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Abstract

The aim of this paper is to state a correspondence between marked Poisson processes and
multivariate subordinated Lévy processes. We prove that, under suitable conditions, marked
Poisson processes are in law subordinated Brownian motions and we provide their Lévy triplet
and characteristic function. We introduce the class of multivariate Gaussian marked Poisson
processes and prove that - in law - they are multivariate subordinated Brownian motions.

MSC2010 Classification: 60G15, 60G51, 60G55, 60G57

Keywords: marked Poisson processes, subordinated Lévy processes, multivariate Poisson ran-
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Introduction

The aim of this note is to state a correspondence between multivariate marked Poisson processes
and multivariate subordinated Lévy processes. The motivation of this note is to further the work
of Barndorff-Nielsen et al. (2001) who give characterization of multivariate subordinated Lévy
processes which are relevant in modern finance and related fields. A standard reference for Poisson
processes, Lévy processes and their relationship is Çınlar (2011).

Let Π be a Poisson random measure on a measurable space (E, E) with a σ-finite mean measure
µΠ. By slight abuse of notation, with Π = {Πi, i ∈ I} we indicate both the random measure
and the collection of its atoms indexed by some countable set I. Marked Poisson processes are
constructed by attaching a random variable to each atom of the random measure Π. Formally, let
Z = {Zi, i ∈ I} be a family of random variables (marks) on a measurable space (F,F) indexed
by the same countable set I. Assume that the variables Zi are conditionally independent given Π
with distributions Q(Πi, ·), where Q(s, B) is a transition probability kernel from (E, E) into (F,F).
Each variable Zi can be considered as an indicator of some property associated with the atom Πi.
Then, as proved in Theorem 3.2 in Çınlar (2011), M := (Π,Z) forms a Poisson random measure
on (E×F, E⊗F) with mean µΠ×Q, where (µΠ×Q)(dx, dy) = µΠ(dx)Q(x, dy). The new measure
M is called marked Poisson random measure.

Let us recall that the subordination of a Lévy process L = {L(t), t ≥ 0} by a univariate
subordinator τ(t), i.e. a Lévy process on R+ = [0,∞) with increasing trajectories, defines a new
process X = {X(t), t ≥ 0} by the composition X(t) := (L1(τ(t)), . . . , Ln(τ(t)))T . Theorem 30.1
in Sato (1999) characterizes the subordinated process X in terms of its Lévy triplet. Barndorff-
Nielsen et al. (2001) generalize the above construction by allowing the introduction of multivariate
subordinators, i.e. Lévy processes on Rn+ = [0,∞)n, whose trajectories are increasing in each
coordinate. For purposes of introduction of multivariate subordination, the notion of Rd+-parameter
process, as introduced in Barndorff-Nielsen et al. (2001), is required. Consider the multiparameter
s = (s1, ..., sd)

T ∈ Rd+ and the partial order on Rd+

s1 � s2 ⇔ s1
j ≤ s2

j , j = 1, . . . , d.

Let now L(s) = (L1(s), L2(s), . . . , Ln(s))T be a process with parameters in Rd+ and values in Rn.
It is called an Rd+-parameter Lévy process on Rn if the following holds

• for any m ≥ 3 and for any choice of s1 � ... � sm, L(sj) − L(sj−1), j = 2, ...,m, are
independent,

• for any s1 � s2 and s3 � s4 satisfying s2−s1 = s4−s3, L(L(s2)−L(s1)) = L(L(s4)−L(s3))
where L(·) denotes the law of the random variable,

• L(0) = 0 almost surely, and

• almost surely, L(s) is right continuous with left limits in s in the partial ordering of Rd+.

Let {L(s), s ∈ Rd+} be a multiparameter Lévy process on Rn with Lévy triplet (γL,ΣL, νL), and
let τ (t) be a d dimensional subordinator independent of L(s) having Lévy triplet (γτ , 0, ντ ). The
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subordinated process X = {X(t), t ≥ 0} defined by

X(t) := L(τ (t)) =

 L1(τ1(t), . . . , τd(t))
...

Ln(τ1(t), . . . , τd(t))

 , t ≥ 0

is a Lévy process, as proved in Theorem 4.7 in Barndorff-Nielsen et al. (2001), who also provide its
characteristic function and Lévy triplet. Our main result provides a link between marked Poisson
processes and multivariate subordinated Lévy processes. In particular we give conditions for marks
and underlying Poisson measure such that marked Poisson process are in law subordinated Lévy
process as defined in Barndorff-Nielsen et al. (2001). In addition we provide their Lévy triplet.

As an example we introduce the class of Gaussian marked Poisson processes and prove that in
law they belong to the class of multivariate subordinated Brownian motions. We show that, under
suitable conditions, the processes in this class have characteristic functions in closed form. In
particular, we focus on a multivariate Laplace process. The Laplace distribution (Laplace (1774))
is infinitely divisible and able to account for heavier than Gaussian tails. For this reason, the
multivariate associated Laplace process become popular for multivariate modeling in several areas,
as Engineering and Finance (Kotz et al. (2012)).

1 Lévy Marked Poisson processes

Here we construct a Marked Poisson process of Lévy type. Let Π be a Poisson random measure
on (R+×Rd+,Bd+1), where Bd+1 is the Borel σ algebra, with mean measure µΠ = Leb× νΠ, where
νΠ is a Lévy measure, such that νΠ({0}) = 0 and

∫
B |x|νΠ(dx) <∞, where B = {x ∈ Rd, |x| ≤ 1}

is the unit ball. The process defined by

π(t) :=

∫
(0,t]×Rd+

xΠ(ds, dx), (1.1)

is a zero drift multivariate subordinator with Lévy measure νΠ. The atoms of Π are family of
random variables Π = {(Π1,Π2) = {(Π1i,Π2i), i ∈ I}} on R+×Rd+, where Π1i are the jump times
and Π2i are the jump sizes.

If L(s) is an Rd+- multiparameter process on Rn and λs = L(L(s)), and B is any set belonging
to Bn i.e. B ∈ Bn, we introduce the transition probability kernel Q defined by Q(s, B) = λs(B),
i.e.

Q(0, B) := P (L(0) ∈ B) = 1B(0) (1.2)

Q(s, B) := P (L(s) ∈ B)

and name it multiparameter Lévy kernel. The first expression of equation (1.2) is a consequence of
being L(0) = 0 with probability one.

The following theorem provide a connection between marked Poisson processes and multivariate
subordinated Lévy processes.
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Theorem 1.1. Let Z = {Zi, i ∈ I} be a family of marks of Π = {(Π1i,Π2i), i ∈ I} on
(Rn,Bn), with distribution Q(Π2i, ·). The family N = (Π1,Z) forms a Poisson random mea-
sure on (R+ × Rn,Bn+1) with mean measure µN (dt, dy) = dt

∫
Rd+
νΠ(ds)Q(s, dy). If we choose

γY =
∫
Rd+
νΠ(ds)

∫
B xQ(s, dx), the process Y (t) defined as

Y (t) := γY t+

∫
(0,t]×B

y[N(ds, dy)− µN (ds, dy)] +

∫
(0,t]×Bc

yN(ds, dy), (1.3)

is (in law) a subordinated Lévy process constructed by subordination of a multiparameter Lévy
process L(s) such that L(L(s))=Q(s, ·), with the subordinator π(t). The Lévy triplet of Y is
(γY ,ΣY , νY ), where

ΣY = 0,
νY (B) =

∫
Rd+
νΠ(ds)Q(s, B).

Proof. Let Q̂ be a transition probability kernel from (R+ × Rd+,Bd+1) into (Rn,Bn), so that for

each t ∈ R+ we have Q̂(t, s, dy) = Q(s, dy). From Theorem 3.2 in Çınlar (2011) it follows that
the pair T := (Π,Z) forms a Poisson random measure on (R+ × Rd+ × Rn,B ⊗ Bd ⊗ Bn) with

mean µT = Leb × νΠ × Q̂, i.e. µT (dt, ds, dy) = dtνΠ(ds)Q̂(t, s, dy) = dtνΠ(ds)Q(s, dy). Define
now N := (Π1,Z). Then N forms a Poisson random measure on (R+ × Rn,Bn+1) with mean
measure µN (dt, dy) = dt

∫
Rd+
νΠ(ds)Q(s, dy) equal to the margin measure of the measure T on

(R+ × Rn,Bn+1). Let νN (dy) =
∫
Rd+
νΠ(ds)Q(s, dy), it holds µN = Leb × νN . Let now L(s) be

a multiparameter process with L(L(s)) = Q(s, ·) and let it be independent from the subordinator
π(t). Consider the process X(t) := L(π(t)). By Theorem 4.7 in Barndorff-Nielsen et al. (2001)
X(t) is a Lévy process with the following Lévy triplet

γX =
∫
Rd+
νΠ(ds)

∫
B xQ(s, dx),

ΣX = 0,
νX(B) =

∫
Rd+
νΠ(ds)Q(s, B).

The Poisson random measureN has mean measure µN = Leb×νN , where νN = νX . Therefore the
process Y defined in equation (1.3) is a Lévy process with Lévy measure νY = νX . By construction
ΣY = 0, thus Y is pure jump. By assumption we choose

γY =

∫
Rd+
νΠ(ds)

∫
B
xQ(s, dx) = γX .

Therefore Y has the same Lévy triplet of X and the assert is proved.

We call the process Y in (1.3) Lévy marked Poisson process (LmPp) and its corresponding
random measure N is called Lévy marked Poisson random measure. Since Y is a subordinated
Lévy process, its straightforward to derive its characteristics function by applying Theorem 4.7 in
Barndorff-Nielsen et al. (2001).

Corollary 1.1. The characteristic function of Y (t) is:

E[ei〈z,Y (t)〉] = exp(tΨπ(logψL(z))), z ∈ Rn+,
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where for any w = (w1, ..., wd)
T ∈ Cn with Re(wj) ≤ 0, j = 1, ..., d

Ψπ(w) =

∫
Rd+

(e〈w,s〉 − 1)νΠ(ds) and log(ψL(z)) = (log(ψ1(z)), ..., log(ψd(z)))T

ψj being the characteristic function of L(δj), δj = (δj1, ..., δjd)
T , where δjk is Kronecker’s delta.

2 Trajectories

Theorem 1.1 allows for the discussion of regularity of trajectories of process Y .

Proposition 2.1. If the Poisson random measure Π in (1.1) satisfies
∫
B |x|

1/2νΠ(x) < ∞, the
marked Poisson process Y (t) has bounded variations on any finite time interval, i.e.

∫
B |x|νY (dx) <

∞.

Proof. Since Y (t) =L L(π(t)) the assert follows from Theorems 3.3 and 4.7 in Barndorff-Nielsen
et al. (2001).

Concerning the issue of finite/infinite activity an immediate consequence of

νY (Rn) =

∫
Rn+
Q(s,Rn)νΠ(ds) =

∫
Rn+
νΠ(ds) = νΠ(Rn+),

is that process Y has finite activity (νY (Rn) <∞) if and only if Π does (νΠ(Rn+) <∞). Since the
marginal Lévy measures are defined as

νY j (Aj) := νY (R× . . .× R×Aj × R× . . .× R), Aj ∈ B(R), j ∈ {1, . . . , n},

we have νY j (R) <∞ for all j ∈ {1, . . . , n} iff νY (Rn) <∞.

Given that subordinator π(t) introduced in equation (1.1) has zero drift, if Y (t) has bounded
variations on any finite time interval (

∫
B |x|νY (dx) <∞) it is a pure jump zero drift Lévy process

and can be written as the sum of its jumps

Y (t) =
∑

s∈D∩[0,t]

∆Y (s)

where D = {s > 0 : ∆Y (s) 6= 0}. The measure N in Theorem 1.1 counts the number of jumps in
time interval (0, t] whose size belongs to A and its mean measure is Leb× νY , where νY is exactly
the Lévy measure of Y . Equation 1.3 becomes

Y (t) =

∫
(0,t]×Rn

yN(ds, dy). (2.1)

Intuitively, Theorem 1.1 states that Lévy marked Poisson random measures define subordinated
Lévy motions.
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3 Gaussian-marked Poisson processes

In this section we specify a multiparameter Gaussian kernel, defined by means of the law of a
multiparameter Brownian motion, which we introduce below.

Let B(t) be a Brownian motion on Rd with independent components, drift µ and Gaussian
covariance matrix Σ = diag(σ2

1, . . . , σ
2
d) and let {B(s), s ∈ Rd+} be the independent multiparameter

Lévy process defined from B(t), i.e. B(s) := (B1(s1), . . . , Bd(sd))
T .

For a given A = (aij)n×d, aij ∈ R, we can define the process

Bρ(t) = (Bρ
1(t), . . . , Bρ

n(t))T := AB(t), t ∈ R+ (3.1)

with drift µρ = Aµ and covariance matrix Σρ = AΣAT , where the superscript ρ indicates that
Bρ has correlated margins with correlation matrix ρ = (ρij)n×n. Semeraro (2008) proved that the
process defined by

Bρ(s) = AB(s), s ∈ Rd+ (3.2)

is an Rd+-parameter Lévy process on Rn. We call the Rd+-parameter Lévy processBρ(s) in (3.2) Rd+-
parameter Brownian motion. Notice that an Rd+-parameter Brownian motion is uniquely defined by
the matrix A and not by the correlation matrix Σρ. At this point we can define the multiparameter
Gaussian kernel corresponding to Bρ(s).

Definition 3.1. A multiparameter Gaussian kernel G is a multiparameter Lévy kernel from (Rd+,Bn)
into (Rn,Bn) such that

G(0, B) := P (Bρ(0) ∈ B) = 1B(0)

G(s, B) := P (Bρ(s) ∈ B)

where B ∈ Bn, and Bρ(s) as defined above, is an Rd+-parameter Brownian motion with drift µρ

and Gaussian covariance matrix Σρ.

Definition 3.2. A Gaussian-marked multivariate Poisson process Y (t) is a Lévy marked multi-
variate Poisson process, where the conditional distribution of marks is defined by a multiparameter
Gaussian kernel.

Theorem 1.1 applies to Gaussian-marked multivariate Poisson processes. As a consequence they
are multivariate subordinated Brownian motions. Notice that from (3.2), it holds

Y (t) =L B
ρ(π(t)) := AB(π(t)),

where B(π(t)) = (B1(π1(t)), ..., Bd(πd(t))) has mutually independent components and π(t) is the
subordinator in (1.1).

Proposition 3.1. The characteristic function of a Gaussian-marked Poisson process has the fol-
lowing form:

E[ei<z,Y (t)>] = exp{tΨπ(logψBρ(z))}

= exp

{
tΨπ

(
iµ1

n∑
k=1

ak1zk −
1

2
σ2

1

( n∑
k=1

ak1zk
)2
, . . . , iµd

n∑
k=1

akdzk −
1

2
σ2
d

( n∑
k=1

akdzk
)2)}

,

where Ψπ is provided in (1.1).
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Proof. Since,

Bρ(s) :=

 Bρ
1(s1, . . . , sd)

...
Bρ
n(s1, . . . , sd)

 =

 a11B1(s1) + . . .+ a1dBd(sd)
...

an1B1(s1) + . . .+ andBd(sd)

 ,

we have
Bρ(δj) = Bρ(0, . . . , 1

j-th

, . . . , 0) = (a1jBj(1), · · · , anjBj(1))T .

Thus,

ψj(z) = E[exp{i < Bρ(δj), z >}] = E
[

exp

{
i
n∑
k=1

akjBj(1)zk

}]

= E
[

exp

{
iBj(1)

n∑
k=1

akjzk

}]
= exp

{
iµj

n∑
k=1

akjzk −
1

2
σ2
j

( n∑
k=1

akjzi

)2}
,

for j = 1, . . . , d. Hence

log(ψBρ(z)) = (logψ1(z), . . . , logψd(z))

=

(
iµ1

n∑
k=1

ak1zk −
1

2
σ2

1

( n∑
k=1

ak1zk

)2

, . . . , iµd

n∑
k=1

akdzk −
1

2
σ2
d

( n∑
k=1

akdzk

)2)
,

giving

ψY (t)(z) = exp{tΨπ(logψBρ(z))}

= exp

{
tΨπ

(
iµ1

n∑
k=1

ak1zk −
1

2
σ2

1

( n∑
k=1

ak1zk

)2

, . . . , iµd

n∑
k=1

akdzk −
1

2
σ2
d

( n∑
k=1

akdzk

)2)}
.

According to Proposition 3.1, if the subordinator π(t) has characteristic function in closed form,
the process Y (t) has.

4 Laplace Gaussian-marked Poisson process

We consider here the multivariate generalized asymmetric Laplace (GAL) motion studied in Kozubowski
et al. (2013) and widely used in Finance as Variance Gamma process (see Madan and Seneta
(1990)). The GAL process can be interpreted as a subordinated Gaussian motion, where the
subordinator is a one dimensional Gamma subordinator. A GAL process Y (t) with parameters
µ ∈ Rn, Σ = (σij), σij > 0, γ > 0, β > 0 - shortly GAL(µ,Σ, γ, β) - has the following characteristic
function

ψY (z) =

(
1−

(
izTµρ − 1

2z
TΣρz

)
β

)−γ
, z ∈ Rn+

The following proposition is a direct consequence of Theorem 1.1.
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Proposition 4.1. Let Y (t) be a GAL(µ,Σ, γ, β) process. Then Y (t) is bounded variation Gaussian-
marked Poisson process as in (2.1) where νΠ is a Gamma measure with parameters (γ, β).

We now construct a Gaussian-marked Poisson process of Laplace type which generalizes the
multivariate Laplace motion and has a multivariate underlying Poisson measure νΠ. We use a
factor-based Poisson measure, i.e. the Poisson measure associated to the factor-based subordinator
introduced in Semeraro (2008). A factor based subordinator π(t) is defined by

π(t) := (πI1(t) + α1π
C(t), . . . , πIn(t) + αnπ

C(t))

where πIj (t) and πC(t), for j = 1, . . . , n, are independent subordinators with Lévy measures νIj
and νC respectively. The multivariate Poisson random measure Π associated to π(t) is a Poisson
random measure on (R+×Rn,B(R+×Rn)) with mean Leb× νΠ, that we call factor-based Poisson
random measure. We recall below the measure νΠ, which is derived in Semeraro (2008). Consider
a set A ∈ B(Rn \ {0}) and ∆α = {(α1s, . . . , αns)

T : s ∈ R+} where αj ∈ R for j ∈ {1, . . . , n}, and

Aαj = Prj(A ∩∆α), Prj being the projection of A on the j-th coordinate axis. Since
Aαj
αj

= {s ∈

R : αjs ∈ Aαj }, and by construction
Aαj
αj

=
Aαk
αk

for each j, k ∈ {1, . . . , n}, we define A∆ :=
Aαj
αj

for

each j. Finally, let Aj := A ∩Dj having Dj = {x ∈ Rn : xk = 0, k 6= j, k = 1, . . . , n}. The Lévy
measure νΠ is as follows

νΠ(A) =

n∑
j=1

νIj (Aj) + νC(A∆), A ∈ B(Rn \ {0}). (4.1)

Finally recall the characteristic exponent Ψπ(t) of π(t), or any w = (w1, . . . , wn)T ∈ Cn with
Re(wj) ≤ 0 having j = 1, . . . , n is given by

Ψπ(w) =

n∑
j=1

ΨπIj
(wj) + ΨπC

( n∑
j=1

αjwj

)
where ΨπIj

(wj) =
∫
R+

(ewjs − 1)νπIj
(ds) and ΨπC (z) =

∫
R+

(ezs − 1)νπC (ds), z ∈ C.

We now specify the factor-based Poisson measure to be of Gamma type. Let us assume that
the factor based Poisson measure Π has Lévy measure νΠ defined in (4.1) such that νIj are Gamma

measures with parameters (γj , βj) and νC is a Gamma measure with parameters (γ, β). Considering
the properties of Gamma distribution, the j-th marginal distribution of the subordinator π(t) has
Gamma distribution if βj = β

αj
. In this case the j-th marginal distribution of π(1) becomes a

Gamma distribution with parameters (γj + γ, βαj ). Under these assumptions the process Y defined

in (1.3) is named multivariate Laplace marked Poisson (mLmP) process. By applying Corollary
1.1 the characteristic function of the mLmP process is

ψmLmPY (t) (z) =
n∏
j=1

[
1−

αj
(
iµj
∑n

k=1 akjzk −
1
2σ

2
j (
∑n

k=1 akjzk)
2)

β

]−γjt
· (4.2)

[
1−

∑n
j=1 αj

(
iµj
∑n

k=1 akjzk −
1
2σ

2
j (
∑n

k=1 akjzk)
2)

β

]−γt
.
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From the characteristic function (4.2) it follows that the mLmP process generalizes the GAL
process, which can be derived if the idiosyncratic Poisson measures (or subordinators) degenerate.
Furthermore, under suitable restrictions of the model parameters, from (4.2) follows that if the
Gaussian marks have independent marginal distributions we recover the α-Variance Gamma process
introduced in Semeraro (2008).
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