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database a counter is allocated in main memory to keep track of the number of
transactions that contain the set. If the number of the examined sets is not kept
low enough while the reading of the database is performed, the total number of
counters may be too large to �t in main memory, or too much e�ort is wasted to
keep the support of sets that eventually reveal to be lower then the threshold.

The algorithms that have already been proposed [1, 2, 3, 4, 5, 6] solve this
problem iteratively. They keep only a subset of the collection of sets in main
memory at a time. In particular, in each iteration, the cardinality of the sets
whose support is being computed is �xed. After the support of each of them is
known, the pruning phase is executed, to get rid of those sets whose support
is lower than the threshold. In the next iteration the support of the sets with
increased cardinality is determined. These sets (called the candidate sets) are
identi�ed from the large itemsets found in the previous iteration. These algo-
rithms execute the pruning phase once for each iteration, and perform as many
iterations as the cardinality of the longest itemsets with suÆcient support. No-
tice, also, that some of these algorithms [1, 3, 4, 6] perform a reading pass on
the database for each iteration. This reading pass determines the number of I/O
operations performed in each iteration which are the most expensive from the
viewpoint of the execution time.

In this paper we propose a new approach for the identi�cation of all the large
itemsets. This approach is based on the observation that the collection of the
sets that is maintained in the main memory in each iteration can be arbitrarily
chosen. The itemsets are ordered lexicographically. The �rst iteration keeps the
itemsets that start with the last item in the lexicographical order, while the
subsequent iterations keep the itemsets that start with the other items, in the
decreasing order. The purpose is to improve the eÆciency in the generation of
the candidate itemsets and in the reduction of the number of accesses to main
memory required to update their support.

A new algorithm based on this approach is proposed. The algorithm is called
Seq for the fact that in the �rst step, instead of building itemsets, builds se-
quences of items. Seq reduces I/O execution times because it makes a single
reading pass on the database. Moreover, we will show with our experiments that
Seq is speci�cally oriented to databases of very large dimensions and searches of
very high resolution, where the minimum support is de�ned at very low levels.
Seq reduces also CPU execution times because it requires only two accesses to
main memory in the generation of a candidate itemset and when updating its
support counter, regardless of the itemset length; moreover it executes the prun-
ing phase once for each item, instead of once for each value of itemset cardinality
(thousands times more in real databases!).

The paper is organized as follows. Section 2 introduces some preliminary
de�nitions and presents the algorithm. Section 3 provides an evaluation of its
properties. Finally, Section 4 shows the results of some experiments, while Sec-
tion 5 will draw the conclusions.
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2 Algorithm Seq

2.1 Preliminary de�nitions

1. The database is organized in transactions. Each transaction is represented
with the items lexicographically ordered. We indicate with T[i] the item of
transaction T in the position i (i starts from 0).

2. We call the set of all the possible items in the database the Alphabet. We con-
sider it lexicographically ordered and indicate with < the ordering operator
and with > the operator of opposite ordering.

3. Given a transaction T of length L, the sequence of all items extracted from
T starting at position j is denoted as SeqjT (0 � j <L) and de�ned as follows:
Seq

j
T=hT[j] T[j+1] T[j+2]� � �T[L-1]i

T[j], the starting item in the sequence Seq
j
T, is called the leader of the se-

quence, whereas T[L-1], the last one, is called the terminal item.
The number of sequences in a transaction T is equal to the length of T. For
example, the transaction T=hABCDi has four sequences:
Seq0T=hABCDi, Seq

1
T=hBCDi, Seq

2
T=hCDi and Seq3T=hDi.

4. An ordered set, and thus also a sequence S=SeqjT, is stored in the main
memory in a tree. The �rst item in the sequence (LeaderfSg=T[j]) is saved
on the root node of the tree; the second one (T[j+1]) on a son node of the
�rst one, and so on. For example, the sequence hABCDi would be saved on
a tree with A on the root node, B on a son node of A and so on. A given tree
is used to store all the sequences, having the same starting item. Figure 1
shows the tree with the two sequences hABCDi and hABDi. The tree in the
above example, is denoted as T <A since A is the item in the root node and
< is the operator of ordering of the items. Viceversa, we denote with T > a

A

B

D

C D

1

1

Fig. 1. T <
A

tree with the two sequences hABCDi and hABDi.

tree in which > is used as operator of ordering to store the items in the tree.
5. A counter is associated to the terminal node of each sequence. It keeps the

number of transactions in which the sequence (composed of the items stored
from the root node to the terminal node) occurs in. Observe also that the
counter of a sequence not necessarily is stored in a leaf node of the tree: this
is the case of the sequence hABCi, substring of the sequence hABCDi.
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2.2 Description of the Algorithm Seq

Algorithm Seq works in two steps.

First Step. The database is read. For each transaction it �nds all the sequences
and stores them in the main memory in T < trees. For example, the transaction
T1=hABCDi generates four sequences hABCDi, hBCDi, hCDi and hDi that
are stored in the four trees T <A , T <B , T <C and T <D . If a sequence is found for the
�rst time, the counter associated to the terminal node is set to 1; otherwise, it
is incremented by 1. Figure 2 shows the trees T < for a very simple database.
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T5:   A C D Y Z
T6:   A 
T7:   C Y
T8:   A B D Y Z

T T

< T

T

ZTT

Fig. 2. The trees after the �rst step is completed.

At the end of the �rst step only the support of the sequences is known.
However, the support of the itemsets can be determined from the support of the
sequences as stated by the following theorem whose proof will be omitted.

Theorem. The support of an itemset I, with item X as its �rst item, can be
obtained as the sum of the counters of all the sequences of T <X containing I. 2

Second Step. It has the purpose to determine the support of the itemsets
from the support of the sequences according to the previous theorem. The trees
generated in the �rst step (T <) are used in order to produce a second set of trees
(T >) in which the itemsets with the relative support counters are represented.
Each tree T < is read, starting from the tree T < of the last item in the Alphabet
and proceeding with the trees T < of the other items in the decreasing order. The
sequences of each tree T < are taken with their counters, and from each of them
the subsets containing the Leader of the sequences are determined and stored in
a T > tree (the other subsets, not containing the Leader, are determined while
reading the other trees). These subsets are the itemsets. The counter associated
to the terminal node of the itemset is incremented by the value of the counter
of the sequence originating it. In this way, at the end of the reading of a generic
tree T <, the counters of the itemsets originated from the sequences of that tree
contain the correct value necessary to determine their support. If the support of
an itemset is not suÆcient, the itemset is deleted from its T > tree.
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Sequence Subset Determination In order to understand the technique used to
produce the itemsets from the sequences, consider the reading of the tree T <D of
Figure 2, and in particular the sequence hDY Zi (see Figure 3).
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Fig. 3. The creation of the itemsets from the sequence hDY Zi.

At this time, the trees T <Y and T <Z have been already read; in main memory
there are the itemsets originated from the sequences that start with Y and Z. The
generation of the itemsets of the sequence hDY Zi consists in the addition of the
item D, Leader of the sequence, to all the subsets of the remaining portion of the
sequence (hY Zi). These latter subsets are the empty set and fZg,fYg, fYZg.
The empty set corresponds to the determination of the itemset fDg: the root
node of T >D is created only if the reading of the database in the �rst step has
proved that item D has a suÆcient support. As regards the other subsets, if their
support is not suÆcient, they are not found in T >Z and T >Y trees respectively,
and no work is wasted considering their supersets. In the positive case, a leaf
node containing the Leader D is added to the subset in the appropriate tree T >.
The algorithm that creates the sequence subsets is reported.

procedure create subsets (sequence S, counter c, list prune list)

X=LeaderfSg;

list current sets, previous sets;

for all items I 2 S from last one to first one (I6= X) do

if exists T >I then

leaf = add leaf(T >I .root node, X, c, prune list);

add T >I .root node to current sets;

end if

for all nodes P in previous sets do
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if exists a child node N of P with item I then

leaf = add leaf(N, X, c, prune list);

add N to current sets;

end if

end for

swap current sets into previous sets;

end for

end procedure

procedure add leaf (node F, item X, counter c, list prune list)

if exists a child node N of F with item X then

N.count = N.count + c;

else

allocate a new node N child of F with item X;

N.count = c;

add N to prune list;

end if

end procedure

2.3 Sequences Advantages

Seq receives several bene�ts with the representation in terms of sequences:

1. During the reading of the database, when not enough information is known
to eliminate many itemsets, only the sequences are maintained in the main
memory: the support of the sequences is a sort of \summary" of the support
of the itemsets and enables the saving of many counters in main memory.

2. Seq saves CPU execution time because this latter one is not determined
only by the total number of candidate itemsets kept in main memory but
also by the number of accesses in main memory that each of them requires.
Seq needs two accesses in main memory when it generates a new itemset
and when it updates its support (see the code in Section 2.2), independently
of the itemset length. On the contrary, for the generation of an itemset of
length k, Apriori requires k accesses. Then, Apriori checks for the presence
of k subsets of length (k-1) that requires k(k-1) accesses. Finally, when it
updates the support of an itemset of length k it performs k accesses.

3. Seq executes the pruning phase very frequently (once for each item with
suÆcient support). Instead, traditionally, the pruning phase is run once for
each level of itemset cardinality, that is about three orders of magnitude less.

2.4 Implementation of Seq

When very large databases are used, the number of sequences represented in
the trees T < might be too large to �t in the main memory. We had to change
the algorithm to allow the bu�er management. The algorithm swaps the content
of the trees to disk in the �rst step and read it in the second one. Each tree
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is swapped to a separate �le: T <A is swapped to �le FA, T
<
B to FB, and so on.

The sequences are written to disk in a compressed form. For example: once
that the �rst sequence of T <A , hABCDi is written, the second one, hABDY Zi
can be represented substituting the pre�x items common to the two consecutive
sequences (hABi) with the pre�x length (2). Especially if the transactions have
many common sequences this technique saves a great amount of information.

3 Evaluation of Algorithm Seq

Three basic parameters characterize a given data mining problem: the total
number N of the transactions, the average length L of the transactions and the
number I of di�erent items. Let us analyze their inuence on the computational
work of the presented algorithm and the access times to mass storage.

Computational work Computational work involved in step 1, i.e. in the
construction of the trees containing sequences, is relatively small and is propor-
tional to the product L�N , that is to the size of database. The evaluation of the
computational work in step 2, that is in the generation of the trees of the subsets
of items, grows exponentially with L and linearly N. However, L is limited and
is characteristic of a speci�c application. Besides, computational time needed to
construct the trees of the itemsets is relatively small with respect to the times
necessary to read the database and to store and retrieve the trees from disk.

The execution time of Seq is nearly independent of the value of the minimum
support. This point is rather important. Indeed, the concept of minimum sup-
port has been introduced to reduce the computational time, but it reduces the
statistical signi�cance of the search. Above all, if a certain value of the minimum
support is reasonable for the itemsets of length equal to 1, it might be enormous
for itemsets of length 2 or more. So, the new algorithm might be adopted in
searches characterized by very small values of resolution.

Access time to mass storage Let TR be the time spent to read the
database, that is the lower bound of any algorithm. However, TR must be in-
creased by the time TF spent to save and retrieve T < trees. Thus the upper
bound of the total volume of data transferred with the mass storage amounts
to the size of the database plus two times the sizes of the �les of sequences. For
very long databases this upper bound is slightly larger than the database size.

Two contrasting factors inuence TF with respect to TR. Indeed, the volume
of data in the T < trees would be larger than the whole database (because to
any transaction there correspond more sequences) for those databases in which
transactions have very few common items. This is the case of synthetic databases
of the experiments of Section 4. On the other side, repeated transactions require
the same information amount of a single transaction: therefore TF < TR in
case transactions are frequently repeated or have many common items. TF can
be considerably reduced if information represented by the trees of sequences is
compressed. In our implementation we have adopted a very simple technique
of compression but it would be possible to reduce TF with more sophisticated
compression techniques even in the case of no repeated transactions.
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4 Experiments

We have run our implementation of algorithm Seq using a PC Pentium II, with
a 233 Mhz clock, 128 MB RAM and Debian Linux as operating system. We
have worked on the same class of synthetic databases [1] that has been taken as
benchmark by most of previous algorithms. Broadly, each transaction of these
databases has been generated by addition of some items, extracted in a casually
fashion, to a large itemset. For this \semi-casual" content, we believe that this
database is not very suitable for an eÆcient execution of Seq: in most of the cases
the total dimension of the �les containing sequences gets comparable with the
database dimension and execution time spent in I/O is not mainly determined by
the database reading pass. The results of the experiments are shown in Figure 4.

In the left column of Figure 4 we compare the execution times of Seq with
Apriori, one of the best algorithms. The three experiments analyzed refer to the
three classes of databases characterized by increasing transaction length (5, 10,
15). For each database class, we show the execution times for di�erent databases
in which the average length of the large itemsets gets the values 2, 4, 6, 8, 12.
Seq works better than Apriori in all the experiments, but the best gains occur
when the average itemsets length is comparable with the transaction length.
Observe also how Seq execution time is almost constant with respect to the
average itemsets length, whereas Apriori increases the execution times because
of the increasing number of reading passes on the database. Notice that, as the
value of the minimum support decreases, Seq gets much better. This behavior is
due to the fact that a certain number of itemsets with higher cardinality values
result with suÆcient support. In these conditions, Apriori must increase the
number of reading passes on the database whereas the number of I/O operations
performed by Seq remains almost constant. Furthermore, even when the number
of I/O operations performed by Seq is comparable with Apriori, the execution
times of Seq are still lower. Therefore, we have compared the number of candidate
itemsets in main memory in order to ascertain whether this one was a favorable
factor to Seq that could determine a lower CPU processing time. We have noticed
that there is not a signi�cant di�erence between the two algorithms. So, we
have concluded that the computational work performed by Seq is lower than
Apriori because of the lower number of accesses to main memory required in
the generation and update of candidate itemsets, as already stated in Section 2.3.

The experiments on the scale-up properties with respect to the dimension
of the database are shown in the �rst experiment of the second column. In this
experiment the minimum support is �xed to 0.5, but analogous results are given
with lower values. We adopted databases with 100, 200, 300 and 400 thousands
of transactions. The linear behavior is still veri�ed by both Seq and Apriori but
with very di�erent slopes! These di�erent increases are due again to the number
of I/O operations. Seq reads once the database, writes once the �les with the
sequences and then reads a certain number of them. However, the size of the
�les increase of a little fraction of the database size as this latter one increases.
On the contrary, the number of I/O operations performed by Apriori are still
determined by the repeated reading passes on the database.
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The next experiment shows the ratio between the total storage occupation of
the �les containing the sequences and the database size with respect to di�erent
databases having the same statistics but di�erent dimensions. This experiment
con�rms our previous evaluations. You can notice that for very large databases
(2 millions of transactions) the size of the �les containing the sequences is only
a little fraction (7%) of the database size. In these cases, the I/O operations on
the �les do not inuence the total time spent in performing I/O because this
one is mainly determined by the reading pass of the database.

The remaining experiment shows the variation of the execution times of Seq
with the average transaction length that con�rms that the execution time of Seq
is exponential with respect to the length of the transaction.

5 Conclusions and Future Work

A new technique for the discovery of frequent itemset have been presented. It
is speci�cally oriented to databases of very large dimensions and searches of
very high resolution. The algorithm Seq based on this approach is characterized
by an increased processing eÆciency, since its execution times are better than
Apriori, one of the best algorithms of current literature. Seq needs only one pass
on the database and has a linear behavior, almost constant, with the dimension
of the database. Moreover our experiments have shown that Seq execution time
is nearly constant with respect to the maximum cardinality of the itemsets.

Max-Miner [7] and Pincer-Search [6], new algorithms presented while this
work was in the implementation phase, perform better than Apriori on databases
with very long itemsets. Further work will compare these algorithms with Seq.
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