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Abstract Despite the pseudo-polynomial time complexity, both

RMA and RTA have very efficientimplementations in prac-

All algorithms currently known for computing the re- tice that render them suitable for feasibility analysis of
sponse time of tasks scheduled under fixed-priority schedul Fixed Priority (FP) systems. However, these algorithms
ing have run-time pseudo-polynomial in the representation may not be particularly well-suited for use in interactive
of the task system. We derive a formula that can be com-real-time system design environments. When using such
puted in polynomial time for determining an upper bound design environments, the system designer typically makes
on response times; our upper bound on response time has large number of calls to a feasibility-analysis algorithm
the added benefit of being continuous in the task systenduring a process of interactive system design and rapid sys-
parameters. We evaluate the effectiveness of our approxitem prototyping, since proposed designs are modified ac-
mation by a series of simulations; these simulations reveal cording to the feedback offered by the feasibility-analysi
some interesting properties of (exact) response time,twhic algorithm (and other analysis techniques). In such scenar-
give rise to an open question that we pose as a conjecture. ios, a pseudo-polynomial algorithm for computing the task

Finally, the proposed upper bound of the response time set feasibility may be unacceptably slow; instead, it may be
can be used to test effectively the schedulablity of task set acceptable to use a faster algorithm that provides an approx
in time linear with the number of tasks. imate, rather than exact, analysis.

Moreover, there are some circumstances in the real-time
system design, such as in control systems [8] and in holistic
analysis [19], where it is required to know the response time
of the tasks, and not only the system feasibility provided
. . by RMA. For this reason in this paper, we propose an algo-
In many real-time systems specific jobs are expected to . : . .

rithm for computing efficiently an approximate upper bound

complete by specified deadlines. Basically, two main cat- . » . -

i . .. of the response time. In addition to computation efficiency,
egories of algorithms have been proposed for determlnlngour algorithm has the benefit of representing the (bound on)
the response times of tasks in DM-scheduled systems: Rate 9 P 9

oo oy () (13 v Respanc e s P e 28 corltots rtn of e sk st
ysis (RTA) [10, 2]. P ! y gop Y

RTA computes, for each task, theorst-case response sign in applications, such as some control systems, where
. ; . task parameters may be tweaked locally without causing
times— the maximum amount of time that may elapse be- . ohic changes to application semantics (Response
tween the instant that a job is released for execution and th P 9 bp ' P

. : . Sime is not in general a continuous function of system pa-
instant it completes execution. If, for all tasks, the resm rameters: hence. no exact alaorithm for computing response
time is shorter than the deadline, then the task set is fieasib ' ’ 9 putingresp

Instead, RMA searches, for each task, any instant earliertlmes can possibly make"’?s"T‘"ar Quarar.“?e') .
; There are many scenarios in which efficient computation
than the deadline, large enough to accommodate the com-

putational requirement of the task itself and all the higher of (exact or approximate) response times is desirable.

1. Introduction

priority tasks. If such an instant exists for all tasks thies t e In distributed systems, tasks may be activated after the
task set is feasible. completion of some othertask [22, 19]. In such cases it

Both approaches are known to have pseudo-polynomial is necessary to know the response time of the first task
worst-case time complexity, and it is currently unknown in order to analyse the scheduling of the second. This

whether the task set feasibility can be computed in time task model is calledransaction mode[19], and the
polynomial in the representation of the task system. analysis is performed by means of thelistic analy-



sis[22]. periments in Section 4 for determining the “goodness” of

our upper bound. We conclude in Section 5 with a brief

e In control systems, the response time of a task Measur&ymmary of the main results presented in this paper.
the delay between the instant where the input are read

from the sensors and the output are written to the actu- )

ators. The performance of the control system depends2- 1n€ Response Time Bound

upon this value [8] hence the response time has a di-

rect impact on the system performance. Moreover, as We assume that a real-time system is modelled as be-

our provided bound of the response time is a differen- ing comprised of a pre-specified numbeof independent

tiable function, it is possible to estimate the effect of sporadictasks [18, 3}, 72, ..., 7, €Xecuting upon a sin-

the variation of any system parameter. gle shared preemptive processor. Each sporadicaisk
characterised by a worst-case execution time (WCE)

e Finally, when the relative deadline parameters are per- 4 relative deadline parameté;; and a period/ minimum
mitted to be larger than the periods, currentalgorithms jyter_arrival separation paramet®y. Notice that the dead-
for the exact computation of response time require the jines are arbitrary, meaning that no particular relatiomsh
evaluation of the response times of each and every jobjs assumed betweeR; andT;. Each such task generates
within the busy period [12, 23]. The resulting com- 4 jnfinite sequence of jobs, each with execution require-
plexity may be unacceptably high, especially in all ment at mostC; and deadlineD; time-units after its ar-
those design environments where the response timeyjyq), with the first job arriving at any time and subsequent

routine is largely invoked. successive arrivals separated by at Igasime units. We
assume that the system is scheduled using a fixed-priority
1.1. Related work (FP) scheduling algorithm such as the Deadline-Monotonic

(DM) scheduling algorithm [14], which is known to be an
The problem of reducing the time complexity of feasi- optimal fixed-priority algorithm when all the sporadic task
bility tests has been largely addressed by the real-time re-have their relative deadline parameters no larger tham thei
search community. The Rate Monotonic Analysis, after the periods.
first formulation by Lehoczky et al. [13], has beenimproved  We will use the termutilisation of 7; (denoted bylJ;), to
by Manabe and Aoyagi [17] who reduced the number of represent the rati@’; /T;, and letU denote thesystem util-
points where the time demand needs to be checked. Biniisation U/ = 3" | U;. We assume thaasks are indexed
and Buttazzo [4] proposed a method to trade complexity vs. according to priorities taskr; is the highest-priority task,
accuracy of the RMA feasibility tests. andr; ;1 has lower priority tham; for all 7, 1 < i < n. No-
The efforts in the simplification of the Response Time tice that we do not assume any specific priority assignment.
Analysis has been even stronger, probably due to the greater \We start with some notations and definitions. Let us de-
popularity of RTA. Sjodin and Hansson [21] proposed sev- fine theworst-case workloads follows:
eral lower bounds to the response time so that the orig-
inal response time algorithm [10] could start further and Definition 1 Let WW;(t) denote thevorst-case workloadf
the time spent in computing the response time is reducedthe i highest priority tasks over an interval of length
Bril [7] proposed a similar technique to reduce the time which is the maximum amount of time that a tagkwith
complexity of the exact RTA. Starting from the idea of Al- 1 < j < can run over an interval of length
bers and Slomka [1], who developed an estimate of the de- , ) ) ,
mand bound function for EDF scheduled tasks, Fisher and S Proved by Liu and Layland in their seminal pa-
Baruah [9] have derived a fully polynomial time approxi- Per [15], the worst-case workload’;(t) occurs when all
mation scheme (FPTAS) of the RTA. Very recently, Richard the tasksry, ..., 7; are S|mult<'_;1ne0usly activated, and each _
and Goossens [20] have extended the task model of a preEaSk generate; subsequentljob_s as soon as legally permit-
vious FPTAS [9] to take into account release jitter. Finally ted to do so (i.e., consecutive jobs qfarrive exactlyT;

Lu et al. [16] proposed a method to reduce the number Oftime units apart, for alf) — this sequence of job arrivals is
iterations for finding the task response times sometimes referred to as tegnchronous arrival sequence.

The remainder of this paper is organised as follows. In 1hus:Wi(?) equals the maximum amount of time for which
Section 2 we formally state our task model, and reduce theth® €PU may execute some task from améng .. ., 7},

problem of bounding the response time of each task in a tasiOVe" the time interval0, ¢), for the synchronous arrival se-

system to a problem of bounding the total workload gener- quence._ ) o
ated by the task system. In Section 3 we derive a bound We highlight that our definition of worst-case workload

on the workload, which immediately yields the desired re- S differentthaln thevo.r.st—case dema.lr,ldvhich is expressed
sponse time bound. We describe a series of simulation exby the “classical ceiling” expressiod , [TLW C;. The



worst-case workload is the fraction of the demand which Theorem 1 For any upper boundV#*(¢) on the workload
can be executed if), ¢), under the synchronous arrival se- W;(t), there is a corresponding upper bour}® on the
guence hypothesis, whereas the demand is the maximumvorst-case response tinie.

amount of work which can béemandedh [0, ¢).

A closely-related concept is that of tieorst-case idle ) .

time Proof. SinceW®(t) is an upper bound dfV;(¢) we have
— . . by definition

Definition 2 Let H;(t) denote theworst-case idle tim®f W-“b(t) > Wi(t)

theid highest priority tasks over an interval of length ! -

. . . . f hich it foll the obvi lationship for the idl
This is the minimum amount of time that the CPU is not rom which it foflows the obvious refationship for the idie

. . X . time
executing some task ifir, ..., 7;} over the time interval
[0,¢). Itis straightforward to observe that HP(t) =t — W™ (t) <t — W;(t) = Hy(t)
H;(t) =t —W(t) 1)

which gives us a lower bound of the idle time. From this
Let us define th€pseudo) inversef the idle time, as  relationship it follows that for any possible valueve have
follows:

Definition 3 The (pseudo) inverse functidf;(c) of H;(t)

is the smallest time instant such that there are at least Now it is possible to find a relationship between the pseudo-
time units when the processor is not running any tasks ininverse functions. In fact we have
{71,..., 7}, over every interval of lengtl; (c). Thatis,

Xi(c) = mtin{t : Hi(t) > ¢}

{t:HP(t) >c} C{t: Hi(t) > c}

X"(c) = mtin{t CHP(t) > e} >

We note thatH,(¢) is not an invertible function, since
there may be several time-instanter which H;(t) is con-

stant — that is why we refer t&;(c) as a pseudmverse. from which it follows that

In the remainder of this paper we will abuse notation some- RY —  max {ng (kC;) — (k—1)T;} > R;
what, and use the following notation: ! —1g,.. R e
Xi(e) = [Hy(t)] ! 2) as requiredd

Based upon this definition of the inverse of the idle time,
we obtain the following alternative representation of task
response time. (Observe that this relationship holds cegar 3- The workload upper bound
less of whether task deadlines are lesser than, equal to, or

greater than periods.) As stated above, it was proved by Liu and Layland [15]
Lemma 1 The worst-case response tinfg of task; is that the worst-case workloat’;(t) occurs for the syn-
) i chronous arrival sequence of jobs — i.e., when all the
given by: X .
taskst, ..., ; are simultaneously activated, and consec-

R; =  nax {Xiza(kC) — (k- 1) T} (3) utive jobs ofr; arrive exactlyT; time units apart, for all
Z1,2,... i. Hence the functiodV;(¢) may be expressed by the sum
of the individual workload of each task. If we let w;(t)

Proof. X;_1(k C;) is the instant when the firgt— 1 tasks denote the maximum amount of time that the processor ex-
have leftk C; units of time available for the lower priority  ecutes task; over the interval0, t) in this worst-case sce-
tasks. Hence it is also the finishing time of tki& job of 7; nario, we can write:
in the busy period(k — 1) T; is the activation of such a job. .
The proof hence follows directly as in [23]] Wit) = Z w(8)
Notice that if 22:1 U; > 1 then the we clearly have =t
R; = +oo. For this reason in realistic cases we assume This is shown in Figure 1.

Z;’:l U; < 1. Letting w?(¢) denote the maximum amount of time that

Some further notation: for any functigifz), f'®(z) de- the processor executes taskin any interval of lengtht,
notes an upper bound, arfé?(z) denote a lower bound on  when task 7; is the only task in the system clearly we
the functionf (z), so that we havg™®(z) < f(x) < f(z) have:

for all z. Vi Vit wi (t) > w;(t)



Wi(t), w;(t)

Wa(t)

Figure 1. An example of the W;(¢) and w;(¢)

since the presence of additional jobs may only delay the

execution ofr;’s jobs.

The workload w$(t), which is

equal to

bound on the workload functioW; (¢):

= wi(t) < wit) <
j=1 j=1

< i(th+Oj (1-0;) 4

j=1

We have so obtained the upper bound we were looking
for. The property of this bound is that we can compute con-
veniently its inverse function and then apply the Theorem 1
to finally find the bound of the response time.

Theorem 2 The worst-case response tinig of taskr; is
bounded from above as follows:

i—1
C; —l—ZC](l -U

R < ——— =R (5)

1-) U
j=1

min {t —(T; — Cy) { JJ , [LW C; } can be conveniently ~ Proof. The proof of this theorem is obtained by applying

T

upper bounded by the linear function as shown in Figure 2.

The equation of the linear boundt ¢t + C;(1 — Uj;).

linear bound-------
w;(t) ———
w3(t)

Cj
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Figure 2. The upper linear bound of w,(t)

Using these relationships found for the workloag(t)

of each task, if we sum ovgifrom 1 to ; we obtain an upper

Theorem 1 to the workload bound provided by the Eg. (4).
So we have:

%

=Y (U;t+C;(1-Uy))

Jj=1

HP(t) (1-2(]) Z (1 -U;)

WiP(t)

Since H®(t) is invertible, it can be used to compute
Xto(h).

h+37., G -U))

Xub(p) = .
i7(h) >0,

Then the response time is bounded by:

kC; + Z;fl C;(1-1U;)
ﬂ%’f,,( 1_211 T : —(k:—1)71-> (6)

We will now prove that the maximum in the Eq. (6) occurs
for k = 1. Let us consider this function on the real ex-
tension[1, +o0). On this interval we can differentiate with



respect tdk. Doing so we get: We have:

i—1 R,
Ri=Ci+)Y_ {?w C;
j=1"'7"J

_ i—1 ~ 1 7T

ETA i—1
dk 1- Zj:l Uj i1 R
NS SR . Ri§0i+z<??+1>cj
1 - Z;;l U_] j=1 J
i—1 i—1
Ti<$—1>_ Ri—RiZUjSCri-ZCj
1-35U; i=1 i=1
T, (L‘l e 1) Ry< 2t
1-3>7.U; 1=>U;
_ Observe that this is a looser bound than the one we have
which is always negative (or zero). In fact,‘ﬁ}zl U; >1 obtained above, in Theorem 2.

the response time is known to be arbitrarily long, and so  We conclude by reiterating the benefits of using the re-

unbounded. Then, since the function is decreasing (or con-sponse time upper bound presented in Theorem 2 above:

stant), its maximum occurs in the left bound of the interval, _ ) .

which meanst = 1. Finally, by substitutingc = 1 in e itcan be computed i0)(n) time;

Eq. (6), we get: e itis continuous and differentiable in all the variables;
c, i1 1 1. . the_bound ho_lds even for deadlines greater than the

ub — + Zﬂ:lifl( ) 7) period. In this case the exact algorithm for the re-

1 - Zj:l Uj sponse time calculation [23] requires to check all the
jobs within the busy period;

as requiredL] e the bound has a closed formulation, instead that an it-
erative definition. Hence it is possible to adopt some
Moreover we can divide by{’; to normalise the bound feedback on task parametets;(or 7)) so that the re-
and we get: sponse time is modified in some desired direction.

RS Uit 23;11 0 Us(1— U;) 3.1. A sufficient schedulability test
it = o= e ®)

T; 1 - Zj:l Uj In the same way as the exact values of the response times
allow to formulate a necessary and sufficient schedulgbilit
wherea; = T; /T, test_, t_he response tlr_n_e upper_l_oodﬂ;d? allows to express a

. ] . . sufficient schedulability condition for the fixed priority- a
The time complexity of computing the response time up- gorithm. It is then possible to enunciate the followidg)

per boundR?® of task; is O(i). Hence the complexity of  gyfficient schedulability condition for tasks scheduled by

computing the bound for all the tasks seems ta’lje?). fixed priority with arbitrary deadline.
However, it can be noticed that the computation/
can take advantage of the completed computatioR 5t Corollary 1 A task setry, ..., 7, is schedulable by fixed

In fact the two sums involved in Equation (5) can be simply priorities if:
computed by adding only the values relative to the last index
to the sum values of the previous computation. This obser-
vation allows us to say that the computation of the response
time upper bound of all the tasks @(n).

=

Vi R, ———
1_23‘:1 Uj

o CEEiC0-U)

< D; 9)

There are other techniques to bound the response time.
Similarly as suggested by Sjodin and Hansson [21], a differ Proof. From Theorem 2 it follows thak; < RY®. From
ent upper bound on the worst-case response times may béhe hypothesis it follows thaki® < D;. Then it follows
obtained from the recurrence used in response-time analythat R; < D;, which means that all the tasks do not miss
sis [10, 2] by replacing the ceiling functida:| with = + 1. their deadlines]



Corollary 1 provides a very efficient means for testing the approximation depends upon the task set parameters. In
the feasibility of task sets. This condition can also be order to estimate the distance between the exact value of
restated as a utilisation upper bound, and compared withthe response time and of our derived upper bound (thereby
many existing schedulability tests [15, 12, 11, 6]. Since determining the “goodness” of our upper bound), we per-
some of these results are achieved assuming deadlines equedrmed a series of experiments that explored the impact of
to periods, we also provide the following corollary in this the different task characteristics.
hypothesis although this restriction doesn't apply to @ur r

sponse time upper bound. 4.1. Effect of task periods

Corollary 2 A task setr, ..., 7,, with deadlines equal to

periods (D; = T;) is schedulable by fixed prioritig& In the first set experiments we evaluate the impact of task

periods on the response time upper bound. For this purpose,
i i—1 we use a system comprised of oryasks. The period of

Vi Y U;<1-Y a;U;(1-U)) (10)  the higher-priority task is séf, = 1, whereas the periof,

j=1 j=1 of the low priority task is calculated so that the refig/7%

ranges in the intervdl, 1]. The task computation times;

wherea; = T;/T;. andCs, are chosen such that:
e the relative utilisations of the two tasks does not
change in the experiments. This is achieved by setting
U, /Us = 0.25 always;

Proof. From Equation (9) it follows that the task is
schedulable if

i—1
Ui + Zi:l a-? ({7(1 —Uj) <1 ¢ the total utilisation/ = U; + Us is equal to one of the
1— Z;;l U; four values{0.2,0.4,0.6, 0.8} (we run four classes of
experiments, one for each value).

wherea; = % Also notice that if tasks are scheduled by

RM thena; < 1 always. From the last equation we have We leave the values dD, and D, unspecified, since these
parameters have no effect on either the exact response time,

i1 i—1 or our computed upper bound, under FP scheduling.
U; + Zaj Ui(1-U;j) <1— ZUJ' For each simulation, we computed the exact response
j=1 j=1 time R, and our upper boun®&y® for the taskr,. Notice

i i—1 that both the tasks will have response times smaller than
Z Uj <1- Z a; U;j(1 = Uj) or equal to their respective periods since the Liu and Lay-
j=1 j=1 land utilisation bound for two tasks &v/2 — 1) ~ 0.828,
which is greater than all the total utilisations assumediis t
experiment. Hence the maximum response time occurs in

Iti iteint tina to ob that when th i0d the first job of 5. Both the response time and the upper
|t1s quite interesting to observe that when the perioas arey, , .,y 5 e normalised with respect to the pefladso that
quite large compared to the preceding one — meaning tha

: . b ison between different values of the pefipis
a; — 0 —thenthe testis very effective. On the other hand, © Comparison bErween HIerent vaiies oftne peit

h Il th iod il h other then the ri hteasier. The results are shown in Figure 3. Black lines are
when all In€ periods are simiiar each other then the rght, . normalisedry® values, gray plots are the exact response
hand side of Eqg. (10) may also become negative, making

the condition impossible. This intuition will be confirmed times.
) . . . It may be noticed that the approximation is very good
in the next section dedicated to the experiments. y bp y9

whenT, > T (i.e. when the ratidy /T3 is close to zero).

) In fact, in this condition the workload estimate, upon which

4. Experiments the response time bound is built, becomes very tight. The
discontinuities in the response times occur when an addi-

The major benefits of the response time upper bound thattional job of 7y interferes with the response time of. Fi-

we have computed in Section 3 above ligi)rthetime com- nally, it may be noticed that the approximation degrades as

plexitywhich, atO(n) wheren denotes the number of tasks, the total utilisation increases. This can be explained by re

is linear in the representation of the task system; @fd iterating that the upper estimate of the workload is tight fo

the fact that the upper boundgentinuouswith respectto  low utilisations, as can be observed from Figure 2.

the task system parameters (and hence more useful in in- Given this last observation, it becomes quite interesting

teractive system design). It is however, also important to to test the case wheli = 1. In this condition of heavy

evaluate the quality of the bound. Clearly, the tightness of load, the task system utilisation is no longethe Liu and

which proves the corollary, when ensured for all tagks.
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Figure 3. Effect of task periods

index of critical job

Layland utilisation bound, and hence it is not guaranteed P I S SN S S S S S
that both tasks’ response times will Betheir respective 0 01020304 T"ﬁ 06 07 08 09 1
period parameters. Furthermore, the response Emeoes r2

not necessarily occur at the first job, and hence all the jobs ) )

within the first busy period must be checked. (In fact, un- ~ Figure 4. Response time bound, when U = 1
der the conditiorl/ = 1 the processor is always busy and
the busy period never ends, but the response time can still
be computed by checking all the jobs up to hyperperiod —
the least common multiple of all the periods.) A second —
more serious — problem is related to the nature of the ex-
periment: since we are running simulations as the period
T, varies fromT; to infinity, the hyperperiod can be ex-
tremely large! (Indeed, the hyperperiod does not even exist
if T1/T> is irrational, although this phenomenon is not en- harmonic. For this purpose, we @[ V2 so that the no-
countered with machine representable numbers.) Hence, ”{lon of hyperperiod doesn't exist (clearly on machine rep-
our simulation setting the computation of the response tlmeresentable numberd; andT; are still rational.) We set

U, _
is stopped aftet000 jobs ofr». In the top part of Figure 4 lthe rat||o ; t_h 0.25 (n:ﬁ]an'nﬁ tt?]at thetlt hasdadS|gnt|f|cantIyt
we report the differenc&4® — R, normalised with respect ower foad thanr, althoug 'S setling did not seem 1o

to T as usual. The result is quite surprising. significantly affect the simulation results). The expentse
are carried out varying the total utilisation in the proxiyni

_ From the figure we see that the upper bound is a very ¢ ;7 — 1. Again, we stopped the computation of response
tight approximation of the exact response time, UnéesBe  ime after10000 jobs. Figure 5 reports the index of the crit-
harmonic relationship emgbetweeril”l andTs. Mpreover, ical job in log scale.
the stronger the harmonicity the greater the difference be- It may be noticed clearly that as the total utilisation ap-
t:\A/een th? tiognd and the exact value (for example wheny, . haq the index of the critical job progressively in-
7t € {1,357, 3}.) When the periods are poorly harmonic . caces until the computation is artificially interrupted
the upper bound is extremely tight. job 10000. Actually when the utilisation is exactly, we

In these experiments we observed that in poorly har- pelieve thathere always exists some future job with longer
monic periods, the response time routine needs to be conresponse time Observing this phenomenon has lead us to
ducted much further than in more harmonic conditions. The formulate the following conjecture.
bottom part of Figure 4 reports, on a log scale, the index of
the job of r» that experiences the maximum response time Conjecture 1 WhenU = 1 and the rat|o is irrational
(thecritical job). When the periods are in some harmonic then the index of the critical job is unbounded Moreover

relationship the critical job occurs relatively early. How
ever, when the harmonic relationship is poor we often stop
our computation because of our job limitiat00 jobs.

This observation motivated the third and last set of ex-
periments exploring the influence of periods. We want to
evaluate what the critical job is, when the periods are yoorl
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Figure 5. The index of the critical job. Figure 6. Response bound and tasks number
we have )
limsup Ro . = RS (11) are equal to a common valde The asymptotic value of the

response time then is
whereR; ;, denotes the response time of & job of task

To. lim 74 = %—i—(n—l)an(l %)
noe ~(n-1%
4.2. Effects of the number of tasks U+ (n -DaU(1-Y)
N —(n—-1U
In this set of experiments we focus on the influence of U+ (n —1)aU
the number of tasks both on the actual response time and = m
on the upper bound derived by us in Section 3. The number ol
of tasks ranges from to 20. The experiment is run under =
three different total load condition representedlby= 0.3 1-u
(light load),U = 0.5 (average load) and = 0.8 (heavy  which is constant.
load). The total load is uniformly distributed among the sin
gle tasks using the simulation routine suggested by Bini and4.3. The sufficient test
Buttazzo [5]. Notice that as the number of tasks increases
all the individual utilisationgJ; tend to decrease because In the final experiments we evaluated the number of tasks
the total utilisation is kept constant. The peridty of 7 sets accepted by the sufficient test stated in Corollary 2.
is set equal to one, and the remaining periods are randomlyThis test is compared with other simple sufficient tests: the
selected such th&t;, ., /T; is uniformly distributed i1, 3. Hyperbolic Bound [6] and the utilisation RBound [11]. We

For each pair (number of taskstotal utilisationl) we ran remind that the complexity of the test presented here and
10000 simulations and computed the normalised responsethe Hyperbolic Bound irO(n), whereas the complexity of
time R,,/T,, — drawn in gray — and the normalised upper the utilisation RBound i®)(n logn), wheren denotes the
bound R¥®/T;,, — in black. Figure 6 reports the average number of tasks.
value of all the simulations. The figure shows three pairs  First we investigated the effect of the period on the qual-
of plots, relative to the three different values of utilisat ity of the sufficient tests. We arbitrarily set the number of
simulated. tasks equal té and the total utilisatiod/ = 0.8 so that the

It may seem quite unexpected that the response timegsandom task sets are not trivially schedulable. The periods
does not increase with the number of tasks. However, weare randomly extracted as follow§) T} is set equal ta
must remember that we are plotting values normalised withand(ii) the other period§’; are uniformly extracted in the
the periodT,,. To confirm the validity of the experiments interval[T;_1,r T;—1]. The parameter, denoted byeriod
we can compute the limit of the normalised response time, dispersionin Figure 7, measures how close each other are
reported in Eq. (8), as grows to infinity. In order to com-  the periods. For exampleif = 1 then all the periods are
pute the limit we assume that all the tasks utilisationsla@e t the same, if is large then the next random period tends to
same (i.e., each is equallt/'n) and all the period ratios; be large compared with the previous one. The experiments



are conducted for varying from 1 to 7, and for each setting 100 ~ T |—— R"-based test
we extracted 5000 task set. The quality of the tests is mea- @90 R hyperbolic b.
sured by theacceptance ratipwhich is the percentage of %80 util. RBound
schedulable task sets accepted by each of the three sets [5]. % 70
The results are shown in Figure 7. o 60
250
100 g4o
o © 20
o 10
o 60} 0 e
Q 2 4 6 8 10 12 14 16 20
8 __ Rub_pased test n (number of tasks)
g S e hyperbolic b. | |
§ util. RBound Figure 8. Acceptance ratio and tasks number
20t ]
0 L L L n
1 2 3. 4 5 6 7 to feasibility analysis of real-time systems that are sehed
max;{7T;/T;—1} (period dispersion) y y Y

uled using fixed-priority (FP) scheduling algorithms. Two

drawbacks of RTA arefi) computing response times takes

time pseudo-polynomial in the representation of the task
system; andii) response times are not in general contin-
uous in task system parameters.

Figure 7. Acceptance ratio and periods

First, the figure confirms that the Hyperbolic Bound is

?ecgtage(:ﬁgr?;:g 2%lthg:?;f;'o?g;?gnpse”ﬁqcsﬁ g;ngtt n In this paper, we have derived an upper bound on the re-
ISP y dtiisat which u sponse times in sporadic task systems scheduled using FP

changed. Then we observe that when the periods are clos%II orithms. Our upoer bound can be computed in polvno-

each other (period dispersion close to 1) the RBound dom 9 ' PP P Poly

) . “mial time, and has the added benefit of being continuous
inates, whereas for large periods the test based on the re- 9

sponse time bound performs better than the others. The os"—]lnd differentiable in the task system parameters. We have
si%le explanation ispthat the RBound is built startiﬁ froFr)n designed and conducted a series of simulation experiments
exp . ring to evaluate the goodness of our approach. These simula-
the Liu and Layland [15] worst-case periods which are all .. : SO .
tions have had the added benefit of giving rise to an inter-
very close each other.

. . esting theoretical conjecture concerning response times f
Finally, we evaluated the acceptance ratio as the number, 9 ) gresp

of tasks varies from to 20. The total utilisation is equal to E}é?tsems in which all parameters need not be rational num-
0.75 so that a considerable number of task sets are schedula- ~ ™
ble also when the number of tasks is maximum. The period
dispersionr, as defined previously, is set equalt@ so References
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