (2),
leads to

D̂n(l)' (l +1)
ml+1,n

n
' (l +1)

σ ∏
l−1
i=0(1−σ+i)
(l+1)! kn

n
, (3)

n → +∞. See [4] for details on (3). In other terms, as n → +∞, the Bayesian
nonparametric estimator D̂n(l) is asymptotically equivalent to a smoothed Good–
Turing estimator, say Ďn(l;SPD), where SPD is a smoothing rule such that ml+1,n

is smoothed by σ ∏
l−1
i=0(1−σ + i)kn/(l+1)!. The smoothing rule SPD clearly arises

from the large n asymptotic interplay between Kn and Ml,n, under the assumption
of the PD(σ ,θ) prior. As a consequence, SPD does not depend on the parameter
θ >−σ .

The smoothing rule SPD is somehow related to the Poisson smoothing SPoi,
originally introduced by [5], in which ml,n is approximately equal to a proportion
e−λ λ τ+l−1/(τ + l−1)! of kn, for any λ > 0 and τ ≥ 0 such that ∑l≥0 Ďn(l;SPoi) =
1. See Chapter 2 in [2] for an example of Poisson smoothing where τ = 1 and
λ = n/kn. In particular SPD is related to the Poisson smoothing corresponding
to the choice τ = 0 and to a suitable randomization of the parameter λ . Specifi-
cally, let us denote by Pλ a discrete random variable with distribution P[Pλ = l] =
e−λ λ l−1/(l− 1)!, that is the Poisson smoothing with τ = 0 and λ > 0. If Ga,b is
Gamma random variable with parameter (a,b) and Lσ is a discrete random variable
with distribution P[Lσ = l] = σ(1−σ)l−1/l!, then it can be easily verified that Lσ

is equal in distribution to 1+PG1,1G1,1−σ /G1,σ where G1,1, G1,1−σ and G1,σ are mutu-
ally independent. We refer to [4] for a discussion of the smoothing rule SPD under
the assumption σ → 0.

3 Illustration

We compare the performance of the Bayesian nonparametric estimators for the l-
discovery with respect to the corresponding Good–Turing estimators and smoothed
Good–Turing estimators, for some choices of the smoothing rule. We draw 500
samples of size n = 1000 from a Zeta distribution with scale parameter s = 1.5.
Recall that a Zeta random variable Z is such that P[Z = z] = z−s/C(s) where C(s) =
∑i≥1 i−s, for s > 1. Next we order the samples according to the number of observed
distinct species kn and we split them in 5 groups. Specifically, for i = 1,2, . . . ,5, the
i-th group of samples will be composed by 100 samples featuring a total number of
observed distinct species kn that stays between the quantiles of order (i−1)/5 and
i/5 of the empirical distribution of kn. We therefore pick at random one sample for
each group and label it with the corresponding index i. This procedure leads to a
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total number of 5 samples of 1000 observations, each one with a different species
composition.

We use these simulated datasets for comparing estimators for the l-discovery
with the true value of Dn(l), for l = 0, l = 5 and l = 30. Specifically, we consider:
i) the Bayesian nonparametric estimator D̂n(l), for which the parameter (σ ,θ) are
chosen by the empirical Bayes procedure described in [3]; ii) the Good–Turing es-
timator Ďn(l); iii) the smoothed Good–Turing estimator Ďn(l;SPD); iii) the Pois-
son smoothed Good–Turing estimator Ďn(l;SPoi) with τ = 1 and λ = n/kn. We
also consider the so-called Simple Good–Turing estimator, denoted by Ďn(l;SSGT),
which is a popular smoothed Good–Turing estimator discussed in Chapter 7 of [9].
Specifically, in the Simple Good–Turing estimator the smoothing rule SSGT con-
sists in first computing, for large l, some values zl,n that take into account both the
positive frequency counts ml,n and the surrounding zero values, and then in resorting
to a line of best fit for the pairs

(
log10(l), log10(zl,n)

)
in order to obtain the smoothed

values m′l,n.

Table 1 about here

Table 1 summarizes the result of our comparative study. As an overall measure
for the performance of the estimators, we use the mean squared error (MSE) defined,
for a generic estimator D̂(l) of the l-discovery, as MSE(D̂)=∑0≤l≤n(D̂(l)−dn(l))2,
with dn(l) being the true value of Dn(l). By looking at the MSE in Table 1 it is
apparent that D̂n(l) and Ďn(l;SSGT) are much more accurate than the others. As
expected, the Good–Turing estimator Ďn(l) has a good performance only for small
values of l, while inconsistencies arise for large frequencies thus explaining the am-
plitude of the resulting MSE. For instance, since sample i = 3 features one species
that has frequency l = 20 and no species with frequency l = 21, the Good–Turing
estimator Ďn(20) gives 0 while, clearly, there is positive probability to observe the
species appeared 20 times in the sample. Finally, Ďn(l;SPD) yields a smaller MSE
than Ďn(l;SPoi).
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Table 1: Simulated data from a Zeta distribution. Some comparison between the true l-discovery
Dn(l) with respect to the estimates obtained by D̂n(l), Ďn(l), Ďn(l;SPoi), Ďn(l;SPD) and
Ďn(l;SSGT).

Sample 1 2 3 4 5
kn 136 139 141 146 155
σ̂ 0.6319 0.6710 0.7107 0.6926 0.6885
θ̂ 1.2716 0.6815 0.2334 0.5000 0.7025

l = 0

dn(l) 0.0984 0.0997 0.0931 0.0924 0.0927
D̂n(l) 0.0871 0.0939 0.1004 0.1016 0.1073
Ďn(l) 0.0870 0.0950 0.1040 0.1040 0.1080

Ďn(l;SPoi) 0.0006 0.0008 0.0008 0.0011 0.0016
Ďn(l;SPD) 0.0859 0.0933 0.1002 0.1011 0.1067
Ďn(l;SSGT) 0.0870 0.0950 0.1040 0.1040 0.1080

l = 5

dn(l) 0.0060 0.0238 0.0132 0.0154 0.0046
D̂n(l) 0.0044 0.0173 0.0086 0.0215 0.0043
Ďn(l) 0.0240 0.0180 0.0120 0.0180 0.0120

Ďn(l;SPoi) 0.1148 0.1206 0.1243 0.1332 0.1470
Ďn(l;SPD) 0.0126 0.0114 0.0101 0.0111 0.0120
Ďn(l;SSGT) 0.0044 0.0176 0.0089 0.0219 0.0044

l = 20

dn(l) 0 0.0142 0.0169 0 0
D̂n(l) 0 0.0193 0.0193 0 0
Ďn(l) 0 0 0 0 0

Ďn(l;SPoi) 0.0001 0.0000 0.0000 0.0000 0.0000
Ďn(l;SPD) 0.0053 0.0046 0.0038 0.0043 0.0047
Ďn(l;SSGT) 0 0.0194 0.0195 0 0

MSE(D̂n) 0.0006 0.0016 0.0007 0.0007 0.0006
MSE(Ďn) 0.3475 0.3773 0.3460 0.3575 0.3530

MSE(Ďn(SPoi)) 0.2657 0.2723 0.2765 0.2769 0.2745
MSE(Ďn(SPD)) 0.1748 0.1748 0.1753 0.1746 0.1747
MSE(Ďn(SSGT)) 0.0007 0.0018 0.0014 0.0008 0.0007


