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Abstract

All algorithms currently known for computing the re-
sponse time of tasks scheduled under fixed-priority schedul-
ing have run-time pseudo-polynomial in the representation
of the task system. We derive a formula that can be com-
puted in polynomial time for determining an upper bound
on response times; our upper bound on response time has
the added benefit of being continuous in the task system
parameters. We evaluate the effectiveness of our approxi-
mation by a series of simulations; these simulations reveal
some interesting properties of (exact) response time, which
give rise to an open question that we pose as a conjecture.

Finally, the proposed upper bound of the response time
can be used to test effectively the schedulablity of task sets
in time linear with the number of tasks.

1. Introduction

In many real-time systems specific jobs are expected to
complete by specified deadlines. Basically, two main cat-
egories of algorithms have been proposed for determining
the response times of tasks in DM-scheduled systems: Rate
Monotonic Analysis (RMA) [13] and Response Time Anal-
ysis (RTA) [10, 2].

RTA computes, for each task, theworst-case response
times— the maximum amount of time that may elapse be-
tween the instant that a job is released for execution and the
instant it completes execution. If, for all tasks, the response
time is shorter than the deadline, then the task set is feasible.
Instead, RMA searches, for each task, any instant earlier
than the deadline, large enough to accommodate the com-
putational requirement of the task itself and all the higher
priority tasks. If such an instant exists for all tasks then the
task set is feasible.

Both approaches are known to have pseudo-polynomial
worst-case time complexity, and it is currently unknown
whether the task set feasibility can be computed in time
polynomial in the representation of the task system.

Despite the pseudo-polynomial time complexity, both
RMA and RTA have very efficient implementations in prac-
tice that render them suitable for feasibility analysis of
Fixed Priority (FP) systems. However, these algorithms
may not be particularly well-suited for use in interactive
real-time system design environments. When using such
design environments, the system designer typically makes
a large number of calls to a feasibility-analysis algorithm
during a process of interactive system design and rapid sys-
tem prototyping, since proposed designs are modified ac-
cording to the feedback offered by the feasibility-analysis
algorithm (and other analysis techniques). In such scenar-
ios, a pseudo-polynomial algorithm for computing the task
set feasibility may be unacceptably slow; instead, it may be
acceptable to use a faster algorithm that provides an approx-
imate, rather than exact, analysis.

Moreover, there are some circumstances in the real-time
system design, such as in control systems [8] and in holistic
analysis [19], where it is required to know the response time
of the tasks, and not only the system feasibility provided
by RMA. For this reason in this paper, we propose an algo-
rithm for computing efficiently an approximate upper bound
of the response time. In addition to computation efficiency,
our algorithm has the benefit of representing the (bound on)
response time as a continuous function of the task system
parameters, thereby facilitating optimisation of system de-
sign in applications, such as some control systems, where
task parameters may be tweaked locally without causing
catastrophic changes to application semantics. (Response
time is not in general a continuous function of system pa-
rameters; hence, no exact algorithm for computing response
times can possibly make a similar guarantee.)

There are many scenarios in which efficient computation
of (exact or approximate) response times is desirable.

• In distributed systems, tasks may be activated after the
completion of some other task [22, 19]. In such cases it
is necessary to know the response time of the first task
in order to analyse the scheduling of the second. This
task model is calledtransaction model[19], and the
analysis is performed by means of theholistic analy-



sis[22].

• In control systems, the response time of a task measure
the delay between the instant where the input are read
from the sensors and the output are written to the actu-
ators. The performance of the control system depends
upon this value [8] hence the response time has a di-
rect impact on the system performance. Moreover, as
our provided bound of the response time is a differen-
tiable function, it is possible to estimate the effect of
the variation of any system parameter.

• Finally, when the relative deadline parameters are per-
mitted to be larger than the periods, current algorithms
for the exact computation of response time require the
evaluation of the response times of each and every job
within the busy period [12, 23]. The resulting com-
plexity may be unacceptably high, especially in all
those design environments where the response time
routine is largely invoked.

1.1. Related work

The problem of reducing the time complexity of feasi-
bility tests has been largely addressed by the real-time re-
search community. The Rate Monotonic Analysis, after the
first formulation by Lehoczky et al. [13], has been improved
by Manabe and Aoyagi [17] who reduced the number of
points where the time demand needs to be checked. Bini
and Buttazzo [4] proposed a method to trade complexity vs.
accuracy of the RMA feasibility tests.

The efforts in the simplification of the Response Time
Analysis has been even stronger, probably due to the greater
popularity of RTA. Sjödin and Hansson [21] proposed sev-
eral lower bounds to the response time so that the orig-
inal response time algorithm [10] could start further and
the time spent in computing the response time is reduced.
Bril [7] proposed a similar technique to reduce the time
complexity of the exact RTA. Starting from the idea of Al-
bers and Slomka [1], who developed an estimate of the de-
mand bound function for EDF scheduled tasks, Fisher and
Baruah [9] have derived a fully polynomial time approxi-
mation scheme (FPTAS) of the RTA. Very recently, Richard
and Goossens [20] have extended the task model of a pre-
vious FPTAS [9] to take into account release jitter. Finally,
Lu et al. [16] proposed a method to reduce the number of
iterations for finding the task response times.

The remainder of this paper is organised as follows. In
Section 2 we formally state our task model, and reduce the
problem of bounding the response time of each task in a task
system to a problem of bounding the total workload gener-
ated by the task system. In Section 3 we derive a bound
on the workload, which immediately yields the desired re-
sponse time bound. We describe a series of simulation ex-

periments in Section 4 for determining the “goodness” of
our upper bound. We conclude in Section 5 with a brief
summary of the main results presented in this paper.

2. The Response Time Bound

We assume that a real-time system is modelled as be-
ing comprised of a pre-specified numbern of independent
sporadictasks [18, 3]τ1, τ2, . . . , τn, executing upon a sin-
gle shared preemptive processor. Each sporadic taskτi is
characterised by a worst-case execution time (WCET)Ci;
a relative deadline parameterDi; and a period/ minimum
inter-arrival separation parameterTi. Notice that the dead-
lines are arbitrary, meaning that no particular relationship
is assumed betweenDi andTi. Each such task generates
an infinite sequence of jobs, each with execution require-
ment at mostCi and deadlineDi time-units after its ar-
rival, with the first job arriving at any time and subsequent
successive arrivals separated by at leastTi time units. We
assume that the system is scheduled using a fixed-priority
(FP) scheduling algorithm such as the Deadline-Monotonic
(DM) scheduling algorithm [14], which is known to be an
optimal fixed-priority algorithm when all the sporadic tasks
have their relative deadline parameters no larger than their
periods.

We will use the termutilisationof τi (denoted byUi), to
represent the ratioCi/Ti, and letU denote thesystem util-
isation: U =

∑n

i=1
Ui. We assume thattasks are indexed

according to priorities: taskτ1 is the highest-priority task,
andτi+1 has lower priority thanτi for all i, 1 ≤ i < n. No-
tice that we do not assume any specific priority assignment.

We start with some notations and definitions. Let us de-
fine theworst-case workloadas follows:

Definition 1 Let Wi(t) denote theworst-case workloadof
the i highest priority tasks over an interval of lengtht,
which is the maximum amount of time that a taskτj , with
1 ≤ j ≤ i can run over an interval of lengtht.

As proved by Liu and Layland in their seminal pa-
per [15], the worst-case workloadWi(t) occurs when all
the tasksτ1, . . . , τi are simultaneously activated, and each
task generates subsequent jobs as soon as legally permit-
ted to do so (i.e., consecutive jobs ofτi arrive exactlyTi

time units apart, for alli) – this sequence of job arrivals is
sometimes referred to as thesynchronous arrival sequence.
Thus,Wi(t) equals the maximum amount of time for which
the CPU may execute some task from among{τ1, . . . , τi},
over the time interval[0, t), for the synchronous arrival se-
quence.

We highlight that our definition of worst-case workload
is different than theworst-case demand, which is expressed

by the “classical ceiling” expression
∑

i

⌈

t
Ti

⌉

Ci. The



worst-case workload is the fraction of the demand which
can be executed in[0, t), under the synchronous arrival se-
quence hypothesis, whereas the demand is the maximum
amount of work which can bedemandedin [0, t).

A closely-related concept is that of theworst-case idle
time:

Definition 2 Let Hi(t) denote theworst-case idle timeof
thei highest priority tasks over an interval of lengtht.

This is the minimum amount of time that the CPU is not
executing some task in{τ1, . . . , τi} over the time interval
[0, t). It is straightforward to observe that

Hi(t) = t − Wi(t) (1)

Let us define the(pseudo) inverseof the idle time, as
follows:

Definition 3 The (pseudo) inverse functionXi(c) of Hi(t)
is the smallest time instant such that there are at leastc
time units when the processor is not running any tasks in
{τ1, . . . , τi}, over every interval of lengthXi(c). That is,

Xi(c) = min
t
{t : Hi(t) ≥ c}

We note thatHi(t) is not an invertible function, since
there may be several time-instantst for whichHi(t) is con-
stant — that is why we refer toXi(c) as a pseudoinverse.
In the remainder of this paper we will abuse notation some-
what, and use the following notation:

Xi(c) = [Hi(t)]
−1 (2)

Based upon this definition of the inverse of the idle time,
we obtain the following alternative representation of task
response time. (Observe that this relationship holds regard-
less of whether task deadlines are lesser than, equal to, or
greater than periods.)

Lemma 1 The worst-case response timeRi of taskτi is
given by:

Ri = max
k=1,2,...

{Xi−1(k Ci) − (k − 1)Ti} (3)

Proof. Xi−1(k Ci) is the instant when the firsti − 1 tasks
have leftk Ci units of time available for the lower priority
tasks. Hence it is also the finishing time of thekth job of τi

in the busy period.(k− 1)Ti is the activation of such a job.
The proof hence follows directly as in [23].�

Notice that if
∑i

j=1
Ui > 1 then the we clearly have

Ri = +∞. For this reason in realistic cases we assume
∑i

j=1
Ui ≤ 1.

Some further notation: for any functionf(x), fub(x) de-
notes an upper bound, andf lb(x) denote a lower bound on
the functionf(x), so that we havef lb(x) ≤ f(x) ≤ fub(x)
for all x.

Theorem 1 For any upper boundW ub

i (t) on the workload
Wi(t), there is a corresponding upper boundRub

i on the
worst-case response timeRi.

Proof. SinceW ub

i (t) is an upper bound ofWi(t) we have
by definition

W ub

i (t) ≥ Wi(t)

from which it follows the obvious relationship for the idle
time

H lb

i (t) = t − W ub

i (t) ≤ t − Wi(t) = Hi(t)

which gives us a lower bound of the idle time. From this
relationship it follows that for any possible valuec we have

{t : H lb

i (t) ≥ c} ⊆ {t : Hi(t) ≥ c}

Now it is possible to find a relationship between the pseudo-
inverse functions. In fact we have

Xub

i (c) = min
t
{t : H lb

i (t) ≥ c} ≥

min
y

{t : Hi(t) ≥ c} = Xi(c)

from which it follows that

Rub

i = max
k=1,2,...

{Xub

i−1(k Ci) − (k − 1)Ti} ≥ Ri

as required.�

3. The workload upper bound

As stated above, it was proved by Liu and Layland [15]
that the worst-case workloadWi(t) occurs for the syn-
chronous arrival sequence of jobs — i.e., when all the
tasksτ1, . . . , τi are simultaneously activated, and consec-
utive jobs ofτi arrive exactlyTi time units apart, for all
i. Hence the functionWi(t) may be expressed by the sum
of the individual workload of each taskτj . If we let wj(t)
denote the maximum amount of time that the processor ex-
ecutes taskτj over the interval[0, t) in this worst-case sce-
nario, we can write:

Wi(t) =

i
∑

j=1

wj(t)

This is shown in Figure 1.
Letting wo

j (t) denote the maximum amount of time that
the processor executes taskτj in any interval of lengtht,
when task τj is the only task in the system, clearly we
have:

∀j ∀t wo
j (t) ≥ wj(t)
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Figure 1. An example of the Wi(t) and wj(t)

since the presence of additional jobs may only delay the
execution ofτj ’s jobs.

The workload wo
j (t), which is equal to

min
{

t − (Tj − Cj)
⌊

t
Tj

⌋

,
⌈

t
Tj

⌉

Cj

}

, can be conveniently

upper bounded by the linear function as shown in Figure 2.
The equation of the linear bound isUj t + Cj(1 − Uj).

priority load
higher

t

τj

Tj

Cj

Cj

τo
j

linear bound
wj(t)

wo
j(t)

Figure 2. The upper linear bound of wj(t)

Using these relationships found for the workloadwj(t)
of each task, if we sum overj from1 to i we obtain an upper

bound on the workload functionWi(t):

Wi(t) =

i
∑

j=1

wj(t) ≤
i
∑

j=1

wo
j (t) ≤

≤
i
∑

j=1

(Uj t + Cj (1 − Uj)) (4)

We have so obtained the upper bound we were looking
for. The property of this bound is that we can compute con-
veniently its inverse function and then apply the Theorem 1
to finally find the bound of the response time.

Theorem 2 The worst-case response timeRi of taskτi is
bounded from above as follows:

Ri ≤
Ci +

i−1
∑

j=1

Cj(1 − Uj)

1 −
i−1
∑

j=1

Uj

= Rub

i (5)

Proof. The proof of this theorem is obtained by applying
Theorem 1 to the workload bound provided by the Eq. (4).
So we have:

W ub

i (t) =

i
∑

j=1

(Uj t + Cj(1 − Uj))

H lb

i (t) = t



1 −
i
∑

j=1

Uj



−
i
∑

j=1

(Cj(1 − Uj))

Since H lb

i (t) is invertible, it can be used to compute
Xub

i (h).

Xub

i (h) =
h +

∑i

j=1
Cj(1 − Uj)

1 −∑i

j=1
Uj

Then the response time is bounded by:

max
k=1,2,...

(

kCi +
∑i−1

j=1
Cj(1 − Uj)

1 −∑i−1

j=1
Uj

− (k − 1)Ti

)

(6)

We will now prove that the maximum in the Eq. (6) occurs
for k = 1. Let us consider this function on the real ex-
tension[1, +∞). On this interval we can differentiate with



respect tok. Doing so we get:

d

dk

(

kCi +
∑i−1

j=1
Cj(1 − Uj)

1 −∑i−1

j=1
Uj

− (k − 1)Ti

)

=

Ci

1 −∑i−1

j=1
Uj

− Ti =

Ti

(

Ui

1 −∑i−1

j=1
Uj

− 1

)

=

Ti

(

∑i

j=1
Uj − 1

1 −∑i−1

j=1
Uj

)

which is always negative (or zero). In fact, if
∑i

j=1
Uj > 1

the response time is known to be arbitrarily long, and so
unbounded. Then, since the function is decreasing (or con-
stant), its maximum occurs in the left bound of the interval,
which meansk = 1. Finally, by substitutingk = 1 in
Eq. (6), we get:

Rub

i =
Ci +

∑i−1

j=1
Cj(1 − Uj)

1 −∑i−1

j=1
Uj

(7)

as required.�

Moreover we can divide byTi to normalise the bound
and we get:

rub

i =
Rub

i

Ti

=
Ui +

∑i−1

j=1
aj Uj(1 − Uj)

1 −∑i−1

j=1
Uj

(8)

whereaj = Tj/Ti.

The time complexity of computing the response time up-
per boundRub

i of taskτi is O(i). Hence the complexity of
computing the bound for all the tasks seems to beO(n2).
However, it can be noticed that the computation ofRub

i+1

can take advantage of the completed computation ofRub
i .

In fact the two sums involved in Equation (5) can be simply
computed by adding only the values relative to the last index
to the sum values of the previous computation. This obser-
vation allows us to say that the computation of the response
time upper bound of all the tasks inO(n).

There are other techniques to bound the response time.
Similarly as suggested by Sjödin and Hansson [21], a differ-
ent upper bound on the worst-case response times may be
obtained from the recurrence used in response-time analy-
sis [10, 2] by replacing the ceiling function⌈x⌉ with x + 1.

We have:

Ri = Ci +
i−1
∑

j=1

⌈

Ri

Tj

⌉

Cj

Ri ≤ Ci +

i−1
∑

j=1

(

Ri

Tj

+ 1

)

Cj

Ri − Ri

i−1
∑

j=1

Uj ≤ Ci +

i−1
∑

j=1

Cj

Ri ≤
∑i

j=1
Cj

1 −
∑i−1

j=1
Uj

Observe that this is a looser bound than the one we have
obtained above, in Theorem 2.

We conclude by reiterating the benefits of using the re-
sponse time upper bound presented in Theorem 2 above:

• it can be computed inO(n) time;

• it is continuous and differentiable in all the variables;

• the bound holds even for deadlines greater than the
period. In this case the exact algorithm for the re-
sponse time calculation [23] requires to check all the
jobs within the busy period;

• the bound has a closed formulation, instead that an it-
erative definition. Hence it is possible to adopt some
feedback on task parameters (Cj or Tj) so that the re-
sponse time is modified in some desired direction.

3.1. A sufficient schedulability test

In the same way as the exact values of the response times
allow to formulate a necessary and sufficient schedulability
test, the response time upper boundRub

i allows to express a
sufficient schedulability condition for the fixed priority al-
gorithm. It is then possible to enunciate the followingO(n)
sufficient schedulability condition for tasks scheduled by
fixed priority with arbitrary deadline.

Corollary 1 A task setτ1, . . . , τn is schedulable by fixed
priorities if:

∀i Rub

i =
Ci +

∑i−1

j=1
Cj(1 − Uj)

1 −∑i−1

j=1
Uj

≤ Di (9)

Proof. From Theorem 2 it follows thatRi ≤ Rub

i . From
the hypothesis it follows thatRub

i ≤ Di. Then it follows
thatRi ≤ Di, which means that all the tasks do not miss
their deadlines.�



Corollary 1 provides a very efficient means for testing
the feasibility of task sets. This condition can also be
restated as a utilisation upper bound, and compared with
many existing schedulability tests [15, 12, 11, 6]. Since
some of these results are achieved assuming deadlines equal
to periods, we also provide the following corollary in this
hypothesis although this restriction doesn’t apply to our re-
sponse time upper bound.

Corollary 2 A task setτ1, . . . , τn, with deadlines equal to
periods (Di = Ti) is schedulable by fixed prioritiesif:

∀i
i
∑

j=1

Uj ≤ 1 −
i−1
∑

j=1

aj Uj(1 − Uj) (10)

whereaj = Tj/Ti.

Proof. From Equation (9) it follows that the taskτi is
schedulable if

Ui +
∑i−1

j=1
aj Uj(1 − Uj)

1 −
∑i−1

j=1
Uj

≤ 1

whereaj =
Tj

Ti
. Also notice that if tasks are scheduled by

RM thenaj ≤ 1 always. From the last equation we have

Ui +

i−1
∑

j=1

aj Uj(1 − Uj) ≤ 1 −
i−1
∑

j=1

Uj

i
∑

j=1

Uj ≤ 1 −
i−1
∑

j=1

aj Uj(1 − Uj)

which proves the corollary, when ensured for all tasks.�

It is quite interesting to observe that when the periods are
quite large compared to the preceding one — meaning that
aj → 0 — then the test is very effective. On the other hand,
when all the periods are similar each other then the right
hand side of Eq. (10) may also become negative, making
the condition impossible. This intuition will be confirmed
in the next section dedicated to the experiments.

4. Experiments

The major benefits of the response time upper bound that
we have computed in Section 3 above lie in(i) thetime com-
plexitywhich, atO(n) wheren denotes the number of tasks,
is linear in the representation of the task system; and(ii)
the fact that the upper bound iscontinuouswith respect to
the task system parameters (and hence more useful in in-
teractive system design). It is however, also important to
evaluate the quality of the bound. Clearly, the tightness of

the approximation depends upon the task set parameters. In
order to estimate the distance between the exact value of
the response time and of our derived upper bound (thereby
determining the “goodness” of our upper bound), we per-
formed a series of experiments that explored the impact of
the different task characteristics.

4.1. Effect of task periods

In the first set experiments we evaluate the impact of task
periods on the response time upper bound. For this purpose,
we use a system comprised of only2 tasks. The period of
the higher-priority task is setT1 = 1, whereas the periodT2

of the low priority task is calculated so that the ratioT1/T2

ranges in the interval[0, 1]. The task computation timesC1

andC2 are chosen such that:

• the relative utilisations of the two tasks does not
change in the experiments. This is achieved by setting
U1/U2 = 0.25 always;

• the total utilisationU = U1 + U2 is equal to one of the
four values{0.2, 0.4, 0.6, 0.8} (we run four classes of
experiments, one for each value).

We leave the values ofD1 andD2 unspecified, since these
parameters have no effect on either the exact response time,
or our computed upper bound, under FP scheduling.

For each simulation, we computed the exact response
time R2 and our upper boundRub

2 for the taskτ2. Notice
that both the tasks will have response times smaller than
or equal to their respective periods since the Liu and Lay-
land utilisation bound for two tasks is2(

√
2 − 1) ≈ 0.828,

which is greater than all the total utilisations assumed in this
experiment. Hence the maximum response time occurs in
the first job ofτ2. Both the response time and the upper
bound are normalised with respect to the periodT2, so that
the comparison between different values of the periodT2 is
easier. The results are shown in Figure 3. Black lines are
the normalisedRub

2 values, gray plots are the exact response
times.

It may be noticed that the approximation is very good
whenT2 ≫ T1 (i.e. when the ratioT1/T2 is close to zero).
In fact, in this condition the workload estimate, upon which
the response time bound is built, becomes very tight. The
discontinuities in the response times occur when an addi-
tional job ofτ1 interferes with the response time ofτ2. Fi-
nally, it may be noticed that the approximation degrades as
the total utilisation increases. This can be explained by re-
iterating that the upper estimate of the workload is tight for
low utilisations, as can be observed from Figure 2.

Given this last observation, it becomes quite interesting
to test the case whenU = 1. In this condition of heavy
load, the task system utilisation is no longer≤ the Liu and
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Layland utilisation bound, and hence it is not guaranteed
that both tasks’ response times will be≤ their respective
period parameters. Furthermore, the response timeR2 does
not necessarily occur at the first job, and hence all the jobs
within the first busy period must be checked. (In fact, un-
der the conditionU = 1 the processor is always busy and
the busy period never ends, but the response time can still
be computed by checking all the jobs up to hyperperiod —
the least common multiple of all the periods.) A second —
more serious — problem is related to the nature of the ex-
periment: since we are running simulations as the period
T2 varies fromT1 to infinity, the hyperperiod can be ex-
tremely large! (Indeed, the hyperperiod does not even exist
if T1/T2 is irrational, although this phenomenon is not en-
countered with machine representable numbers.) Hence, in
our simulation setting the computation of the response time
is stopped after1000 jobs ofτ2. In the top part of Figure 4
we report the differenceRub

2 − R2 normalised with respect
to T2 as usual. The result is quite surprising.

From the figure we see that the upper bound is a very
tight approximation of the exact response time, unlesssome
harmonic relationship existsbetweenT1 andT2. Moreover,
the stronger the harmonicity the greater the difference be-
tween the bound and the exact value (for example when
T1

T2

∈
{

1, 1

2
, 1

4
, 2

3

}

.) When the periods are poorly harmonic
the upper bound is extremely tight.

In these experiments we observed that in poorly har-
monic periods, the response time routine needs to be con-
ducted much further than in more harmonic conditions. The
bottom part of Figure 4 reports, on a log scale, the index of
the job ofτ2 that experiences the maximum response time
(thecritical job). When the periods are in some harmonic
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Figure 4. Response time bound, when U = 1

relationship the critical job occurs relatively early. How-
ever, when the harmonic relationship is poor we often stop
our computation because of our job limit at1000 jobs.

This observation motivated the third and last set of ex-
periments exploring the influence of periods. We want to
evaluate what the critical job is, when the periods are poorly
harmonic. For this purpose, we setT2

T1

=
√

2 so that the no-
tion of hyperperiod doesn’t exist (clearly on machine rep-
resentable numbers,T1 andT2 are still rational.) We set
the ratioU1

U2

= 0.25 (meaning that theτ1 has a significantly
lower load thanτ2, although this setting did not seem to
significantly affect the simulation results). The experiments
are carried out varying the total utilisation in the proximity
of U = 1. Again, we stopped the computation of response
time after10000 jobs. Figure 5 reports the index of the crit-
ical job in log scale.

It may be noticed clearly that as the total utilisation ap-
proaches1 the index of the critical job progressively in-
creases, until the computation is artificially interruptedat
job 10000. Actually when the utilisation is exactly1, we
believe thatthere always exists some future job with longer
response time. Observing this phenomenon has lead us to
formulate the following conjecture.

Conjecture 1 WhenU = 1 and the ratioT2

T1

is irrational
then the index of the critical job is unbounded. Moreover
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Figure 5. The index of the critical job.

we have
lim sup

k

R2,k = Rub

2 (11)

whereR2,k denotes the response time of thekth job of task
τ2.

4.2. Effects of the number of tasks

In this set of experiments we focus on the influence of
the number of tasks both on the actual response time and
on the upper bound derived by us in Section 3. The number
of tasks ranges from2 to 20. The experiment is run under
three different total load condition represented byU = 0.3
(light load),U = 0.5 (average load) andU = 0.8 (heavy
load). The total load is uniformly distributed among the sin-
gle tasks using the simulation routine suggested by Bini and
Buttazzo [5]. Notice that as the number of tasks increases
all the individual utilisationsUi tend to decrease because
the total utilisationU is kept constant. The periodT1 of τ1

is set equal to one, and the remaining periods are randomly
selected such thatTi+1/Ti is uniformly distributed in[1, 3].
For each pair (number of tasksn, total utilisationU ) we ran
10000 simulations and computed the normalised response
timeRn/Tn — drawn in gray — and the normalised upper
boundRub

n /Tn — in black. Figure 6 reports the average
value of all the simulations. The figure shows three pairs
of plots, relative to the three different values of utilisation
simulated.

It may seem quite unexpected that the response times
does not increase with the number of tasks. However, we
must remember that we are plotting values normalised with
the periodTn. To confirm the validity of the experiments
we can compute the limit of the normalised response time,
reported in Eq. (8), asn grows to infinity. In order to com-
pute the limit we assume that all the tasks utilisations are the
same (i.e., each is equal toU/n) and all the period ratiosaj
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Figure 6. Response bound and tasks number

are equal to a common valuea. The asymptotic value of the
response time then is

lim
n→∞

rub

n =
U
n

+ (n − 1)aU
n

(1 − U
n

)

1 − (n − 1)U
n

=
U + (n − 1)a U(1 − U

n
)

n − (n − 1)U

=
U + (n − 1)a U

n − (n − 1)U

=
a U

1 − U

which is constant.

4.3. The sufficient test

In the final experiments we evaluated the number of tasks
sets accepted by the sufficient test stated in Corollary 2.
This test is compared with other simple sufficient tests: the
Hyperbolic Bound [6] and the utilisation RBound [11]. We
remind that the complexity of the test presented here and
the Hyperbolic Bound inO(n), whereas the complexity of
the utilisation RBound isO(n log n), wheren denotes the
number of tasks.

First we investigated the effect of the period on the qual-
ity of the sufficient tests. We arbitrarily set the number of
tasks equal to5 and the total utilisationU = 0.8 so that the
random task sets are not trivially schedulable. The periods
are randomly extracted as follows:(i) T1 is set equal to1
and(ii) the other periodsTi are uniformly extracted in the
interval[Ti−1, r Ti−1]. The parameterr, denoted byperiod
dispersionin Figure 7, measures how close each other are
the periods. For example ifr = 1 then all the periods are
the same, ifr is large then the next random period tends to
be large compared with the previous one. The experiments



are conducted forr varying from 1 to 7, and for each setting
we extracted 5000 task set. The quality of the tests is mea-
sured by theacceptance ratio, which is the percentage of
schedulable task sets accepted by each of the three sets [5].
The results are shown in Figure 7.
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Figure 7. Acceptance ratio and periods

First, the figure confirms that the Hyperbolic Bound is
not affected at all by the variation of the periods. In fact, this
test is performed only on task utilisations which are left un-
changed. Then we observe that when the periods are close
each other (period dispersion close to 1) the RBound dom-
inates, whereas for large periods the test based on the re-
sponse time bound performs better than the others. The pos-
sible explanation is that the RBound is built starting from
the Liu and Layland [15] worst-case periods which are all
very close each other.

Finally, we evaluated the acceptance ratio as the number
of tasks varies from2 to 20. The total utilisation is equal to
0.75 so that a considerable number of task sets are schedula-
ble also when the number of tasks is maximum. The period
dispersionr, as defined previously, is set equal to1.4 so
that we work in an area where all the three tests seem com-
parable from Figure 7. The acceptance ratio is reported in
Figure 8.

In this case the Hyperbolic Bound is always superior to
the RBound, although this may happen because the period
dispersionr is chosen too high. Anyhow, the most interest-
ing aspect is that when the number of tasks grows beyond
8, the quality of theRub-based test starts increasing. This
phenomenon is justified by observing that as the number of
tasks grows, all the individual utilisations become smaller
and smaller. Under this condition, as discussed previously,
the workload upper bound — and the test based on it — is
very tight.

5. Conclusions

Response time analysis(RTA) is an important approach
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to feasibility analysis of real-time systems that are sched-
uled using fixed-priority (FP) scheduling algorithms. Two
drawbacks of RTA are:(i) computing response times takes
time pseudo-polynomial in the representation of the task
system; and(ii) response times are not in general contin-
uous in task system parameters.

In this paper, we have derived an upper bound on the re-
sponse times in sporadic task systems scheduled using FP
algorithms. Our upper bound can be computed in polyno-
mial time, and has the added benefit of being continuous
and differentiable in the task system parameters. We have
designed and conducted a series of simulation experiments
to evaluate the goodness of our approach. These simula-
tions have had the added benefit of giving rise to an inter-
esting theoretical conjecture concerning response times for
systems in which all parameters need not be rational num-
bers.
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