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ABSTRACT 

Background: Integrin-mediated adhesion of cells to the extracellular matrix (ECM) relies on 

the dynamic formation of focal adhesions (FA), which are biochemical and mechanosensitive 

platforms composed of a large variety of cytosolic and transmembrane proteins. During 

migration, there is a constant turnover of ECM contacts that initially form as nascent 

adhesions at the leading edge, mature into FA as actomyosin tension builds up, and are then 

disassembled at the cell rear, thus allowing for cell detachment. While the mechanisms of FA 

assembly have largely been defined, the molecular circuitry that regulates their disassembly 

still remains elusive.  

Results: Here, we show that RN-tre, a GTPase-activating protein (GAP) for Rabs, including 

Rab5 and Rab43, is a novel regulator of FA dynamics. We found that RN-tre localises to FA 

and its genetic deletion leads to increased rates of 1-integrin endocytosis, enhanced FA 

turnover and persistent directed cell migration. Importantly, all these effects are mediated by 

the GAP activity of RN-tre and rely on Rab5.  

Conclusions: Our findings reveal that RN-tre, by targeting endocytic trafficking of 1-

integrin and FA dynamics, is a novel regulator of growth-factor-directed cell migration. 
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HIGHLIGHTS 

 RN-tre localises to focal adhesions 

 Genetic deletion of RN-tre increases active-Rab5 in response to growth factors  

 RN-tre controls 1-integrin endocytosis and focal adhesion turnover 

 By negatively regulating Rab5 function, RN-tre restricts directed cell migration 
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INTRODUCTION 

Engagement of integrin transmembrane receptors with extracellular matrix (ECM) ligands is 

a central step in the formation of FA. These structures are highly dynamic, undergoing a 

spatio-temporally regulated turnover, particularly during cell migration. Under these 

conditions, FA form at the leading edge as nascent adhesions that mature into large FA 

through the sequential recruitment of a wide number of components, establishing stable 

attachment of cells to the substrate. FA must, then, disassemble to allow cell rear detachment 

and effective locomotion [1-3]. In the past two decades, many molecular details of FA 

assembly have been identified. Much less is known, however, about the mechanisms and 

signalling pathways that control FA turnover. A process that is emerging as essential for the 

latter regulatory step is membrane trafficking [4]. FA disassembly, for example, has been 

shown to occur through a targeted mechanism involving MTs, dynamin, clathrin, and specific 

clathrin adaptors that locally promote integrin endocytosis [5-9]. Integrin trafficking in the 

endosomal compartment is controlled by small GTPases of the Rab5-subfamily: Rab5 and 

Rab21, with the latter playing a crucial role both in integrin endocytosis and recycling [5, 

10]. Rab5, is a master regulator of early endosomes [11], where integrins invariably 

accumulate for subsequent sorting [4]. Recently, Rab5 has also been found to control integrin 

turnover within long-lived ECM adhesions required for the maintenance of tissue 

architecture, such as the myotendineous junctions of Drosophila embryos [12]. Notably, 

Rab5 participates to cell migration, not only by regulating integrin trafficking [5], but also by 

promoting endo/exocytic cycles of the small GTPase Rac that is required for spatial 

resolution of Rac-dependent motogenic signals and the formation of migratory protrusions 

([13, 14] and reviewed in [15]). Thus, Rab5 is emerging as a central trafficking molecule that 

directly influences several aspects of cell migration. How the activity of this small GTPase is 

regulated during FA turnover is, however, not known.  
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Like all small GTPases, Rab5 activity is controlled by guanine nucleotide exchange 

factors, RabGDI, and GTPase activating proteins (GAP) [16, 17]. Among the latter proteins, 

RN-tre, also named USP6NL, has been shown to enhance GTP hydrolysis of Rab5 [18, 19] 

and more recently also of Rab43, a GTPase involved in retrograde transport pathways [20-

23]. Consistent with its biochemical activity on Rab5, RN-tre expression is sufficient to 

inhibit Rab5-dependent transferrin and EGF internalisation [18]. This endocytic role is 

evolutionary conserved from Drosophila cells, where RN-tre was identified in a genomic 

screen for regulators of endocytosis [24], to Zebrafish embryos, where RN-tre was shown to 

inhibit Rab5-dependent endocytosis of Fgf8 [25]. RN-tre also participates in Rab5-dependent 

signalling to actin dynamics. The ectopic expression of RN-tre, but not its GAP-defective 

mutant, impairs Platelet Derived Growth Factor (PDGF)-mediated formation of a set of 

specialised migratory and endocytic actin-based protrusion [19], commonly referred to as 

circular dorsal ruffles [26].  

Two recent and independent proteomic studies identified RN-tre among the 

components of FA [27, 28], but its function in the formation or dynamic remodelling of these 

structures has never been addressed. Here, we set out to investigate this issue further by 

exploring the role of RN-tre in FA turnover and cell migration.  
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RESULTS 

RN-tre localises to FA  

RN-tre displays a complex pattern of intracellular localisation, but is predominantly enriched 

at the plasma membrane (PM) [19, 29]. We used Total Internal Reflection Fluorescence 

(TIRF) microscopy in living immortalised mouse embryo fibroblasts (MEF) expressing GFP-

tagged RN-tre to investigate its PM localisation in more details. We observed that GFP-RN-

tre accumulated in FA where it co-localised with two major components of the integrin 

adhesome, namely vinculin and paxillin (Fig. 1A). This localisation was confirmed by 

confocal analysis on fixed cells expressing RN-tre fused to GFP or HA tags (Fig. S1A, B). In 

addition, RN-tre extensively co-localised in adhesive sites with the ECM-bound/active 

conformation of 1-integrin, as recognised by the conformation-specific 9EG7 antibody [30] 

(Fig. 1B). Co-localisation between RN-tre and active-1-integrin was also evident in fibrillar 

adhesions which are structures that arise from the sliding of tensin-bound active 51-

integrin along actin stress fibres (Fig. 1B) [31, 32]. Thus, RN-tre is a newly identified 

component of adhesive sites. Notably, another known GAP for Rab5, RabGAP-5 [20] 

displayed a diffuse cytoplasmic distribution, as previously shown [21]. Contrary to GFP-RN-

tre, GFP-RabGAP-5 did not accumulate in FA (Fig. S1C), suggesting that RN-tre might 

control the function of Rab5 in cell adhesion and migration. 

 

RN-tre is a GAP for Rab5 in vitro and in vivo 

The GAP activity of RN-tre has multiple targets in vitro [20]. In living cells, it has been 

reported to negatively regulate cell processes that are under the control of Rab5 [18, 19] and 

Rab43 [21]. The observation that RN-tre is in FA, together with evidence showing that Rab5 

participates in integrin internalisation [5], prompted us to re-evaluate the effects of RN-tre in 

stimulating GTP hydrolysis focusing primarily on Rab5 both in vitro and in vivo.  
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To this end, we compared the catalytic activity of RN-tre with that of RabGAP-5 using Rab5 

as a substrate. We first tested the activity of the isolated catalytic TBC domains (aa 2-395 for 

both RN-tre and RabGAP-5), in order to avoid the potential influence of other regions of the 

proteins, whose regulatory activity in vivo could have not been reproduced in the in vitro 

assay. Next, we also verified the catalytic activity of full-length RN-tre and RabGAP-5 (see 

below). To compare the efficiency of the TBC domains of RN-tre and RabGAP-5 in 

accelerating the intrinsic rate of GTP hydrolysis of Rab5, we employed an enzymatic assay 

that measures the amounts of phosphate released [33] over time by purified GTP-loaded 

Rab5 in the presence of increasing catalytic concentrations of either RN-tre or RabGAP-5 

TBC domains (purified proteins employed in the assays are shown in Fig. S2B). Notably, 

neither the various GAP preparations nor the buffers used contained detectable traces of 

inorganic phosphate (Fig. S2A). Furthermore, a mutant of the TBC domain of RN-tre in the 

catalytic arginine was completely inactive (Fig. S2A). The intrinsic rate of GTP hydrolysis by 

Rab5 was 8.4 X 10
-4

 s
-1 

at 25
o
C remarkably similar to previously reported measurements [18, 

34, 35] (Fig. 2A rate of Rab5 hydrolysis measured in absence of TBC domains). More 

importantly, both the TBC domains of RN-tre (RN-tre-TBC) and RabGAP-5 (RabGAP-5-

TBC) accelerated the rate of hydrolysis with similar catalytic efficiency with values of 

Kcat/Km in the range of those reported for a variety of other TBC/GAP domains for different 

Rab proteins [33] (Fig. 2A and C). We further verified the GAP activity of the TBC domains 

of RN-tre and RabGAP-5 using two independent GAP assays with radiolabelled GTP: a filter 

binding and a Thin-Layer Chromatography assays. The latter assay enables the separation of 

GTP and GDP and thus the direct measurement of the amounts of GTP-to-GDP hydrolysis of 

Rab5 in the presence or absence of the GAP domains. Both TBC domains display similar and 

readily detectable GAP activities (Fig S2B, C). Thus, under our experimental conditions, the 

catalytic efficiency of RN-tre-TBC was nearly identical to that of RabGAP-5-TBC. We 
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performed the same set of experiments using full length RN-tre and RabGAP-5, which were 

both purified to homogeneity from insect cells (see Fig. S2D). Full-length proteins were more 

efficient in accelerating the rate of hydrolysis of GTP-loaded Rab5 as compared to their 

respective, isolated, TBC domains. Importantly, they display similar catalytic efficiency, 

being full length RN-tre a slightly more efficient catalyst than RabGAP-5 (Fig. 2B and C). 

We thus concluded that RN-tre and RabGAP-5 are bona fide GAP for Rab5 displaying 

similar catalytic efficiency, at least, in vitro.  

 Next, we tested RN-tre GAP activity on Rab5 in vivo. To this end, we generated mice 

with a targeted deletion of the RN-tre locus (the knockout strategy and the detailed 

description of mice generation are described in Fig. S2E-L). Mice bearing homozygous RN-

tre deletion were viable and fertile and did not display gross abnormalities. We evaluated the 

GTP-bound state of Rab5 in fibroblasts established from RN-tre -/- (KO) and RN-tre +/+ 

(WT) embryos at 13.5 days post-coitum. The amount of Rab5-GTP was measured taking 

advantage of the Rab5-binding domain (RBD) of the early–endosomal autoantigen 1 (EEA1) 

which is a Rab5-effector that binds to active-Rab5 on endosomes [36, 37]. Two regions in 

EEA1 are implicated in this binding. One is located in the N-terminus of the protein, while 

the other one encompasses amino acids 1257-1411 in the C-terminal portion and shares 

homology with the RBD domain of Rabaptin-5 [36]. This latter region, fused to Glutathione-

S- Transferase (GST), was purified and its ability to interact specifically with the active form 

of Rab5 was confirmed by using lysates of 293T cells transfected with dominant-active 

(Rab5Q79L) or dominant-negative (Rab5S34N) Rab5 mutants (Fig. 2D). Activation of Rab5 

is elicited by Epidermal Growth Factor (EGF) stimulation [38]. Similarly, we found that also 

PDGF treatment stimulates Rab5 activation in a time dependent fashion (with a peak of 

activation ~ 7 min following PDGF stimulation) in RN-tre KO primary embryonic fibroblasts 

(PEF) (Fig. 2E). We then compared the levels of Rab5-GTP in PDGF-stimulated WT or KO 
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PEF. Since the levels of endogenous active-Rab5 were undetectable in WT fibroblasts, we 

ectopically transfected small amounts of Rab5 into both WT and KO cells. Genetic removal 

of RN-tre led to a significant increase in the amount of PDGF-induced, GTP-loaded Rab5 

(Fig. 2F), without altering the levels of expression of the Rab5 effectors, Rabaptin-5 and 

EEA1 (not shown). We extended and validated this finding in immortalised RN-tre KO MEF, 

stably expressing either an inducible empty vector (KO) or wild type RN-tre (KO+RN-tre) or 

the RN-tre GAP-defective mutant RN-tre
R150A

 [18] (KO+RN-treR150A) (Fig. S2M and Fig. 

2G). Re-expression of wild type RN-tre, but not of RN-tre
R150A

 or the empty vector, impaired 

PDGF-induced Rab5 activation, indicating that RN-tre is a GAP for Rab5 in vivo (Fig. 2G). 

RN-tre displays GAP activity also toward Rab43 [20], the GTP-bound form of which may, 

therefore, be elevated in RN-tre KO MEF. This, in turn, could stimulate PDGF-dependent 

loading of GTP on Rab5 via unknown mechanisms. In addition to be a GAP for Rab5 and 

Rab43, RN-tre binds, at least in yeast two-hybrid, to Rab30 [20]. We, therefore, analysed also 

Rab30. Expression of a dominant negative Rab43 or Rab30 in RN-tre KO MEF had no 

effects on Rab5-GTP levels (Fig. S2N, O), suggesting that these GTPases unlikely influence 

PDGF-induced Rab5 activation.  

We also looked at the localisation of endogenous Rab5 in our fibroblasts. The size of Rab5-

endosomes appeared to be generally increased in the KO compared to WT fibroblasts (Fig. 

S2P). This was particularly evident in 30% of the cells (Fig. S2P). These results are 

compatible with the higher activity of Rab5 in the RN-tre KO cells.  

 Having previously shown that RN-tre inhibits receptors endocytosis [18], we analysed the 

kinetic of endocytosis of the transferrin receptor or of the EGFR (elicited by stimulation with 

low or high doses of EGF) in RN-tre WT and KO MEF. As expected for cells in which Rab5 

is more active, endocytosis of both receptors was slightly, but reproducibly, higher in RN-tre-

null cells (Fig. S3A, B).  
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 In conclusion, the sum of these data demonstrates that genetic removal of RN-tre increases 

Rab5 activation and Rab5-dependent endocytic processes in vivo. 

 

RN-tre and Rab5 regulate 1-integrin endocytosis and FA turnover  

Rab5 activity promotes 1-integrin endocytosis and cell adhesion to ECM proteins [5] but 

how its function is down-modulated in adhesion/migration settings is currently unknown. Our 

results showing that RN-tre KO fibroblasts have higher levels of active-Rab5, prompted us to 

investigate the impact of RN-tre on 1-integrin endocytosis in the RN-tre KO MEF.  

 At the cell surface, integrins are present either in ECM-bound/active or ligand-

free/inactive conformation [39]. RN-tre genetic deletion did not significantly alter cell surface 

levels of either total (i.e. inactive plus active) or active 1-integrin measured by ELISA-based 

detection after surface biotynilation at 4°C as in [40], under conditions of endocytosis 

blockade (Fig. 3A). Conversely, the internalisation rates of both total and active 1-integrin 

were increased in the RN-tre KO MEF compared to WT cells (Fig. 3B). Importantly, re-

expression of RN-tre in KO MEF strongly reduced the rate of 1-integrin endocytosis while 

the GAP-defective mutant did not (Fig. S3C, D), indicating that, as previously shown for 

other receptors ([18] and Fig. S3A, B), the GAP activity of RN-tre is essential to regulate 1-

integrin internalisation.  

We next employed live TIRF microscopy to directly monitor the localisation of Rab5 

and RN-tre in motile fibroblasts. To this end GFP-RN-tre, RFP-Rab5A and CFP-paxillin 

were co-transfected in RN-tre KO MEF plated on fibronectin (1 g/ml) and recorded for 2-4 

hours after plating, when adhesions are highly dynamic. Rab5 was primarily present, as 

expected, into vesicles, while RN-tre was both in adhesive sites and on vesicles. We detected 

a striking co-localisation of RN-tre and Rab5 on a subset of vesicles that were mainly 
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associated with FA undergoing rapid remodelling, in particular at the cell rear (Fig. 3C and 

Movie S1).  

 Integrin endocytosis is a mechanism to control focal adhesion disassembly [6, 8, 9]. Of 

note, Rab5 participates to 1-integrin trafficking [5] and, in Drosophila myotendineous 

junctions, to the turnover of integrin-associated proteins [12]. Having found that RN-tre is in 

FA and that its GAP function regulates 1-integrin endocytosis, we hypothesised that RN-tre 

and Rab5 affect FA turnover. To test this possibility, we transfected WT and KO MEF with 

GFP-paxillin to monitor adhesion dynamics by Fluorescence Recovery After Photobleaching 

(FRAP) analysis. We analysed FA located at the cell periphery or at the cell rear, and also 

fibrillar adhesions (Fig. 4A-C). Typically, two to four GFP-paxillin positive FA were 

analysed per cell. The mean half-time of fluorescence recovery (FRAP t1/2) in the bleached 

area was determined as an estimate of the stability of adhesion binding (as described in [41]). 

KO MEF exhibited a significantly faster recovery of GFP-paxillin compared to WT both in 

peripheral FA (mean FRAP t1/2 of KO = 18.3 ± 1.6 sec. versus FRAP t1/2 of WT = 32.6 ± 

2.2 sec.) (Fig. 4A and Movie S2), and in FA at the cell rear (mean FRAP t1/2 of KO = 15.6 ± 

1.2 sec. versus FRAP t1/2 of WT = 27.5 ± 2.3 sec.) (Fig. 4B and Movie S3). No significant 

differences were scored in the turnover of fibrillar adhesions (Fig. 4C and Movie S4). Re-

expression of RN-tre, but not of RN-tre
R150A

, severely affected GFP-paxillin turnover in 

peripheral FA (mean FRAP t1/2 of KO = 18.7 ± 2.8 sec. versus FRAP t1/2 of KO+RN-tre = 

44.5 ± 3.7 sec., FRAP t1/2 KO+RN-treR150A = 17.5 ± 3 sec.) (Fig. 4D and Movie S5). 

These results strengthen our findings that removal of RN-tre increases 1-integrin 

endocytosis, in a GAP-dependent manner, further predicting that faster fluorescence recovery 

of GFP-paxillin might depend on higher levels of active-Rab5 in the KO MEF. To verify this 

prediction, we silenced all the three isoforms of Rab5 (Rab5A/B/C), which act redundantly in 

endocytosis [42], or Rab43 in KO MEF transfected with GFP-paxillin. Peripheral GFP-
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paxillin-positive FA were subjected to FRAP analysis. Silencing of Rab43 left unperturbed 

the FRAP t1/2 of KO MEF (19.3 ± 1 sec. in Rab43 knocked down versus 15.4 ± 1.2 sec. in 

KO MEF silenced with control oligos) (Fig. 4E and Movie S6). Instead, interference with 

Rab5 isoforms significantly delayed GFP-paxillin turnover (FRAP t1/2 = 34.2 ± 2.1 sec.) 

(Fig. 4E and Movie S6). Thus Rab5 is required for optimal FA turnover, while the GAP 

activity of RN-tre negatively regulates it. 

 

Genetic deletion of RN-tre enhances cell migration 

 Flux of integrins through the endocytic pathway and FA turnover dictate the speed of cell 

migration ([43] and reviewed in [44]); we thus investigated the effects of RN-tre removal on 

cell migration on ECM substrates.  

We initially tested random cell motility in primary fibroblasts from WT and KO littermate 

embryos, using Dunn chamber assays, in the absence of any diffusible gradient (Fig. 5A and 

Movie S7). Under these conditions, both the total distance and cell velocity were increased in 

fibroblasts lacking RN-tre as compared to WT cells, while directionality, which measures the 

ability of a cell to move persistently along its migratory path, was not significantly altered 

(Fig. 5A and Movie S7). These results suggest that RN-tre removal fosters the speed of cell 

migration, consistent with its role in regulating FA turnover. Next, we used the same Dunn 

chamber setting, but adding PDGF to one of the well to generate a diffusible gradient, and 

investigated chemotactic migration of RN-tre or RN-tre
R150A

 –expressing, or control KO 

MEF. PDGF is a potent motogenic factor for fibroblasts that also induces Rab5 activation in 

RN-tre-dependent manner (Fig. 2E-G). As expected, genetic deletion of RN-tre increased 

both the distance and the velocity without affecting the persistency of random cell migration 

(Fig. 5B and Movie S8). Instead, re-expression of RN-tre, but not of the GAP-defective 

mutant, had a dramatic inhibitory effect on the ability of cells to move toward the PDGF 
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gradient, as witnessed by the ~10 fold reduction in forward migration index (Fig. 5B and 

Movie S8). Notably, and consistently with the effect on 1-integrin endocytosis, RN-tre 

removal significantly improved the forward migration of cells plated on fibronectin, a ligand 

for 51-integrin, but not on vitronectin, a ligand for v3-integrin (Fig. S5A, B and Movies 

S9 and S10). Finally, the ectopic expression of RN-tre in HeLa cell impaired EGF-directed 

cell migration, suggesting that RN-tre is generally implicated in growth factor-mediated 

motility (Fig. S5C and Movie S11). 

 Since RN-tre removal enhances the levels of active-Rab5 in response to PDGF stimulation, 

we next directly investigated whether this small GTPase, rather than other RN-tre targets, 

was responsible for the altered chemotactic cell migration of RN-tre KO MEF. To this end, 

we silenced all Rab5 isoforms simultaneously, or Rab43 and, as a further control, also Rab30 

(Fig. 5C, Movie S12 and Fig. S4). Silencing of Rab5 isoforms severely impaired distance, 

velocity and forward migration index of RN-tre KO MEF (Fig. 5C and Movie S12) as well as 

of reconstituted cells (not shown). Conversely, silencing of Rab43 or Rab30 had no 

appreciable effects on any of the migratory parameters measured (Fig. 5C and Movie S12). 

Thus, collectively, our findings indicate that RN-tre is an essential regulator of chemotactic 

cell migration by specifically targeting Rab5-mediated 1-integrin endocytosis and FA 

dynamics. 
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DISCUSSION  

 Spatio-temporal control of FA turnover is essential to support cell migration [1, 2, 3]. 

Our study uncovers RN-tre as a novel and physiologically relevant component of FA that 

participates to their turnover by controlling Rab5-dependent dynamic association of key FA 

adaptors like paxillin, and the endocytosis of essential FA components, such as 1-integrin, 

ultimately impacting on cell migration. 

 We found that, in accordance with the ability of RN-tre to stimulate GTP hydrolysis 

on Rab5 ([18] and this study), genetic removal of RN-tre increases the levels of active-Rab5 

in fibroblasts fostering cellular processes that depend on Rab5 activation, such as 1-integrin 

endocytosis. In agreement with endocytosis of integrins as a mechanism to control FA 

disassembly and cell motility [4, 44, 45], RN-tre KO fibroblasts display faster FA turnover 

and increased cell migration. It is of note that the forward migration index, a parameter that 

expresses the ability of cells to migrate along with a chemotactic gradient, is improved in RN-

tre KO fibroblasts, indicating that RN-tre is a relevant player in chemotactic, directional cell 

migration. This is also supported by recent findings showing that RN-tre participates to the 

directional migration of border cells in Drosophila melanogaster [46], a migratory process in 

which Rab5 is pivotal [47].  

RN-tre is also a GAP for Rab43 [20, 22]. However, the regulation of Rab43 by RN-tre does 

not seem to be essential for cell migration because silencing of Rab43 does not affect FA 

turnover or the migratory capabilities of the RN-tre KO fibroblasts. Conversely, silencing of 

Rab5 abrogates all these effects, indicating that they rely on Rab5. Despite these findings, we 

do not exclude that RN-tre might act in cell migration by also regulating other Rabs in 

addition to Rab5.  

Rab5, like other small GTPases, displays multiple GEFs and GAPs [16, 17]. Intriguingly, in 

adhesive sites, the recruitment of both its GEF RIN2 [48] and of the GAP RN-tre suggests the 
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existence of a molecular circuitry that controls the activity of Rab5 specifically during cell 

adhesion. This appealing hypothesis is supported by the findings showing that RN-tre 

localises to Rab5-positive vesicles closely associated with active remodelling FA, where RN-

tre also accumulates. This localisation is not shared by other GAPs for Rab5, pointing to a 

possible specific function for RN-tre in this process. Furthermore, this might also reflect a 

more specific effect of RN-tre in regulating the function of Rab5 on integrin trafficking rather 

than on other receptors. 

 In conclusion, we propose that RN-tre acts as a “brake” in cell migration: by turning off 

Rab5, it inhibits 1-integrin endocytosis and favours FA stability, shifting the balance 

between adhesion and migration towards a less motile phenotype.  
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EXPERIMENTAL PROCEDURES 

 

Generation of RN-tre null mice  

We generated RN-tre knockout mice by targeting exon 7 and exon 8 of the RN-tre gene that 

encode for a portion of the TBC domain, including Arg150, which is essential for the 

catalytic activity of RN-tre [18]. A schematic representation of the strategy is presented in 

Fig. S2E-L. Immortalised fibroblasts from RN-tre +/+ (WT) or -/- (KO) embryos were 

established as described [49].  

 

Cell culture and siRNA 

Primary and immortalised embryo fibroblasts were grown in DMEM medium (Lonza) 

supplemented with 10% South American serum (EuroClone) and 1% L-Glutamine (EuroClone). 

Transfections were performed using Lipofectamine Plus (Invitrogen), according to the 

manufacturer’s instructions. Serum-starved MEF were stimulated with 10 ng/ml of PDGF 

(R&D). KO MEF were reconstituted with RN-tre or RN-tre
R150A

 using Tetracycline-inducible 

lentiviral vectors and grown in DMEM supplemented with 10% Tet system-approved FBS 

(Clontech). Expression of the RN-tre or RN-tre
R150A

 was achieved by adding doxycycline 

(0.5 g/ml, Sigma-Aldrich) 48 h before harvesting cells.  

 

Imaging techniques and quantifications 

Immunofluorescence was as in [50]. Primary antibodies were revealed by Alexa Fluor 555-, 

488- (Molecular Probes) conjugated secondary antibodies. Confocal analysis was performed 

on a Leica TCS SP2 AOBS microscope and processed in Adobe Photoshop.  

TIRF microscopy was performed using a Leica AM TIRF MC system mounted on a Leica 

AF 6000 microscope (Leica Microsystems). A 63×/1.40 NA oil-immersion objective was 

used and laser penetration depth was set at a 110 nm. Excitation and analysis of GFP 
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fluorescent proteins was performed with a 488nm laser, RFP-proteins with a 532nm laser and 

CFP-proteins with a 405nm laser. Imaging was recorded on a Hamamatsu Photonics emCCD 

Camera (C9100-02). Controls were performed transfecting cells with single constructs (either 

GFP-RN-tre, or RFP-Rab5 or CFP-paxillin) and analysed under the same conditions used for 

the cells simultaneously transfected with the three constructs, in order to verify the absence of 

crosstalk among the channels.  

FRAP was performed on an UltraVIEW VoX spinning disc confocal system (PerkinElmer), 

equipped with an EclipseTi inverted microscope (Nikon) provided with a Nikon Perfect 

Focus System, an integrated FRAP PhotoKinesis unit (PerkinElmer), a C9100-50 emCCD 

camera (Hamamatsu) and driven by Volocity software (Improvision, Perkin Elmer).   

All the experiments were performed using an environmental microscope incubator 

(OKOLab) set to 37°C and 5% CO2 perfusion. All images were acquired through a 60× oil 

immersion objective (Nikon Plan Apo VC, NA 1.4). WT and KO MEF populations, and KO 

MEF either treated with doxycycline or silenced with siRNA oligos (as described in legend to 

Figure 4) were transiently transfected, 24 hours before FRAP, with GFP-paxillin. Several 

bleach regions with a size of 4 × 2.2 μm were positioned on selected peripheral FA or on 

adhesions at the cell rear. Photobleaching was performed using fifty iterations with the 50 

mW solid state 488nm laser set to the maximum power. To determine the recovery kinetics 

of peripheral adhesions, post-bleaching images were recorded for 200 seconds: the first 150 

seconds with a speed of 0.5 frame/sec and then of 0.1 frame/sec. For adhesions at the cell 

rear, post-bleaching images were recorded with a speed of 0.5 frame/sec for the first 154 

seconds and then 0.2 frame/sec. In the case of fibrillar adhesions, which are thin elongated 

structures, in order to minimise the photobleaching of the GFP-paxillin in the cytoplasm, the 

size of bleach regions was set to 5 x 1.5 m and the post-bleaching recovery was recorded for 

200 sec: the first 70 seconds with a speed of 1 frame/second and then of 0.3 frame/second. 
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Quantitative analyses were performed with ImageJ software (http://rsb.info.nih.gov/ij/): the 

mean intensity values over time were measured, background subtracted and corrected for 

acquisition photobleaching. A single exponential function was used to fit the recovery curves 

of peripheral FA and adhesions at the cell rear. For fibrillar adhesions a double exponential 

fitting was used.  

 

Dunn-chamber assays 

Cells were seeded onto a suitably washed sterile coverslip and allowed to settle prior to 

assembling the chemotaxis chamber. Initially, both annular wells were filled with medium 

supplemented with 0.5% South American serum and the coverslip seeded with cells was 

inverted onto the chamber in an offset position in order to leave a narrow filling space at one 

edge for access to the outer well. The coverslip was sealed in place using hot orthodontic wax 

applied with a paintbrush around all the edges except for the filling space. The medium in the 

outer well was replaced with medium containing 10 ng/ml PDGF. The chamber was 

incubated at 37°C, 5% CO2 and the images were taken with a Nikon Eclipse TE2000-E 

inverted microscope. 

 

Integrin internalisation assays 

Integrin endocytosis assays were performed as previously described [40]. Briefly, cells were 

transferred to ice, washed twice in cold phosphate-buffered saline (PBS), and surface-labelled 

at 4 °C with 0.5 mg/ml sulfo-NHS-SS-biotin (ThermoScientific) in PBS for 30 min. Labelled 

cells were washed twice with ice-cold DMEM 1% FBS and twice with ice-cold PBS and 

transferred to pre-warmed DMEM 1% FBS at 37 °C containing 0.2 mM primaquine, an anti-

malaria drug known to inhibit recycling of membrane and membrane-bound molecules to the 

PM from endosomes [51]. At the indicated times, dishes were rapidly transferred to ice and 
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washed twice with ice-cold PBS. Biotin was removed from proteins remaining at the cell 

surface by incubation with a solution containing 20 mM sodium 2-mercaptoethanesulfonate 

(MesNa) in 50 mM Tris-HCl (pH 8.6), 100 mM NaCl, 0.015 N NaOH for 1 h at 4°C. MesNa 

was quenched by the addition of 20 mM iodoacetamide for 10 min, and after two further 

washes in PBS, the cells were lysed in 25 mM Tris-HCl, pH 7.6, 100 mM NaCl, 2 mM 

MgCl2, 1 mM Na3VO4, 0.5 mM EGTA, 1% Triton X-100, 5% glycerol, protease mix 

(Sigma), and 1 mM PMSF. Lysates were cleared by centrifugation at 12,000g for 20 min. 

After correction to equivalent protein concentrations, the levels of biotinylated 1-integrin 

were determined by capture-ELISA as in [40]. Antibodies used in the ELISA assays were: 

mouse anti-1-integrin (Abcam, ab30388) or rat anti-active-1 integrin 9EG7 (BD 

Pharmingen, 550531). 

Further detailed experimental procedures, including expression vectors and antibodies, RNAi 

silencing, GAP assays, pull down assays for detection of Rab5-GTP, transferrin and EGF 

saturation binding, and internalisation assays are described in Supplemental Data. 
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FIGURE LEGENDS 

 

Figure 1. RN-tre is in adhesive sites.  

(A) TIRF microscopy of MEF expressing, in the upper panel, GFP-RN-tre (green in merge) 

and RFP-vinculin (red in merge) and, in the bottom panel, cherry-RN-tre (red in merge) and 

GFP-paxillin (green in merge). (B) Confocal analysis of MEF expressing GFP-RN-tre 

(green), stained with a conformation-specific antibody that recognizes the active form of 1-

integrin (9EG7, red). Co-localisation resulting in yellow staining is evident in the merged 

image (GFP-RN-tre+9EG7). Cells were also stained with Alexa Fluor 647-conjugated 

phalloidin (shown in magenta in merge). Regions of cell corresponding to FA (a) or fibrillar 

adhesions (b) were magnified in the insets. Bar, 10 m.  

 

Figure 2. RN-tre is a Rab5-GAP.  

(A-C) RN-tre and RabGAP-5 display the same GAP catalytic efficiency toward Rab5. Left: 

time courses of GTP hydrolysis of 20 M of Rab5 in the absence and presence of various 

concentrations of TBC domains of RN-tre or of RabGAP-5 (A) or the respective full length 

proteins (B) (M concentrations expressed as are shown on the bottom of each graph). Solid 

lines represent a simultaneously fitted pseudo-first-order Michaelis–Menten model function 

(see Supplemental Experimental Procedures). Right: the catalytic efficiencies expressed as 

Kcat/Km of various independent experiments is shown. The value of Kcat/Km of the TBC 

domains or the full-length proteins for Rab5 were calculated as described in Supplemental 

Experimental Procedures and summarised in (C). (D) Total cellular lysates from 293T cell 

transfected with the indicated constructs (CTR, mock transfection) were incubated with GST-

EEA1 (GST-EEA1 lanes). Input lysates (50 g) are also shown. (E) Input lysates of RN-tre 

KO PEF transfected with CFP-Rab5 and stimulated with PDGF for the indicated time were 
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subjected to GST-EEA1 assay and IB, as indicated. (F) Input lysates of WT or RN-tre KO 

PEF transfected with CFP-Rab5 and stimulated with PDGF for 7 min., as shown on top, were 

subjected to GST-EEA1 assay and IB, as indicated. (G) RN-tre KO MEF stably expressing 

empty vector (KO), or RN-tre (KO+RN-tre) or RN-tre
R150A

 (KO+RN-treR150A) were 

transfected with CFP-Rab5 before PDGF (+) or mock (-) stimulation for 7 min. Input lysates 

were subjected to GST-EEA1 assay and IB, as indicated. Densitometric quantification of 

Rab5-GTP in (F) and (G) is shown below each panel. Notably, the same amounts of 

ectopically expressed CFP-Rab5, as witnessed by its levels detected in input lysates by 

immunoblotting, were used in all these assays. 

 

Figure 3. RN-tre participates in integrin endocytosis and co-localises with Rab5 in 

proximity of FA undergoing remodelling. 

 (A-B) RN-tre participates in 1-integrin endocytosis. (A) Bar graph showing the amount of 

total (black bars) and active (white bars) 1-integrin at the plasma membrane at 4°C in RN-

tre KO and WT MEF measured by ELISA assays (n = 3 mean values ± SD). (B) RN-tre KO 

and WT MEF were surface labelled with cleavable biotin. Integrin internalisation was 

allowed for the indicated times and biotin present on the cell surface was cleaved. The 

amount of biotinylated intracellular total (graph on the left) or active (graph on the right) β1-

integrin was determined with ELISA. The data are expressed as the percentage of internalised 

receptor, relative to the total amount of cell surface–labelled 1-integrin (n = 3, means ± SD; 

p values < 0.002). (C) Still images from Movie S1 showing TIRF imaging of RN-tre KO 

MEF expressing GFP-RN-tre, RFP-Rab5 and CFP-paxillin. Merged images are also shown. 

Rab5 and RN-tre co-localise on a pool of vesicles closely associated with remodelling 

adhesions. Bar, 10 m. 
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Figure 4. RN-tre and Rab5 control FA turnover. 

RN-tre WT and KO MEF (A-C), KO MEF expressing or not RN-tre or RN-treR
150A

 (D) or 

KO MEF silenced with Rab5A, B, C or Rab43 or control oligos (CTR) (E) were transfected 

with GFP-paxillin. GFP-paxillin positive adhesions, in the various cell populations, were 

subjected to FRAP analysis and the results showing the half time of fluorescence recovery 

are reported in the box plots. N is the number of FA analysed in each sample. The mean 

FRAP t1/2 in sec is indicated above each box; **p < 0.001. Sample fluorescence recovery 

curves of FRAP are shown below each plot in (A-C) or reported on the right in (D) and (E). 

The fluorescence intensity in the recovery curves corresponds to the fluorescence at each 

time point after photobleaching, background subtracted, and normalised to the pre-bleaching 

intensity of 1. (A) FRAP of Peripheral FA, (B) FRAP of adhesions at the cell rear, (C) FRAP 

of fibrillar adhesions. (D) FRAP analysis of GFP-paxillin peripheral FA in RN-tre KO MEF 

expressing the inducible empty vector (KO), or RN-tre (KO+RN-tre) or RN-tre
R150A

 

(KO+RN-treR150A). (E) FRAP analysis of GFP-paxillin peripheral FA in RN-tre KO MEF 

silenced with control oligos (CTR) or with oligos for Rab5 (Rab5-KD) or for Rab43 (Rab43-

KD). RNAi-interfered cells were analysed for mRNA content by QRT-PCR (Fig. S4A-C).  

 

Figure 5. RN-tre regulates cell motility and chemotactic migration through its GAP 

activity on Rab5. 

(A) PEF derived from RN-tre WT or KO littermate embryos were analysed in Dunn chamber 

assays in the absence of any diffusible gradient. Random cell migration was tracked every 5 

minutes interval over 16 hours period. The migratory tracks of some representative cells are 

shown for WT and KO PEF. Tracking of cells was performed by using the “Manual tracking” 

and “chemotaxis and migration tool” plugin distributed by ImageJ software. Various 

migration parameters obtained by monitoring at least 30 single cells/experiment/genotype are 
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plotted in the graphs below; **p < 0.01. (B) RN-tre KO MEF expressing or not RN-tre or 

RN-tre
R150A

 were analysed for chemotactic migration over a diffusible PDGF gradient in 

Dunn chamber assays. The migratory tracks of some representative KO, KO+RN-tre and 

KO+RN-treR150A MEF were determined, as described above. Migration parameters of at 

least 60 single cells/experiment/condition are plotted in the graphs below. The forward 

migration index represents the efficiency of forward migration of cells on the axis parallel to 

the direction (indicated by the arrow) of a chemotactic gradient. It is calculated by dividing 

the net distance covered by a cell in the direction of the chemotactic migration axis (Xc) per 

the total accumulated distance (Dc), as described in [52]. (C) KO MEF were transfected with 

Rab5A, B, C, or Rab43 or Rab30 or scrambled RNAi (used as control, CTR, Fig. S4A-C) and 

subjected to Dunn chamber assays, as described in (B). The migratory tracks of 

representative control and Rab-interfered MEF are shown. Various migration parameters 

obtained by monitoring at least 50 single cells/experiment are plotted in the graphs below; 

**p < 0.01.  
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Figure S1, related to Figure 1. RN-tre, but not RabGAP-5, localises to focal adhesions. 

(A) Confocal images of MEF expressing GFP-RN-tre (green) stained with antibodies for the 

adhesive markers vinculin (in red in the top panel) or paxillin (in red in the bottom panel). 

Co-localisation resulting in yellow staining is evident in the merged images (GFP-RN-tre + 

vinculin and GFP-RN-tre + paxillin). Cells were also stained with Alexa Fluor 647-
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conjugated phalloidin (shown in magenta in the merge). Regions of cells were boxed and 

magnified in the panels below. Arrowheads point at FA. Bar, 10 µm. (B) Confocal images of 

MEF expressing HA-RN-tre stained with anti-HA (green) and anti-vinculin (red) antibodies. 

Co-localization resulting in yellow staining is evident in the merge. A portion of the cell is 

boxed and magnified in the panels below. Arrowheads point at FA. Bar, 10 µm. (C) Confocal 

images of MEF expressing GFP-RabGAP-5 (green) stained with antibodies for the adhesive 

markers vinculin (in red in the top panel) or paxillin (in red in the bottom panel). Merged 

images are also shown. Regions of cells were boxed and magnified in the panels below. Bar, 

10 µm. 
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Figure S2, related to Figure 2. GAP assays and generation of RN-tre null mice and 

fibroblasts.  

(A) Absence of inorganic phosphate in control GAP preparations or catalytically inactive 

RN-tre GAP domain. Left, Recombinant bacterially-produced GTP-loaded Rab5 (Rab5 

alone) used as positive control, or RabGAP-5 and RN-tre TBC domains used at the same 
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concentration employed in the GAP assays of Figure 2A,C or BSA were analysed using a 

continuous enzyme-coupled optical assay for the detection of inorganic phosphate with the 

use of reagents from the EnzChek Phosphate Assay Kit. Right, time courses of GTP 

hydrolysis of 20 µM of Rab5 in the absence (Rab5 alone) or presence of the indicated 

concentrations of wild type (RN-tre-TBC) or the catalytically inactive RN-tre-TBCR150A (RN-

treR150-TBC) domains. (B) TLC-based GAP assays. Recombinant, [γ-32P]GTP-loaded GST-

Rab5 (5 µM) was incubated with the indicated concentrations of the TBC domains of either 

RabGAP-5 or RN-tre. At various time points, Rab5-associated nucleotides were separated by 

Thin Layer Chromatography (Merck Biosciences), and quantified with a Typhoon Trio. 

Representative autoradiography is shown on the top. Data are expressed as the % of 

radioactive GTP over total nucleotide (GTP + GDP) and are the mean ± s.e.m of three 

independent experiments run in triplicates. Coomassie blue-stained SDS-PAGE of purified 

TBC domains or of GST-Rab5 are shown on the right or the bottom of the autoradiography, 

respectively. (C) Representative filter binding GAP assay out of three experiments. 

Recombinant, [γ-32P]GTP-loaded Rab5 (20 µM) was subjected to filter-binding GAP assays 

in the presence of 2 µM of control GST (empty circles), GST- RN-tre-TBC (filled circles), or 

GST-RabGAP-5-TBC (filled squares). After the indicated times, aliquots of the reaction were 

spotted onto nitrocellulose filters, followed by scintillation counting. GAP activity is 

expressed as the percentage of non-hydrolysed [γ-32P]GTP that remained bound to the filters, 

relative to the radioactivity at time 0. Values are the mean ± SD. (D) Baculovirus produced, 

histidine-tagged full length RN-tre or RabGAP-5 were affinity purified on Nickel-beads and 

eluted with various concentrations of imidazole as indicated. Purified proteins were resolved 

by SDS-PAGE and quantified with respect known amounts of BSA. Arrows point at fractions 

employed in the assays. (E) Targeting strategy. The upper panel depicts the RN-tre genomic 

locus; shown are the location of the homology arms used for the targeting vector, the 
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positions of the BamHI sites and the 3’ probe (in green) used for Southern blot analysis. The 

middle panel depicts the targeted locus. The critical Arginine residues in exon 7 and 8 are 

evidenced in red, also shown are the loxP sides, and the frt sides, contained in the targeting 

vector, which allow removal of the neo-cassette (indicated as a red box) for the generation of 

a conditional knockout. The lower panel depicts the locus after deletion of exon 7 and 8 

through the action of the Cre-recombinase. In the top and middle panel the BamHI fragments 

generated in the WT and in the recombinant locus are also indicated in green. (F) Southern 

blot analysis to detect germline transmission of the targeted allele. Tail DNA from chimeric 

offspring was digested with BamHI and hybridised with the 3’ probe. Digestion with BamHI 

gives rise to 12.1 and 4.8 kb fragments for the wild type and knockout allele, respectively. 

The right panel depicts the Southern blot analysis of 2 heterozygous and 2 wild type mice; 

arrows indicate the expected bands at 12.1 and 4.8 kbp. The left panel shows the Ethidium 

bromide staining of the gel before transfer. (G) Quantitative RT-PCR analysis of RN-tre 

mRNA in fibroblasts from WT or KO mice. Actin mRNA levels were used as a normalizer. 

As evident, there is essentially no specific mRNA transcript in KO fibroblasts (the amplified 

fragment is on exon 3, which is retained in the KO locus), indicating that, as a result of the 

genetic manipulations, either the RN-tre locus underwent major chromatin modifications, 

resulting in lack of transcription, or that the transcript from the KO locus is unstable. In either 

case, the results show that RN-tre KO mice and fibroblasts are bona fide null. (H) Genotyping 

of embryos. Genotyping was performed by PCR, using a common 5’primer (TF1) and two 

different a 3’-primers that allowed amplification of either the wild type allele (TF1xTWR2, 

550bp) or the knockout allele (TF1xTKR2, 360bp). (I) Ethidium bromide stained gel of a 

typical PCR reaction. Arrows indicate the amplification products (H, heterozygous mice; 

WT, wild-type mice; KO, KO mice). (L) Equal amounts of total cellular lysates from WT and 

RN-tre KO primary embryo fibroblasts were immunoblotted with the indicated antibodies. 
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(M) Equal amounts of total cell lysates from WT, KO, KO+RN-tre and KO+RN-treR150A 

MEF immunoblotted with the indicated antibodies. Expression of RN-tre or RN-treR150A to 

levels comparable to endogenous RN-tre was achieved by treating cell populations with 0.5 

µg/ml doxycycline for 48 h. (N-O) RN-tre KO MEF were transfected with CFP-Rab5 and 

with GFP (KO), or GFP-RN-tre (RN-tre) or the dominant-negative mutant of GFP-Rab43 

(Rab43DN) (N) or the dominant-negative mutant of GFP-Rab30 (Rab30DN) (O). Cells were 

stimulated with PDGF for 7 min. Input lysates were subjected to GST-EEA1 assay and IB, as 

indicated. (P) Confocal images of WT and KO MEF (indicated on the left) stained with anti-

Rab5 antibody (D-11 Santa Cruz, in red) and phalloidin (green). A portion of each cell has 

been boxed and magnified in the inset. Two examples of KO fibroblasts are provided. The 

cell in the bottom panel shows enlarged Rab5-endosomes and it is representative of 30% of 

total cells in the sample (100 cells/genotype were counted in three independent experiments). 

Bar, 10 µm. 
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B 

Cells TfRs/cell 
(x103) 

EGFRs/cell 
(x103) 

Ke Tf 
(min-1) 

Ke EGF 
Low 

(min-1) 

Ke EGF High 
(min-1) 

MEF WT 145 ± 7 50 ± 8 0.16 ± 0.013 0.16 ± 0.007 0.16 ± 0.009 
MEF KO 110 ± 9 47 ± 5 0.22 ± 0.016 0.21 ± 0.004 0.21 ± 0.01 

 

 

 

Figure S3, related to Figure 3. Effects of RN-tre on EGFR, TfR and ββββ1-integrin 

internalisation.  

(A) Internalisation kinetics of 125I-Tf (1 µg/ml left panel), 125I-EGF at low dose (1 ng/ml, 

middle panel) and high dose (20 ng/ml, right panel) (n = 3, mean values ± SD; p < 0.001). (B) 

Summary table of the characterization of RN-tre KO and WT MEF. The endocytic rate 

constant (Ke, min-1) was determined based on the slope of the internalisation kinetics. The 

number of TfRs and EGFRs at the cell surface was measured by saturation binding assays, as 

described in Supplemental Experimental Procedures. Mean and standard deviation were 
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calculated on three independent experiments. Note that MEF KO cells display a lower 

number of TfRs at the cell surface compared to WT cells, which correlates with their 

enhanced internalisation. Indeed, TfR is internalised through constitutive endocytosis and 

therefore the basal number of receptor at the cell surface is sensitive to variations in the 

internalisation rate. On the contrary, EGFR internalisation is primarily ligand-induced and 

therefore changes in the EGF-induced internalisation rate do not impact on basal receptor 

level. RN-tre KO and WT MEF display the same receptor number despite the difference in 

EGFR Ke. (C) Bar graph showing the amount of total (black bars) and active (white bars) β1-

integrin at the plasma membrane in RN-tre KO MEF expressing empty vector (KO) or RN-

tre (KO+RN-tre) measured by ELISA assays (n = 3 mean values ± SD). (D) RN-tre KO MEF 

expressing the inducible empty vector (KO), or RN-tre (KO+RN-tre) or RN-treR150A 

(KO+RN-treR150A) were surface labeled with cleavable biotin. Integrin internalization was 

allowed to for the times indicated, and biotin present on the cell surface was cleaved. The 

amount of biotinylated intracellular total (graph on the left) or active (graph on the right) β1-

integrin was determined with ELISA. The data are expressed as the percentage of internalised 

receptor relative to the total amount of cell surface–labeled integrin (n = 3, mean ± SD; Mann 

Whitney test p < 0.05). 
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Figure S4, related to Figure 4.  

(A-C) KO MEF were transiently transfected with control siRNA oligos (CTR) or oligos for 

Rab5A/B and C (bar graph in A) or Rab30 (bar graph in B) or Rab43 (bar graph in C) and 

analyzed for mRNA content by quantitative RT-PCR. mRNA content is expressed as fold 

change with respect to control RNAi-transfected cells. 
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Figure S5, related to Figure 5. RN-tre in cell migration. 

(A-B) RN-tre KO MEF expressing or not inducible RN-tre were plated on Dunn chamber 

pre-coated with either 5 µg/ml of fibronectin (A) or vitronectin (B) and analyzed for 

chemotactic migration toward a diffusible PDGF gradient. The migratory tracks of some 
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representative KO or KO+RN-tre MEF were determined as described above. The forward 

migration index parameter of at least 45 single cells/experiment/condition is plotted in the 

graphs on the right; **p < 0.005. (C) HeLa cells were transfected with GFP-RN-tre or GFP as 

control. Cell were FACS sorted to isolate GFP-expressing cells and tested in Dunn chamber 

assays in the presence of a diffusible chemotactic gradient of EGF. Cell migration was 

tracked every 5 minutes interval over 16 hours period. The migratory tracks of some 

representative GFP- and GFP-RN-tre expressing HeLa cells are shown. The forward 

migration index obtained by monitoring at least 50 single cells/experiment/condition is 

plotted in the graph on the right; **p < 0.005.  
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Legends to Supplemental Movies 

Movie S1. TIRF analysis of GFP-RN-tre, RFP-Rab5 and CFP-paxillin. Related to 

Figure 3. 

TIRF imaging of RN-tre KO MEF expressing GFP-RN-tre (green) RFP-Rab5A (red) and 

CFP-paxillin (blue). Co-localisation between Rab5 and RN-tre can be detected on a pool of 

vesicles in close proximity to remodelling adhesions. Time is in seconds. Bar, 10 µm. 

Playback is 5 frames/sec. 

 

Movie S2. FRAP analysis of GFP-paxillin turnover in peripheral FA in WT and KO 

MEF. Related to Figure 4. 

Time lapse movie from FRAP of a single GFP-paxillin-positive FA in RN-tre WT and KO 

MEF. Time is in seconds, relative to the time of photobleaching T=0. Bar, 3 µm. Playback is 

5 frames/sec. 

 

Movie S3. FRAP analysis of GFP-paxillin turnover in adhesions at the cell rear in WT 

and KO MEF. Related to Figure 4. 

Time lapse movie from FRAP of GFP-paxillin-positive adhesions at the cell rear in RN-tre 

WT and KO MEF. Time is in seconds, relative to the time of photobleaching T=0. Bar, 3 µm. 

Playback is 5 frames/sec. 

 

Movie S4. FRAP analysis of GFP-paxillin turnover in fibrillar adhesions in WT and KO 

MEF. Related to Figure 4. 

Time lapse movie from FRAP of GFP-paxillin-positive fibrillar adhesions in RN-tre WT and 

KO MEF. Time is in seconds, relative to the time of photobleaching T=0. Bar, 3 µm. 

Playback is 5 frames/sec. 
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Movie S5. FRAP analysis of GFP-paxillin turnover in RN-tre KO MEF re-expressing 

RN-tre or its GAP-defective mutant. Related to Figure 4. 

RN-tre KO MEF stably transfected with inducible empty vector (KO) or RN-tre (KO+RN-

tre) or RN-treR150A (KO+RN-treR150A) were treated with doxycycline for 48 h to induce the 

expression of the various proteins. 24 h after induction, cells were transfected with GFP-

paxillin and, 24 hours later, subjected to FRAP analysis. Time lapse movie from FRAP of a 

single GFP-paxillin positive FA in the various cell populations. Time is in seconds, relative 

to the time of photobleaching T=0. Bar, 3 µm. Playback is 5 frames/sec. 

 

Movie S6. FRAP analysis of GFP-paxillin in Rab-silenced RN-tre KO MEF. Related to 

Figure 4. 

RN-tre KO MEF were silenced with control oligos (CTR) or with oligos for Rab5 (Rab5-KD) 

or for Rab43 (Rab43-KD), transfected with GFP-paxillin and subjected to FRAP analysis. 

Time lapse movie from FRAP of a single FA in each condition. Time is in seconds, relative 

to the time of photobleaching T=0. Bar, 3 µm. Playback is 5 frames/sec. 

 

Movie S7. Random motility assay on RN-tre WT and KO PEF. Related to Figure 5. 

RN-tre WT and KO PEF were plated sparsely, and their motility was monitored by time-lapse 

video microscopy. Time is in minutes. Bar, 100 µm. Playback is 10 frames/sec. 

 

Movie S8. Chemotaxis assay of RN-tre KO inducible MEF. Related to Figure 5. 

RN-tre KO MEF stably transfected with inducible empty vector (KO), or RN-tre (KO+RN-

tre) or RN-treR150A (KO+RN-treR150A) were treated with doxycycline for 48 h to induce the 

expression of the various proteins. 24 h after induction, cells were plated on coverslip, 
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positioned on a Dunn chamber and monitored by time-lapse microscopy in presence of PDGF 

gradient. Time is in minutes. Bar, 100 µm. Playback is 10 frames/sec. 

 

Movie S9. Chemotaxis assay of RN-tre KO MEF plated on fibronectin. Related to 

Figure 5. 

RN-tre KO MEF stably transfected with inducible empty vector (KO), or RN-tre (KO+RN-

tre) were treated with doxycycline for 48 h to induce RN-tre expression. 24 h after induction, 

cells were plated on coverslip coated with 5 µg/ml fibronectin, positioned on a Dunn chamber 

and monitored by time-lapse microscopy in presence of PDGF gradient. Time is in minutes. 

Bar, 100 µm. Playback is 20 frames/sec. 

 

Movie S10. Chemotaxis assay of RN-tre KO MEF plated on vitronectin. Related to 

Figure 5. 

RN-tre KO MEF stably transfected with inducible empty vector (KO), or RN-tre (KO+RN-

tre) were treated with doxycycline for 48 h to induce RN-tre expression. 24 h after induction, 

cells were plated on coverslip coated with 5 µg/ml vitronectin, positioned on a Dunn chamber 

and monitored by time-lapse microscopy in presence of PDGF gradient. Time is in minutes. 

Bar, 100 µm. Playback is 20 frames/sec. 

 

Movie S11. Chemotaxis assay of HeLa cells overexpressing GFP-RN-tre. Related to 

Figure 5. 

HeLa cells transfected with GFP empty vector or GFP-RN-tre were plated on coverslip, 

positioned on a Dunn chamber and monitored by time-lapse microscopy in presence of EGF 

gradient. Time is in minutes. Bar, 50 µm. Playback is 20 frames/sec. 
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Movie S12. Chemotaxis assay on RN-tre KO MEF subjected to siRNA for Rab5, Rab30 

and Rab43. Related to Figure 5. 

RN-tre KO MEF transfected with control (CTR), Rab5 (Rab5-KD), Rab30 (Rab30-KD) or 

Rab43 (Rab43-KD) siRNA oligos were plated on coverslip, positioned on a Dunn chamber 

and monitored by time-lapse microscopy in presence of PDGF gradient. Time is in minutes. 

Bar, 100 µm. Playback is 10 frames/sec. 
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Supplemental Experimental Procedures 
 

Expression vectors and antibodies 

The identifiers for genes used in the study are: RN-tre, GeneID 9712, Acc. Num. 

NM_001080491; Rab5A GeneID, 5868, Acc. Num. NM_004162; Rab43, GeneID 339122, 

Acc. Num. NM_198490; RabGAP-5; GeneID 27352 Acc. Num NM_015705; Rab30, 

GeneID 27314, Acc. Num NM_014488.  

Constructs: GFP-RN-tre and its GAP-defective mutant RN-treR150A were described in [1], 

Cherry-RN-tre was subcloned from GFP-RN-tre into pAC Cherry C1 (Clontech), pTagRFP-

vinculin was from Evrogen, GFP-paxillin was from Rick Horwitz, GST-TBC domains of 

RN-tre and RabGAP-5 and his-tagged full length RN-tre and RabGAP-5 were obtained by 

PCR and cloned respectively in pGEX or in pFastBacHTA vectors. For reconstitution of KO 

MEF, RN-tre and RN-treR150A were subcloned from their corresponding pCDNAHA plasmids 

in the lentiviral TET ON vector pSLIK [2], pGEX-Rab5A and pGEX-EEA1 RBD domain (aa 

1257-1411), pCDNA3–Rab5S34N-Myc and pCDNA3–Rab5Q79L-Myc were from Marino 

Zerial, mRFP-Rab5A was from Addgene, pECFP-Rab5A was from Alexander Sorkin, GFP-

tagged dominant-negative point mutants Rab30T23N and Rab43T32N were generated by 

recombinant PCR and cloned in pEGFPC vectors (Clontech). All constructs used were 

sequence verified and cloning details are available upon request.  

Antibodies were: purified rabbit polyclonal anti-RN-tre (raised against the C-terminal peptide 

of human RN-tre aa: CLPEVSVDSPVRYKMS and affinity-purified), anti-Rab5 (S-19 and 

D-11, Santa Cruz), purified rat anti-mouse CD29 (9EG7, BD Pharmingen), mouse 

monoclonal anti-β1-integrin (JB1B, Abcam ab30388), mouse monoclonal anti-vinculin 

(clone hVIN-1, Sigma), rabbit monoclonal anti-paxillin (clone Y113, Millipore), rabbit 

polyclonal anti-β-tubulin (H-235, Santa Cruz), actin was detected with Alexa Fluor 647 

Phalloidin (Invitrogen). 
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RNAi silencing procedures 

In the RNAi experiments siRNA oligo duplexes from Invitrogen were transfected with 

Oligofectamine (according to manufacturer’s instructions) and harvested 48 h after 

transfection. 

Sequences of siRNA oligos: 

Rab5A: GCAACAAGACCCAACGGGCCAAATA; 

Rab5B: CAGGCTGCAATCGTGGTCTATGATA; 

Rab5C: CAGATACATTTGCACGGGCTAAGAA. 

Rab30: TCCTGAGTGGTTGCGGGAGATAGAA 

Rab43: CCAGAGTGGCCACGGAGCTCATCAT 

For all siRNA experiments, the appropriate scrambled oligos were used as control siRNAs. 

 

GAP assays 

GAP assays using a continuous enzyme-coupled optical assay for the release of inorganic 

phosphate with the use of reagents from the EnzChek Phosphate Assay Kit (Invitrogen, 

Carlsbad, CA, USA ) were as described in [3]. Data were analysed by fitting them 

simultaneously to the pseudo-first-order Michaelis–Menten model function A(t)=(A∞-A0)(1-

exp(-kobst))+A0 where kobs = kintr + (kcat/Km)[GAP] using GraphPad Prism program. The 

catalytic efficiency (kcat/Km) and intrinsic rate constant for GTP hydrolysis (kintr) were treated 

as global parameters. 

TLC-based GAP assays were performed as follows: 500 pmol of purified GST-Rab5 protein 

bound to glutathione sepharose beads were incubated for 15 min at 30°C with 1.5 pmol of 

[γ32P]GTP (Perkin Elmer) and 800 pmol of cold GTP (Sigma-Aldrich) in 40 mM Tris–HCl 

(pH 7.5), 50 mM NaCl, 5 mM EDTA, 1.74 mM MgCl2, 0.5 mM DTT, 0.36%(w/v) CHAPS, 
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and 1 mg/mL BSA. The loading reaction was stopped by washing the resin with ice-cold 

wash buffer containing 20 mM Tris–HCl (pH 8.0), 100 mM NaCl, 20 mM MgCl2, and 0.5 

mM DTT. The GTPase activity reaction was initiated by adding GST-TBC protein (50 or 150 

pmol for RabGAP-5 and RN-tre), and incubated at 30°C for 5 or 10 min. After extensive 

washing of the resins with ice-cold wash buffer, associated nucleotides were separated by 

Thin-Layer Chromatography (Merck Biosciences), and quantified with a Typhoon Trio (GE 

healthcare), as described [4]. Filter binding GAP assays were as described in [1].  

 

Pull down assays for detection of Rab5-GTP 

Pull-down assays of Rab5-GTP were performed with GST-EEA11257-1411 (GST-EAA1) 

purified from E. coli BL21 (DE) bacterial cells, as described in [5]. RN-tre WT or KO 

fibroblasts were lysed with Pull-Down Lysis Buffer [50 mM Tris HCl pH 7.4, 150 mM NaCl, 

1% NP-40, 5% glycerol, 1 mM EDTA, 10 mM MgCl2, proteases inhibitor cocktail 

(Calbiochem)]. Lysates (3-5 mg) were incubated with 30 µg of purified GST-EEA1 

conjugated to glutathione-Sepharose beads, for 1 h at 4°C. Beads were washed with Pull-

Down Lysis Buffer three times at 4°C. Specifically-bound material was analysed by SDS-

PAGE and immunoblot as described [6]. 

 

Transferrin and EGF internalisation assays 

Internalisations of 125I-EGF and 125I-Tf (purchased from Perkin Elmer) were performed as 

described [7, 8]. Briefly, cells were serum starved for 2-4 hours and then incubated at 37°C in 

the presence of 125I-EGF and 125I-Tf at the indicated concentration in binding medium (BSA 

0.1%, 20 mM Hepes pH 7.4). After the indicated time points, cells were washed three times 

in PBS, and then surface-bound radioactivity was removed through an acid wash pH 2.5 

(acetic acid 0.2 M, NaCl 0.5 M) and measured. This sample represents the amount of 125I-
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EGF and 125I-Tf bound to the receptors on the cell surface. Cells were then lysed in 1M 

NaOH. This sample represents internalized 125I-EGF and 125I-Tf. The unspecific binding was 

measured at each time point in the presence of 300-fold excess of non-radioactive EGF/Tf. 

After being corrected for non-specific binding, the rate of internalisation was expressed as the 

ratio between internalised and surface-bound radioactivity. From the kinetics, we calculated 

the endocytic rate constant (Ke). 

 

Saturation binding assay 

Surface EGFRs were measured by 125I-EGF saturation binding [8]. Briefly, cells were serum 

starved for 2-4 hours and then incubated on ice in the presence of 100 ng/ml EGF (5 ng/ml 

125I-EGF + 95 ng/ml cold EGF) or 2 µg/ml Tf, in binding medium (BSA 0.1%, 20 mM Hepes 

pH 7.4). After six hours, cells were washed three times in PBS, and then were lysed in 1M 

NaOH. The unspecific binding was measured in presence of an excess of 300-fold non-

radioactive EGF.  
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