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Abstract

Objective: Disorders caused by impairments in the parathyroid hormone (PTH) signalling pathway are historically 

classified under the term pseudohypoparathyroidism (PHP), which encompasses rare, related and highly 

heterogeneous diseases with demonstrated (epi)genetic causes. The actual classification is based on the presence or 

absence of specific clinical and biochemical signs together with an in vivo response to exogenous PTH and the results 

of an in vitro assay to measure Gsa protein activity. However, this classification disregards other related diseases 

such as acrodysostosis (ACRDYS) or progressive osseous heteroplasia (POH), as well as recent findings of clinical and 

genetic/epigenetic background of the different subtypes. Therefore, the EuroPHP network decided to develop a new 

classification that encompasses all disorders with impairments in PTH and/or PTHrP cAMP-mediated pathway.

Design and methods: Extensive review of the literature was performed. Several meetings were organised to discuss 

about a new, more effective and accurate way to describe disorders caused by abnormalities of the PTH/PTHrP 

signalling pathway.

Results and conclusions: After determining the major and minor criteria to be considered for the diagnosis of  

these disorders, we proposed to group them under the term ‘inactivating PTH/PTHrP signalling disorder’ (iPPSD).  

This terminology: (i) defines the common mechanism responsible for all diseases; (ii) does not require a confirmed 

genetic defect; (iii) avoids ambiguous terms like ‘pseudo’ and (iv) eliminates the clinical or molecular overlap 
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Introduction

Pseudohypoparathyroidism (PHP) encompasses a 
group of rare, related, highly heterogeneous and deeply 
impairing disorders characterised by end-organ resistance 
to the action of parathyroid hormone (PTH) and in most 
instances associated with a demonstrated (epi)genetic 
component (1, 2, 3). PHP is historically the first hormone-
resistance syndrome described by Albright et al. (4).

A better understanding of the PHP pathophysiology 
followed the identification of the PTH receptor (PTH1R) 

and its signal transduction pathway (Fig.  1) (5, 6). 
PTH1R, through its activation by two ligands, the 
PTH and the PTH-related peptide (PTHrP), regulates 
skeletal development, bone turnover and mineral 
ion homeostasis. In the kidney, binding of PTH to 
PTH1R stimulates the production of 1,25-dihydroxy  
vitamin D3, and inhibits phosphate reabsorption 
in the proximal tubule, while it increases calcium 
reabsorption in the distal nephron. In the growth plate, 

between diseases. We believe that the use of this nomenclature and classification will facilitate the development of 

rationale and comprehensive international guidelines for the diagnosis and treatment of iPPSDs.

Figure 1

Schematic transduction of PTH1R/Gsa/cAMP/PKA pathway. Upon ligand binding (PTH or PTHrP is mentioned in the figure),  

the receptor (PTH1R) activates the G protein. Then, the Gsa subunit triggers the activation of the adenylate cyclase leading to 

cAMP synthesis. cAMP binds to the regulatory 1A subunits (R1A) of the PKA, the most common effector of cAMP. Upon cAMP 

(grey diamonds) binding, the catalytic subunits (Cat) dissociate from the R1A subunits, and phosphorylate numerous target 

proteins including CREB (cAMP-responsive binding elements) and the phosphodiesterases (PDEs). CREB activates the  

transcription of cAMP-responsive genes. Intracellular cAMP is then deactivated by PDEs, among which are PDE4D and PDE3A.  

PTH1R: transmembrane convolutional black line; G protein: trimer α, β, γ; cAMP: grey diamond; PKA: tetramer R1A  

(regulatory subunit 1A) and Cat (catalytic subunit); phosphodiesterases: ovals PDE4D or PDE3A; DNA: scale bar.
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PTHrP promotes endochondral ossification, by binding 
to PTH1R (7).

The Blomstrand chondrodysplasia (OMIM #215045), 
a lethal form of dwarfism (8), was the first disorder 
associated with biallelic loss-of-function mutations of the 
PTH1R gene (9). Subsequently, one report has described a 
milder phenotype in living children affected with Eiken 
disease (OMIM #600002), short stature, elevated PTH and 
mutations of PTH1R (10, 11).

A defect in the response of the proximal renal tubule 
to PTH is the hallmark of all forms of PHP. It manifests 
as hypocalcaemia, hyperphosphataemia and elevated 
circulating levels of PTH in the absence of vitamin D 
deficiency (5, 7, 12).

PTH receptor couples with the stimulatory G protein 
(Gsa), leading to cAMP formation. Renal tubular response 
to exogenously administered PTH through measurement 
of serum and urinary cAMP levels permits the 
differentiation of PHP type 1 (PHP1), in which a blunted 
cAMP response is observed, from PHP type 2 (PHP2), 
where cAMP increase is conserved but the phosphaturic 
response is deficient (13). To date, only a handful of 
PHP2 cases have been reported, and the molecular defect 
responsible for this variant is still unknown. It has also 
been hypothesised that PHP2 could either be an acquired 
defect secondary to vitamin D deficiency (14), as calcium 
and vitamin D supplementation resulted in normalisation 
of the phosphaturic response to PTH in some patients  
(14, 15), or due to defects downstream the Gsa protein, as 
seen in patients with acrodysostosis type 1 (ACRDYS1) (16).

In 1980, deficiency in the Gsa protein activity in 
erythrocytes extracted from patients affected with PHP1 
was demonstrated in vitro (17, 18). For years, this bioassay 
allowed the diagnosis of PHP, and contributed to PHP 
subclassification (see below).

PHP type 1 (PHP1) is further subdivided based 
on the presence (PHP1A and PHP1C; OMIM #103580 
and #612462 respectively) (6, 17, 18, 19) or absence 
(PHP1B; OMIM #603233) (6, 20) of Albright hereditary 
osteodystrophy (AHO) (Table 1). AHO is a clinical entity 
initially described together with PHP in 1942, which 
encompasses heterogeneous clinical findings such as 
brachydactyly, rounded face, short stature, stocky build 
and subcutaneous ossifications (4, 21, 22). Additional 
features that may not directly relate to AHO, yet 
extensively associated with PHP1A individuals, include 
obesity, varying degrees of intellectual disability and 
resistance to several hormones, including TSH, GHRH 
and calcitonin (23, 24, 25, 26, 27, 28). The subcategory 
of PHP1C has all the characteristics of PHP1A, except that 

Gsa activity in erythrocytes was found comparable to 
controls (29, 30).

Interestingly, patients showing the physical features 
of AHO without any evidence of PTH resistance were 
also described by Albright et  al. (21) 10 years after 
their first report of PHP. This new syndrome, named 
pseudopseudohypoparathyroidism (PPHP; OMIM 
#612463) may be present either in kindreds with PHP or as 
an isolated defect. It is possible that the ‘bone phenotype’ 
observed in AHO is largely mediated by the resistance to 
PTHrP at the growth plate during foetal and postnatal 
growth (31).

In 1990, the first heterozygous inactivating mutation 
in the gene coding for Gsa (GNAS), responsible for 
PHP1A, was described (32). Since then, several Gsa-coding 
mutations have been identified in all of its 13 exons with 
different frequency, with a detection rate of about 70% 
(33, 34, 35, 36, 37, 38, 39). Cases of deletions of 20q, 
including part or the whole GNAS gene, and an inversion 
at GNAS have been recently reported (40, 41, 42, 43, 44). 
Remarkably, similar mutations when paternally inherited, 
or occurring de novo on the paternal allele of GNAS may 
lead to PPHP or to progressive osseous heteroplasia (POH, 
OMIM #166350), a disorder characterised by heterotopic 
ossifications expanding into deep muscles and connective 
tissues (45, 46).

GNAS is a locus encoding several transcripts through 
alternative splicing. In most tissues, except for Gsa, 
the GNAS transcripts are of monoallelic origin due 
to the control of their expression by parent-specific 
differentially methylated regions (DMRs) (Fig. 2) (47). In 
thyroid, pituitary gland and most likely in the proximal 
tubule (36), Gsa is predominantly expressed from the 
maternal allele through a yet unexplained mechanism 
(48, 49). In the early 2000, the molecular defect of 
PHP1B was characterised. The most consistent defect 
common to all PHP1B patients is a paternal-specific 
pattern of cytosine methylation within the maternal 
GNAS A/B: transcriptional start site (TSS)-DMR (GNAS 
A/B:TSS-DMR; previously known as exon A/B or 1A), 
which could lead to a decreased expression of Gsa in 
the renal proximal tubules, hence PTH resistance (50). 
Fifteen to twenty percent of the PHP1B cases present 
familial history with an autosomal dominant mode of 
inheritance (AD-PHP1B) through the maternal lineage. 
Most AD-PHP1B show loss of imprinting (LOI) limited 
to the GNAS A/B:TSS-DMR (more precisely a loss of 
methylation (LOM)) associated with deletions on the 
maternal allele of cis-acting control elements within 
STX16 or NESP55 (51, 52, 53, 54, 55), although other 
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Table 1  Former classification of PHP along with the other disorders affecting the PTH/PTHrP signalling pathway; note the  

overlap of phenotypes and molecular defects of the patients. Diseases included in the former classification are PHP1A, PHP1B,  

PHP1C and PPHP.

PHP1A PHP1C PHP1B PPHP POH

2q37.3 
Deletion 
Syndrome PHP2 Acrodysostosis

Blomstrand 
dysplasia

Eiken 
disease

Clinical 
presentation

AHO AHO No AHO AHO in some 
patients 
(brachydactyly, 
subcutaneous 
ossification) 
and/or obesity

AHO in very 
few 
patients

Mental 
retardation 
reported in  
2 patients, 
lambdoid 
synostosis, 
early-onset 
obesity, 
macrocephaly

BWS No AHO AHO AHO Subcutaneous 
ossifications

AHO No AHO Severe AHO AHO Severe AHO Lethal 
dwarfism

Epiphyseal 
dysplasia

Obesity Obesity No obesity Obesity 
may be 
present

Obesity No obesity

Cognitive 
impairment

Cognitive 
impairment

No cognitive 
impairment

 

Subcutaneous 
ossifications

Subcutaneous 
ossifications

Subcutaneous 
ossifications

Subcutaneous 
ossifications

Cognitive 
impairment

Hypocalcaemia, 
osteomalacia

Cognitive 
impairment 
in some 
patients

Hypertension Short stature

Hormone 
resistance

Resistance to 
PTH, TSH, 
GHRH, 
calcitonin, 
epinephrine, 
glucagon and 
gonadotropins

Resistance to 
PTH, TSH, 
epinephrine 
and 
gonadotropins

PTH resistance PTH resistance, 
± TSH 
resistance

PTH 
resistance, 
± TSH 
resistance

PTH resistance, 
± TSH 
resistance

PTH 
resistance

PTH 
resistance, 
± TSH 
resistance

No Mild No No PTH resistance PTH 
resistance, 
and TSH in 
some 
patients

PTH 
resistance, 
and TSH in 
some 
patients

No Elevated 
PTH in one 
patient

In vitro 
activity of 
Gsa

Significantly 
below controls

Similar to 
controls

Similar to 
controls

Mildly 
decreased 
when 
compared with 
controls

Mildly 
decreased 
when 
compared 
with 
controls

Similar to 
controls

Significantly 
below 
controls

Significantly 
below 
controls

LOI at the 
GNAS DMRs

LOM at the 
GNAS 
A/B:TSS-DMR

Broad LOI Broad LOI Broad LOI Broad LOI

Genetic lesion Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(maternal 
allele)

Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(p.E392K, 
p.E392X, 
p.L388R and 
p.Y391X, all in 
exon 13) 
(maternal 
allele)

Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(p.Ile382del) 
(maternal 
allele)

Recurrent 3-kb 
STX16 deletion 
or 4.2-kb 
deletion of 
STX16

Unknown UPD(20)pat 
including 
GNAS

MLID Maternal 
deletion of 
NESP and/
or AS or 
duplication 
of GNAS

Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(paternal 
allele)

Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(paternal 
allele)

Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(paternal 
allele) or no 
mutation 
identified

Deletion of 
the 2q37.3 
chromosomal 
region 
including 
HDAC4

None Heterozygous 
mutation in 
the coding 
sequence of 
PRKAR1A or 
PDE4D

Heterozygous 
mutation in 
the coding 
sequence of 
PRKAR1A

Heterozygous 
mutation in 
the coding 
sequence of 
PDE3A

Biallelic 
inactivating 
mutation in 
the coding 
sequence of 
PTH1R

Biallelic 
inactivating 
mutation in 
the coding 
sequence 
of PTH1R

References (32, 33, 34, 35, 
36, 37, 38, 39)

(29, 30, 78) (112) (50, 51, 52, 113) (50, 51, 63, 
74)

(59, 60, 61, 62, 
63)

(114) (53, 54, 58, 
115)

(34, 36, 44, 
100)

(77) (39, 45, 46, 
79, 80)

(116) (14) (16, 82, 90, 
91, 117, 118, 
119)

(90, 91) (92) (9, 11) (10)
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Table 1  Former classification of PHP along with the other disorders affecting the PTH/PTHrP signalling pathway; note the  

overlap of phenotypes and molecular defects of the patients. Diseases included in the former classification are PHP1A, PHP1B,  

PHP1C and PPHP.

PHP1A PHP1C PHP1B PPHP POH

2q37.3 
Deletion 
Syndrome PHP2 Acrodysostosis

Blomstrand 
dysplasia

Eiken 
disease

Clinical 
presentation

AHO AHO No AHO AHO in some 
patients 
(brachydactyly, 
subcutaneous 
ossification) 
and/or obesity

AHO in very 
few 
patients

Mental 
retardation 
reported in  
2 patients, 
lambdoid 
synostosis, 
early-onset 
obesity, 
macrocephaly

BWS No AHO AHO AHO Subcutaneous 
ossifications

AHO No AHO Severe AHO AHO Severe AHO Lethal 
dwarfism

Epiphyseal 
dysplasia

Obesity Obesity No obesity Obesity 
may be 
present

Obesity No obesity

Cognitive 
impairment

Cognitive 
impairment

No cognitive 
impairment

 

Subcutaneous 
ossifications

Subcutaneous 
ossifications

Subcutaneous 
ossifications

Subcutaneous 
ossifications

Cognitive 
impairment

Hypocalcaemia, 
osteomalacia

Cognitive 
impairment 
in some 
patients

Hypertension Short stature

Hormone 
resistance

Resistance to 
PTH, TSH, 
GHRH, 
calcitonin, 
epinephrine, 
glucagon and 
gonadotropins

Resistance to 
PTH, TSH, 
epinephrine 
and 
gonadotropins

PTH resistance PTH resistance, 
± TSH 
resistance

PTH 
resistance, 
± TSH 
resistance

PTH resistance, 
± TSH 
resistance

PTH 
resistance

PTH 
resistance, 
± TSH 
resistance

No Mild No No PTH resistance PTH 
resistance, 
and TSH in 
some 
patients

PTH 
resistance, 
and TSH in 
some 
patients

No Elevated 
PTH in one 
patient

In vitro 
activity of 
Gsa

Significantly 
below controls

Similar to 
controls

Similar to 
controls

Mildly 
decreased 
when 
compared with 
controls

Mildly 
decreased 
when 
compared 
with 
controls

Similar to 
controls

Significantly 
below 
controls

Significantly 
below 
controls

LOI at the 
GNAS DMRs

LOM at the 
GNAS 
A/B:TSS-DMR

Broad LOI Broad LOI Broad LOI Broad LOI

Genetic lesion Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(maternal 
allele)

Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(p.E392K, 
p.E392X, 
p.L388R and 
p.Y391X, all in 
exon 13) 
(maternal 
allele)

Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(p.Ile382del) 
(maternal 
allele)

Recurrent 3-kb 
STX16 deletion 
or 4.2-kb 
deletion of 
STX16

Unknown UPD(20)pat 
including 
GNAS

MLID Maternal 
deletion of 
NESP and/
or AS or 
duplication 
of GNAS

Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(paternal 
allele)

Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(paternal 
allele)

Heterozygous 
mutation in 
the coding 
sequence of 
GNAS 
(paternal 
allele) or no 
mutation 
identified

Deletion of 
the 2q37.3 
chromosomal 
region 
including 
HDAC4

None Heterozygous 
mutation in 
the coding 
sequence of 
PRKAR1A or 
PDE4D

Heterozygous 
mutation in 
the coding 
sequence of 
PRKAR1A

Heterozygous 
mutation in 
the coding 
sequence of 
PDE3A

Biallelic 
inactivating 
mutation in 
the coding 
sequence of 
PTH1R

Biallelic 
inactivating 
mutation in 
the coding 
sequence 
of PTH1R

References (32, 33, 34, 35, 
36, 37, 38, 39)

(29, 30, 78) (112) (50, 51, 52, 113) (50, 51, 63, 
74)

(59, 60, 61, 62, 
63)

(114) (53, 54, 58, 
115)

(34, 36, 44, 
100)

(77) (39, 45, 46, 
79, 80)

(116) (14) (16, 82, 90, 
91, 117, 118, 
119)

(90, 91) (92) (9, 11) (10)

AHO, Albright’s hereditary osteodystrophy; BWS, Beckwith–Wiedemann syndrome; MLID, multilocus imprinting defect; NA, not available; PHP, 
pseudohypoparathyroidism; PPHP, pseudopseudohypoparathyroidism.
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maternally inherited deletions have been identified 
affecting all four DMRs (GNAS-NESP:TSS-DMR, GNAS-
AS1:TSS-DMR, GNAS-XL:Ex1-DMR and GNAS A/B:TSS-
DMR) (56, 57, 58).

The remaining cases of PHP1B are sporadic. They 
present with broad LOI at GNAS, including the GNAS 
A/B:TSS-DMR. The molecular basis of this broad LOI 
is yet to be identified, with an exception of less than 
10% of the patients who are affected by paternal 
complete or segmental uniparental disomy (UPD) of 
the chromosome 20, comprising the GNAS locus (59, 
60, 61, 62, 63).

To summarise, the existing classification of PHP 
(Table 1) is based on the following criteria: (i) presence 
or absence of AHO differentiates PHP1A/PHP1C from 
PHP1B; (ii) presence or absence of hormonal resistance 
differentiates PHP1 from PPHP; (iii) in vivo response 
to exogenous PTH as for nephrogenic cAMP synthesis 
and phosphaturia separates PHP1 from PHP2 and (iv) 
in vitro assay measuring the Gsa protein activity from 
erythrocyte membranes differentiates between PHP1A 
and PHP1C.

As described above, the existing PHP classification 
does not include molecular defect as a criterion and fails 
to stratify PHP and AHO as well as include conditions 
such as acrodysostosis, POH and PTH1R-related 
chondrodysplasia. In this manuscript, we therefore 
propose to review the rationale of this nomenclature and 
recommend a novel classification for disorders impairing 
the PTH/PTHrP signalling pathway.

Methodology

The EuroPHP network met on three different occasions 
(October 2014, May 2015, November 2015) to discuss 
and agree on a novel classification. The aims of these 
meetings were (i) to identify the limitations in the current 
PHP classification; (ii) to formulate mandatory criteria for 
the new classification; (iii) to propose a comprehensive 
definition gathering all the disorders; (iv) to analyse the 
classifications used in other genetic/epigenetic conditions 
and (v) to generate a novel classification. The methodology 
comprised a thorough review of the current literature to 
facilitate comparison and form basis for the proposal of a 
new classification.

We have carefully considered a series of classifications 
proposed for various rare genetic/epigenetic disorders, 
including the reporting manuscripts that were taken 
into consideration for the design of a novel classification 
(summarised in Table  2). In brief, methodologies were 
similar. A group of experts in the field identified the 
deficiencies in the existing classification/terminology 
and the need for an update. Subsequently, agreement on 
a novel terminology and classification was reached and 
reported (64, 65, 66, 67, 68, 69, 70).

Challenges and limitations of the  
current classification

Recent clinical and molecular data gathered for these 
complex disorders have questioned the distinction 

Figure 2

The imprinted human GNAS locus (Hg19-chr20:57,414,795-57,486,250), on chromosome 20, close to the STX16 gene (Hg19-

chr20:57,226,309-57,254,5812) (source UCSC, Hg19). The centromeric/telomeric orientation of the chromosome is indicated. The 

maternal (NESP), paternal (AB, AS and XL) and biallelic (Gsa) transcripts are depicted as arrows. Maternal- and paternal-expressed 

transcripts are drawn above and below the horizontal line respectively. Black boxes: coding exons; grey boxes: noncoding exons; 

arrows: transcription (direction and parental origin). The brackets delimit the imprinting control element deletions, which have 

been reported. STX16 gene: full brackets: the recurrent STX16 deletion of 3.3 kb (38); large dotted brackets: the STX16 deletion 

of 4.4 kb (39); small dotted brackets: the STX16 deletion of 29.5 kb (42). GNAS locus: full brackets: the 4.7 and 4 kb deletions 

removing the NESP exon and exons 3 and 4 of GNAS-AS1 (40); large dotted brackets: the 4.2 kb deletion removing exons 3 and 4 

of GNAS-AS1 (43); deletions of 40 pb (*) and 33 pb (#) in introns of NESP and GNAS-AS1 (44); small dotted brackets: the NESP and 

GNAS-AS1 deletion (41). cen, centromeric; Mat, maternal; Pat, paternal; tel, telomeric.
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of the different PHP and AHO subtypes in the existing 
classification (Table  1). We have selected the following 
limits of the current classification:

1.	 In a subset of patients with PHP1A and varying degree 
of AHO, LOI of GNAS identical to that of PHP1B has 
been reported, suggesting a molecular and clinical 
overlap between the two subtypes (71), further 
confirmed (72, 73, 74, 75).

2.	 PHP1B patients present with a moderate reduction in 
Gsa activity in erythrocyte membranes, reminiscent –  
yet less severe – to that observed in patients with 
PHP1A and PPHP (76).

3.	 Recently, mild resistance to PTH was described in 
patients affected with PPHP, carrying a paternal GNAS 
mutation (77), showing that the hormonal resistance 
is not only associated with maternally inherited GNAS 
mutations.

4.	 Different molecular defects have been identified in 
patients with PHP1C, i.e. LOI at GNAS and four loss-
of-function mutations in the GNAS carboxyl-terminus 
leading to a conserved adenylyl cyclase receptor-
independent activation but disrupted receptor-
mediated activation (29, 30, 78).

5.	 Paternal GNAS mutations associated with progressive 
osseous heteroplasia are usually truncating mutations 
(79), yet they are identical to those found in families 
with PHP1A and/or PPHP (45). Also noteworthy is that 
a fraction of POH patients exhibits some of the typical 
AHO features and, conversely, some PHP1A patients 
carrying mutations on the maternal allele present with 
progressive deepening heterotopic ossifications. The 
hypothesis that POH should be considered as a form of 
PPHP is, therefore, debated (80, 81).

6.	 Heterozygous mutations in PRKAR1A – coding for the 
regulatory subunit of the protein kinase A (PKA) – and 
PDE4D – coding for phosphodiesterase type 4 – have 
been found in patients with acrodysostosis (16, 82, 
83). Acrodysostosis refers to a heterogeneous group 
of rare diseases characterised by skeletal dysplasia and 
characteristic features, including brachydactyly, facial 
dysmorphism and, in some cases, mental retardation 
(84, 85, 86, 87, 88). Acrodysostosis differs from PHP 
by more generalised osseous abnormalities (87, 89). 
Resistance to PTH and/or TSH is present in about 
60–70% of acrodysostosis patients with a PRKAR1A 
mutation, while, in case of a PDE4D mutation, such 
hormone resistances are found only in a smaller 

Table 2  Nonexhaustive review of classifications used in other conditions.

Methodology used to 
build the classification Mode of classification Advantages Limitations

Primary 
immunodeficiency 
diseases (69)

2-days meeting Groups of diseases 
according to the most 
fundamental defect 
presented as a table 
format

Allows a practical 
clinical framework for 
PID diagnosis

The complexities of 
these conditions cannot 
easily be captured in 
the limited table 
format

Skeletal dysplasia (66) Meeting, extensive 
review of the 
literature, and 
circulation of drafts of 
the manuscript

Groups of diseases 
defined by molecular, 
biochemical and/or 
radiographic criteria

Disorders are caused by 
disturbances in related 
metabolic pathways or 
gene networks, Sheer 
number of conditions 
included

The ‘hybrid’ nature of 
the classification, not 
clinical, not molecular

Autosomal dominant 
tubule interstitial 
kidney disease (67)

Meeting, agreement on 
the manuscript

Agreement on a novel 
name: ADTKD

Provide information on 
the disease

Use in communication 
with patients may not 
be easy

Classification based on 
the underlying genetic 
defect: ADTKD-gene

Endocrine diseases (68) Literature review Groups of diseases by 
organ

Diabetes mellitus 
(MODY) (70)

Meetings, agreement on 
the manuscript

Groups of diabetes by 
diseases’ mechanism

Provide information on 
the disease mechanism

Very large groups of 
disease (type 2 diabetes 
for example)

Allow numbering of 
new diabetes after 
identification of new 
genes for MODY 
(MODY1, MODY2, 
MODY3, MODY4…)

Osteogenesis imperfecta 
(64)

Literature review Phenotypes on 
evolution, radiology, 
clinics and genetics

Provide information on 
the disease mechanism 
and genetics

Confusing as one 
causing gene may be in 
different categories
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subset of 10–20%. Interestingly, few patients bearing 
a PRKAR1A mutation have been described in patients 
with a phenotype indistinguishable from PHP1A 
(90, 91).

7.	 Heterozygous mutations in PDE3A have been 
identified in patients affected with hypertension and 
brachydactyly type E (hypertension and brachydactyly 
syndrome (HTNB): OMIM #112410) (92).

8.	 Disorders associated with an impaired function of 
PTH1R, i.e. the Blomstrand and Eiken skeletal dysplasia, 
are currently not included in the classification.

Over the past two decades, it became obvious that 
clinical features such as AHO or in vitro assays such as Gsa 
bioactivity fail to differentiate between PHP subtypes. In 
addition, mutations of genes different from GNAS have 
been shown to lead to PTH and/or PTHrP resistance and  
GNAS mutations might trigger diseases different 
from PHP/PPHP (i.e. POH). These disorders are not 
encompassed by the current classification system.

For all these reasons, different independent studies 
from the authors of the present paper, as well as the 
‘EuroPHP network’ concluded and agreed that a uniform 
terminology is required to create a functional working 
classification that reflects the current knowledge of the 
diseases (29, 93, 94).

Terminology

We propose the term of ‘inactivating PTH/PTHrP signalling 
disorder’, abbreviated as iPPSD, which encompass all 
disorders related to this pathway. We also propose that 
numbering will allow for both clinical features and 
molecular and genetic findings to be included. The 
advantages of this terminology are as follows: (i) it describes 
the common mechanism responsible for the diseases; 
(ii) it does not require a confirmed genetic defect; (iii) it 
avoids the ambiguous term like ‘pseudo’; (iv) it eliminates 
the clinical or molecular overlap between diseases and (v) 
it is flexible to incorporate new evolving information.

We recognise that the nomenclature ‘inactivating 
PTH/PTHrP signalling disorder’ might be initially difficult 
for patients and caregivers to remember. It would, 
therefore, be helpful to rely on the abbreviation iPPSD. 
Equally, the former terms ‘pseudohypoparathyroidism’ 
and ‘pseudopseudohypoparathyroidism’ were also long 
and challenging to use for communication. PTH/PTHrP-
specific pathway was deliberately included in the name 
of the classification to avoid the misperception with 
disorders resulting from the inactivation of G protein-
coupled receptors, i.e. inactivating mutations in the TSH 

receptor or in the FSH receptor. All nomenclature based 
on the cAMP signalling were carefully considered and 
rejected due to their generic nature.

Identification of mandatory criteria for the 
new classification

Basis for the newly proposed classification of iPPSD are:

•• to provide patients with an unambiguous diagnosis;
•• to base nomenclature on pathophysiology, i.e. the 

PTH1R/Gsa/cAMP/PKA pathway, and a standardised 
diagnostic pathway;

•• to formulate basis to develop new therapeutic 
approaches;

•• to be sufficiently flexible and adaptable to include 
emerging clinical and molecular information;

•• to be simple and usable for the caregivers.

It is, therefore, of significant importance to define 
the category of iPPSD a patient belongs to, based on 
the characterisation of clinical/biochemical criteria, to 
facilitate a definitive diagnosis and, if possible, through 
molecular analysis, a more specific denomination within 
the classification.

We suggest three key clinical features as major criteria 
for the diagnosis of iPPSD. The proposed major criteria 
have minimum or no overlap with other conditions 
due to different mechanisms (Table 3, especially for the 
differential diagnoses).

We also propose a list of minor criteria that are associated 
with iPPSD. These are less specific to iPPSD compared with 
major criteria and can occur in other clinical conditions. 
Therefore, minor criteria need to be combined with one 
or more major criteria to establish the diagnosis of iPPSD.

Major criteria

PTH resistance

The hallmark of inactivating PTH/PTHrP signalling 
disorders is the resistance of the renal proximal tubule 
to the action of PTH. All genetic defects leading to a 
deficient PTH1R signalling in the kidney will, therefore, 
be named iPPSD.

Ectopic ossifications

Ectopic ossifications are superficial, subcutaneous nodules, 
defined as ectopic bone formation in the adipose or dermal 
tissue. Progressive osseous heterotopic calcifications often  
begin in the dermal and subcutaneous tissues and later 
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progress to the deeper tissues, such as muscles and tendons. 
In children, ectopic ossifications are highly suggestive of 
an inactivating GNAS mutation, i.e. iPPSD.

Brachydactyly

Brachydactyly refers to shortening of fingers, toes or both. 
Brachydactyly type E (BDE, OMIM #113300) encompasses 

variable shortening of the metacarpals/metatarsals, often 
with the involvement of phalanges (Fig. 3). It can either 
present in isolation or as part of a genetic disorder, most 
of which are included among iPPSD (95).

Brachydactyly can be challenging to identify in early 
childhood, and tends to become more evident during 
early puberty. Brachydactyly can be overlooked when all 
bones are short as in acrodysostosis since early childhood.

Table 3  Definition of major and minor criteria for iPPSD and differential diagnoses.

Assessment Differential diagnosis References

I. Major criteria 1. PTH resistance Ionized calcium, total calcium
Phosphate
Magnesium
PTH
Vitamin D (25OHD)
Creatinine
Urinary calcium
Urinary phosphate
PTH infusion test in challenging 
cases 

Normocalcaemic 
hyperparathyroidism

Renal failure
Vitamin D deficiency or 
any kind of secondary 
hyperparathyroidism

(16)

2. Ectopic ossification Detailed physical exam
X-rays

Fibrodysplasia ossificans 
progressiva (FOP,  
OMIM #135100), 
post-traumatic osteoma 
cutis

3. �Brachydactyly type E 
(comprises the IV)

Clinical inspection (fist), hand and 
feet X-rays

Turner syndrome, 
tricho-rhino-phalangeal 
syndrome (TRPS), TRPS I, 
(OMIM #190350), 
TRPS-II (OMIM #150230) 
and TRPS-III, (OMIM 
#190351)

II. Minor criteria 1. TSH resistance TSH, T4l, antibodies, imaging† Mutations in the TSH 
receptor

(26, 27)

2. �Other hormonal 
resistances

IGF-1 (GH stimulation test if 
necessary), calcitonin, LH, FSH, 
GnRH test

(2, 27, 78, 98, 
99, 100, 101)

3. �Motor and cognitive 
retardation or 
impairment

Computed tomography scan and/or 
MRI of the brain, psychopatho-
logical rating scales adjusted  
for age

(24, 25, 34, 85, 
86, 102, 116)

4. �Intrauterine and 
postnatal growth 
retardation

IUGR: gestational age, birth weight, 
birth length, head circumference, 
comparison to reference charts; 
post-natal growth: growth charts, 
X-ray of the left hand for 
determination of the bone age

(16, 40, 92, 103, 
104, 120)

5. Obesity/overweight Weight SDS, BMI percentile, BMI 
z-score

(23, 105, 106)

6. �Flat nasal bridge 
and/or maxillar 
hypoplasia and/or 
round face

Clinical inspection (4, 84, 86, 90)

iPPSD clinical diagnosis (a) Presence of one major criteria, either number 1 or 2;
(b) Presence of major criteria number 3 and at least 2 minor criteria‡

†US in adults with hypothyroidism and no evidence for autoimmunity; thyroid imaging through thyroid scintigraphy and US in neonates diagnosed 
through screening for congenital hypothyroidism; ‡Minor criteria are nonspecific (obesity/cognitive impairment); for instance, the association of 
BDE + obesity or BDE + cognitive impairment would not be relevant for our classification. By raising the number of minor criteria from 1 to 2, we will 
reduce the risk of overdiagnosing patients with iPPSD.
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While PTH resistance and ectopic ossifications are 
considered major criteria for iPPSD, brachydactyly is less 
specific and should, therefore, be combined with at least 
one major or two minor criteria to trigger the diagnosis 
of iPPSD.

Minor criteria

Thyroid-stimulating hormone (TSH) resistance

In iPPSD, TSH resistance is often mild and characterised 
by elevated TSH levels associated with free thyroxine 
(T4) levels in a normal or low-normal reference range. 
This occurs in the absence of goitre and markers 
of autoimmune disease (26, 27). TSH resistance 
can sometimes be the first detected sign of iPPSD, 

especially in countries where screening for congenital 
hypothyroidism is routinely performed (96).

Other hormone resistances

Very few other hormone resistances have been 
demonstrated so far. Resistance to growth hormone-
releasing hormone (GHRH), leading to growth hormone 
deficiency, is the most frequent additional resistance 
found in PHP1A, affecting as many as 60% of patients 
(97, 98, 99). Calcitonin resistance has been described 
without clinical features in patients affected with PHP1A 
(27). Elevated follicular-stimulating hormone (FSH) and 
luteinizing hormone (LH) levels were reported both 
by us and Namnoum et  al. (78, 100). Glucagon and 
adrenaline resistances were demonstrated in patients 

Figure 3

Patterns of brachydactyly type E associated with iPPSD. A, B, C, D and E, brachydactylies associated with coding mutations in the 

Gsa subunit of the G protein (iPPSD2). F and G, bone phenotype associated with the loss of imprinting at the GNAS locus 

(iPPSD3). H, I and J, brachydactylies associated with the molecular defect in PRKAR1A (iPPSD4) and PDE4D (iPPSD5). Note the 

phenotypic overlap between A, H, J and B, C, G, I respectively.
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with features of PHP and low Gsa bioactivity through 
in vivo testing (6, 101).

Motor and cognitive retardation or impairment

Psychomotor and cognitive alterations have been 
described in about 40 to 70% of the patients with a 
maternal coding mutation of GNAS (25, 34), as well as 
in some patients affected with acrodysostosis (83, 85, 
86). Psychiatric manifestations have also been reported 
in these patients (102). Patients with paternal mutations 
of GNAS or epigenetic modifications of the GNAS DMRs 
seem unaffected (25, 63).

Intrauterine and postnatal growth retardation

Intrauterine growth retardation (IUGR) has been 
frequently observed in both maternal and paternal 
inherited inactivating GNAS coding mutations.  
However, IUGR is more pronounced in patients 
harbouring mutations on the paternal GNAS allele, mainly 
when affecting GNAS exon 2–13 mutations, compared 
with patients with GNAS exon 1/intron 1 mutations 
(103). IUGR has also been described in acrodysostosis 
with mutations in PRKAR1A or PDE4D, and in patients 
with mutations in PDE3A (16, 82, 90, 92). A LOI at the 
maternal GNAS A/B: TSS-DMR has been associated with 
increased intrauterine growth (104).

Postnatal growth retardation is a frequent sign  
in PHP1A and acrodysostosis. Growth hormone 
deficiency and premature closure of the epiphysis result 
in short stature (16, 82, 97, 105). Growth retardation 
has also been observed in PHP1B, although only in 
exceptional cases (71, 74), and in patients with Eiken 
dysplasia (10).

Obesity/overweight

Obesity or overweight may be the most nonspecific 
minor sign; however, it occurs very frequently in 
disorders with an impaired PTH/PTHrP signalling 
pathway and may help to differentiate between the 
different subtypes. Growth hormone deficiency, 
impaired lipolytic response of adrenaline (101) or 
decreased resting energy expenditure (106) contribute to 
the development of obesity in patients with mutations 
on the maternal allele of GNAS (23, 107). Obesity is also a 
frequent feature in patients affected with acrodysostosis 
(16, 90, 108).

Flat nasal bridge and/or maxillar hypoplasia and/or 
round face

Elements of facial dysmorphism have been associated 
with acrodysostosis (flat nasal bridge and/or maxillar 
hypoplasia) or with PHP1A (round face) (4, 86).

Diagnosis of iPPSD

We propose that a minimum of one of the major 
criteria is mandatory for the clinical diagnosis of iPPSD. 
PTH resistance or ectopic ossifications may lead to the 
diagnosis of iPPSD with or without the presence of minor 
criteria. However, brachydactyly type E (BDE) should be 
associated with at least one major or two minor criteria to 
suggest iPPSD, as it is a common feature of several other 
diseases and syndromes (Table 3).

The known molecular causes of PTH/PTHrP signalling 
disorders are:

•• inactivating mutations of PTH1R;
•• inactivating heterozygous mutations in the coding 

sequence of GNAS-Gsa;
•• methylation changes of the DMRs of GNAS caused by

–– deletions or duplications at ICRs (STX16; NESP; 
GNAS-AS1);

–– paternal UPD of chromosome 20q;
–– unknown mechanism(s);

•• heterozygous mutations of PRKAR1A;
•• heterozygous mutations of PDE4D;
•• heterozygous mutations of PDE3A.

In contrast to the former diagnostic classification based 
solely on the phenotype, once iPPSD has been identified 
(using criteria described Table  3), we propose to further 
subtype iPPSD based on the underlying molecular (epi)
genetic defect. Therefore, the term iPPSD will refer to the 
pathophysiology of the PTH/PTHrP signalling abnormalities, 
while the number will refer to the underlying molecular 
mechanism (responsible for the pathology). We have 
numbered iPPSD subtypes starting with PTH1R mutations.

The novel classification of iPPSD

The European PHP network proposes the following 
classification (Fig. 4):

•• iPPSD: clinical/biochemical diagnosis based on the 
major/minor criteria as defined above, in the absence 
of genetic investigation;

•• iPPSD1: loss-of-function mutation in PTH1R;
•• iPPSD2: loss-of-function mutation in Gsa;
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•• iPPSD3: methylation change(s) at one or more GNAS 
DMRs, associated with or without a genetic (deletion) 
or cytogenetic (UPD) defect;

•• iPPSD4: PRKAR1A mutation;
•• iPPSD5: PDE4D mutation;
•• iPPSD6: PDE3A mutation;
•• iPPSDx: lack of genetic/epigenetic defect identified 

following molecular investigation of known genes 
described above;

•• iPPSDn+1: the identification of a novel gene/molecu-
lar defect will lead to a disease named iPPSD7, then 8 
and so on.

iPPSD3 encompasses all disorders associated with 
changes in the methylation patterns of the DMRs 
of GNAS, including UPD(20)pat and deletion within 
STX16, NESP etc. Of most significance is the common 
mechanism shared by these patients, i.e. the LOM 
at the GNAS A/B:TSS-DMR. Grouping them under 
iPPSD3 highlights this common mechanism. Secondly, 
we anticipated the difficulties in integrating the 
multiplicity of the epigenetic mechanisms within the 
classification system as this adds no further diagnostic 
value. However, the further specification of the 
epigenetic defect can remain part of a private exchange 
between the molecular laboratory, the patient and his/
her physician.

We recommend the use of Arabic numerals to avoid 
the confusion with letters (II with the number 11 for 
example).

The advantages of this new nomenclature are: (i) it 
stratifies the disorders into clusters caused by the same 
mechanism; (ii) it is flexible and open to accommodate 
new defects to be discovered in the future and (iii) it 
simplifies the concept of the overlapping disorders under 
a single umbrella.

This classification, however, bears some limitations. 
We deliberately did not include the parental origin of 
the genetic/epigenetic defect, although some iPPSD are 
imprinting disorders – namely iPPSD2 and iPPSD3 –  
and their phenotypic expression depends on their 
parental inheritance. The main reason behind this is 
the association of PTH resistance and POH with both 
maternal and paternal inactivating GNAS mutations. 
Therefore, the mechanism of the two allelic GNAS 
mutations can be considered alike. However, in daily 
practice, the parental origin of the GNAS defect should 
be considered, particularly for genetic counselling. In 
fact, AHO and multiple hormone resistance including 
PTH resistance are largely associated with maternal GNAS 
coding defects, whereas isolated AHO and/or POH are 
more often associated with paternal GNAS coding defects.

Figure 4

Schematic representation of the new classification proposed 

by the European PHP network. According to the suggested 

new classification Blomstrand and Eiken chondrodysplasia, 

PHP type 1 and 2, PPHP, AHO, POH and acrodysostosis 

clinically/biochemically diagnosed without genetic 

investigation are named iPPSD; Blomstrand and Eiken 

chondrodysplasia due to PTHR1-inactivating mutations are 

named iPPSD1; PHP1A, PHP1C, PPHP and POH clinically 

diagnosed and characterised by Gsa-inactivating mutations 

are termed iPPSD2; PHP1B clinically diagnosed and due to 

methylation changes at the GNAS DMRs is classified as iPPSD3; 

in the presence of acrodysostosis type 1 or PRKAR1A 

mutations, the disease is classified as iPPSD4. Acrodysostosis 

type 2 or PDE4D mutations are termed iPPSD5; PDE3A 

mutations are categorised as iPPSD6; patients lacking genetic 

or epigenetic defects at the known genes fall under the 

category of iPPSDx; any newly discovered genetic/molecular 

defects will be labelled as iPPSDn+1.
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Another limitation of this classification is the inability 
to subclassify individuals with a pure clinical suspicion 
of iPPSD and lack of complete (epi)genetic testing. While 
such patients cannot be classified as iPPSDx or with a 
specific number, we recommend that they are classified 
as iPPSD.

The inclusion of the disorders involving the two 
main ligands of the PTH1R, i.e. hypoparathyroidism (109) 
and brachydactyly type E with short stature (mutations 
in PTHLH the gene encoding PTHrP (110, 111)) to the 
classification may be argued. However, we decided to 
exclude them due to several other issues such as (i) their 
different biochemical pattern including low levels of PTH 
responsible for hypoparathyroidism; (ii) the dramatic 
difference in the therapy of hypoparathyroidism and 
defects in PTH1R signalling respectively and (iii) the 
difference in research goals in the two disease groups.

Perspectives

We believe that the use of the new nomenclature will 
facilitate a more straightforward approach to the diagnosis 
of iPPSD, increase awareness of the red-flag signs of 
PTH resistance, ectopic ossifications and brachydactyly 
type E. It would allow for the classification of patients 
into local catalogues used by the different healthcare 
organisations in a more homogenous way, and enable 
future observational and research studies in the field.

We strongly believe that too many denominations 
for similar diseases and patients with phenocopies (PHP, 
PPHP, POH, ACRDYS, TRPS, BDE, AHO) have diluted and 
dispersed research advance, adding undue complexity to 
the causative mechanism and proved challenging for the 
experts in building a global research network in the field.

Regular use of the classification in daily practice or for 
scientific purposes will allow appropriate amendments in 
the best interest of the patients.

While producing this novel nomenclature and 
classification, we have identified the need to (i) 
disseminate this alternative classification to be positively 
enriched by the clinical and scientific community; 
(ii) validate the major/minor criteria in a series of 
patients affected by different iPPSDs and (iii) develop 
international guidelines for the diagnosis and treatment 
of the iPPSDs in the near future.
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