
21 September 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Fluid approximation of pool depletion systems

Publisher:

Published version:

DOI:10.1007/978-3-319-43904-4_5

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer Verlag

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1619132 since 2016-11-30T13:59:33Z

iris-AperTO
University of Turin’s Institutional Research Information System and Open Access Institutional Repository

	
	
	
	
	
This	is	the	author's	final	version	of	the	contribution	published	as:	
Enrico	Barbierato,	Daniele	Manini,	Marco	Gribaudo	

Fluid	approximation	of	pool	depletion	systems	

LECTURE	NOTES	IN	COMPUTER	SCIENCE	–Volume	9845,	2016,	Pages	60-75	
	
	DOI	10.1007/978-3-319-43904-4_5	
	
	
The	publisher's	version	is	available	at:	

	http://link.springer.com/chapter/10.1007/978-3-319-43904-4_5	
	
	
When	citing,	please	refer	to	the	published	version.	
	
	
Link	to	this	full	text:		

[inserire	l'handle	completa,	preceduta	da	http://hdl.handle.net/]	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
This	full	text	was	downloaded	from	iris-Aperto:	https://iris.unito.it/		

Fluid approximation of pool depletion systems

Enrico Barbierato1, Marco Gribaudo1, and Daniele Manini2

1 Dip. di Elettronica e Informazione, Politecnico di Milano,
via Ponzio 34/5, 20133 Milano, Italy,

[marco.gribaudo,enrico.barbierato]@polimi.it
2 Dip. di Informatica, Università di Torino,

Corso Svizzera 185, 10149 Torino, Italy,
manini@di.unito.it

Abstract. Today’s most of high performance computing applications
use parallel programming paradigms to reach the desired efficiency ob-
jectives. In particular, they divide the problem into small elements that
can be solved in parallel by as many computing devices as available.
Some examples are Apache Spark, the evolution of Hadoop and map-
reduce, GPGPU (General Purpose Graphical Processing Units) applica-
tions, many-core and multi-core embedded systems. In many cases this
type of applications can be modeled by pool depletion systems, that
is queuing models characterized by a set of parallel servers whose goal
is to execute a predetermined number of jobs. Although the modeling
paradigm is very simple, it suffers from state space explosion, and can
be used to model systems with a limited degree of parallelism only. The
main contribution provided by this work consists of presenting a fluid
approximation approach capturing the main features of the considered
pool depletion systems and solving the above mentioned issues.

1 Introduction

High performance computing applications usually rely on parallel execution to
divide a large problem in small elements that can be considered concurrently. In
this way, the higher is the number of available computing resources, the faster the
problem can be solved. In turn this allows to consider very large scale problems,
such as searching images in a big database based on visual comparison, detect-
ing anomalies in bank account usage or recommending users products based
on the analysis of the choices made by a large set of costumers. Big Data and
data-analytic applications rely on technologies that are based, for example, on
Apache Spark [16], the evolution of Hadoop [1] and MapReduce [10] to paral-
lelize computation and reduce communication overhead among the participating
nodes. Spark has been proposed to supports applications reusing a working set
of data across multiple parallel operations offering also the scalability and fault
tolerance of MapReduce. To achieve these goals, Spark introduces an abstrac-
tion called resilient distributed datasets (RDDs), i.e., a read-only collection of
objects partitioned across a set of machines that can be rebuilt if a partition
is lost. Parallelization of tasks can also be exploited inside a single computer

2 E. Barbierato, M. Gribaudo, D.Manini

or inside an embedded system. For example, technologies like GPGPU (General
Purpose Graphical Processing Units) [14] allow the use of the computational
feature of a graphic adapter to execute parallel tasks and have applications in
video editing, image processing, cryptography and scientific calculus. Embedded
systems are also based on many-core and multi-core CPUs, which sometimes are
implemented in FPGA to push the use of parallelism at extreme levels.
In order to asses the scalability of the considered type of parallel application,
modeling approach must be used since the acquisition of very large set of re-
sources has high costs and could require long provisioning times. However, con-
ventional modeling techniques cannot be applied due to size of the problem: stan-
dard techniques like Queuing Networks [12], Generalized Stochastic Petri Nets
[13] or Performance Evaluation Process Algebras [11] suffer from state space
explosion of the Continuous Time Markov Chains that they use to solve the
problem. For this reason in the literature several different modeling approaches
have been used to address this problem. For example, in [3] advanced simulation
techniques have been used to consider large MapReduce applications, and the
proposed approach has been extended in [4] to insert it in a multiformalism con-
text in order address more complex applicative scenarios. Mean-field approach
has instead been used in [8] to consider different types of BigData applications.
In this work, the considered application is modeled by pool depletion systems
where a given number of tasks must be completed by a set of computing re-
sources. Indeed, they are queuing models characterized by a set of parallel servers
whose goal is to execute a predetermined number of jobs. This paper presents
i) the measurement performed on a real application to motivate the considered
class of system, and ii) a more in-depth analysis on the effect of different task
length distributions using a custom built discrete event simulator. In order to
overcome the scalability problems caused by the state explosion arising when
modeling such systems, a fluid model is proposed to approximate the average
task ending time with a fluid variable representing the total number of tasks to
be completed by the parallel servers. This model is finally exploited to study in
an efficient way the execution times of Map-Reduce jobs.
The paper is structured as follows: in Section 2 a pool depletion systems is pre-
sented, and Section 3 shows how they can be can characterized in the considered
scenario. The fluid model is described in Section 4, and it is exploited in Section
5 to analyze a MapReduce job. Section 6 concludes the paper.

2 Pool depletion systems

Pool depletion systems are models where a given number of tasks must be com-
pleted by a set of computing resources. Figure 1 shows a single class, single
resource type pool depletion system. In this case, the system has to execute N
tasks, each one requiring an independent, identically distributed service time ac-
cording to a random variable S. The system is composed by K identical servers:
at the beginning, K tasks enters the system and start being served at the same
time. The other N −K are forced to wait in the external task pool. As soon as

Fluid approximation of pool depletion systems 3

the first task ends, another one is admitted from outside. The process is repeated
until no more tasks are waiting in the pool; after that moment, some of the K
server starts becoming idle. The job ends when all its task are finished. In this
type of models, the study of the total depletion time (i.e. the time required to
complete all N tasks and leave all the K servers of the system idle) can be very
interesting. In [9], two classes, two resources, single server pool depletion systems
where introduced to study energy consumption in large data-centers. In that pa-
per, exponential service with processor sharing nodes were considered, and an
analytical solution based on the generation of the state space was proposed.

In this work, which considers a single type of resource represented by K
identical parallel servers, the complexity of the analytical solution depends on the
chosen service time distribution S. If the service time distribution is exponential,
then the system has a relatively simple analytical solution. Let µ = 1/E[S]
denote the rate of the exponential distribution. For the first N − K jobs, the
inter-completion time corresponds to the time required by the first server to
complete. Since all services are exponential, it corresponds to the minimum of
K exponential distributions, which is again exponentially distributed with rate
K · µ. When depletion starts, the inter-completion time is still exponentially
distributed, but this time with rate k · µ with 1 ≤ k ≤ K. In the end, the total
completion C time is distributed as the sum of K exponential distributions:

C = Erlang(N −K,K · µ) +

K∑
k=1

Exp(k · µ). (1)

An analytical expression for Equation 1 can be found for example in [2]. If S can
be expressed as a Phase Type distribution (PH), an analytical solution is still
possible, since the class of PH distribution is closed under both the minimum
and the sum. However, the number of states can grows linearly with N , but
exponentially with both K and the number of phases. In particular, following
[7], where multiple servers with (PH) distribution and Markov Arrival Process
where considered, let M denote the phases required to describe S, then the total
number of phases #PH required to express the distribution of C is:

#PH = (N −K) ·
(
K +M − 1
M − 1

)
+

K∑
k=1

(
k +M − 1
M − 1

)
. (2)

Equation 1 shows that phase type distribution is not a feasible solution for
realistic systems where the level of parallelism K can be in the 1011̃03 range, and
the number of phases required is also high due to the low coefficient of variation
characterizing the task execution time distribution S in most applications.

In the following, the considered class of depletion models (both on measure-
ments performed on a real parallel application run on a multi-core processor,
and on discrete event simulation) is analyzed. Then a fluid model is proposed to
capture the behavior of the average completion time in an efficient way.

manini
Comment on Text
io avevo modificato in [10^1,10^3], questo cmq non mi sembra avere senso

4 E. Barbierato, M. Gribaudo, D.Manini

Job pool

Χ

Scheduler

Finite capacity region

N

K

S

Fig. 1. A single class, single resource type pool depletion system.

3 Scenario characterization

The pool depletion model presented in this work can be applied to several par-
allel applications, ranging from Apache Spark [15], the evolution of Hadoop
and map-reduce, GPGPU (General Purpose Graphical Processing Units) appli-
cations [14], many-core and multi-core embedded systems, and several parallel
programming paradigms like the well known consumer-producer model. Firstly,
this section presents measurement performed on a real application to motivate
the considered class of system, secondly it illustrates an in-depth analysis on the
effect of different task length distributions using a custom-built discrete event
simulator.

3.1 Real system scenario

The performance model solution process used to perform what-if analysis on the
models presented in [9] is considered as a benchmark for the class of systems
described in this paper. The application considers the solution of a large Markov
chain used to compute energy-related performance metrics for different param-
eters configurations. All the models are characterized by the same state-space,
but by a different transition matrix. The algorithm generates several scenarios,
then it solves them in a first-in-first-out queuing, running as many solution in
parallel as available cores. Figure 2 shows the completion time of the consid-
ered benchmark on a quad-core, eight-threads MacBook Pro. In particular it
considers the case with K = 8 simultaneous executions exploiting all the cores
and all the hardware threads of the CPU, and the case with K = 4 avoiding
the use of multithreading limiting the parallelism to the number of available
cores. On the y-axis, the number of remaining tasks is presented, while the x-
axis shows the ordered times at which tasks complete. The intersection of the
curves with the x-axis defines the total job execution time. Even if all runs use
the same parameterization, they are characterized by a different running time:
this depends on the operating system and on the energy saving configuration
of the machine slowing down in traces in non-deterministic ways. However, all
cases have a ladder-like shape, with the height of a stair corresponding to the
K, the level of parallelism (this is a direct consequence of the fact that all tasks
are related to the same model, and are characterized by a very similar running

Fluid approximation of pool depletion systems 5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160 180

T
a
sk

 i
d

Time [sec.]

K=8, run 1
K=8, run 2
K=8, run 3
K=4, run 1
K=4, run 2
K=4, run 3

Fig. 2. Execution times of the considered benchmark on a quad-core, eight-threads
MacBook Pro for different runs with and without multi-threading.

time). The runs with K = 4 requires more or less the same time and present the
same ladder pattern, even if in this case the steps are smaller and shorter. This
is due to the fact that for the considered benchmark the CPU multithreading is
not able to provide significant performance increases, determining very similar
performances to the K = 8 cases.

Figure 3 shows the average execution time µ with N = 18 tasks running on
K = 8 simultaneous threads over 100 experiments. The standard deviation σ of
the execution time is shown added to (curve µ + σ) and removed from (curve
µ − σ) the average. The coefficient of variation (cv) is shown on the secondary
axis. As it can be seen, despite the variability outlined in Figure 2, the cv is very
small, and tends to decrease as the number of tasks increases, with jump only
corresponding to the stairs of the ladder-shaped evolution of the average.

The previous results are confirmed in Figure 4 showing the distribution of the
execution time of the benchmark application running N = 18 tasks on K = 8
simultaneous threads for the first three, the ninth and the last task. The small
shift in the distribution of the ending time of the first three tasks emphasizes
the little difference in execution time in the considered blocks, while the last
tasks show that there is an expected spread in the completion time, even if the
increase in the standard deviation is smaller than the one of the mean.

Note that this behaviour is characteristic of most the applications to which
pool depletion models applies: for example, map-reduce techniques have the
goal to produce small chunks of similar execution times. GPGPU applications
instead base their parallelism on SIMD (single-instruction-multiple-data) tech-
niques, which do not allow the different tasks to have significant differences in
their execution times.

6 E. Barbierato, M. Gribaudo, D.Manini

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25

 0 0.05 0.1 0.15 0.2 0.25

T
a
sk

 i
d

Time [sec.]

cv.

µ-σ
µ

µ+σ

c.v.

Fig. 3. Average execution time, standard deviation and coefficient of variation (cv) of
the benchmark application running N = 18 tasks on K = 8 simultaneous threads.

3.2 Impact of task-length distributions

An analytical scenario is now considered to study the impact of different task
duration distributions, all characterized by the same average. The focus concerns
different distributions characterized by the same variation coefficient (where pos-
sible). For cv = 1 an exponential and a log-normal distribution is taken in
account. For cv = 0.5 and cv = 1/6 two Erlang (respectively with four and
thirty-six stages), two uniform and two log-normal distributions are considered,
including cv = 2 with a Hyper-exponential and a log-normal distribution to have
an idea of the impact of cv > 1. Larger cv are ignored since they are outside the
intended range of applications. As a limiting case, the effect of the deterministic
distribution (cv = 0) is shown as well. All curves have been computed with dis-
crete event simulation. Although confidence intervals have been computed, they
have not been shown for the sake of simplicity. Figure 5 shows the average exe-
cution time for the considered distributions of the task duration. In particular,
Figure 5a-c) focuses on the case with K = 20 and n = 144. The whole picture of
the job ending times is given in Figure 5a. The distribution with cv ≤ 1 tends
to have a very similar behaviour for the average time at which the single tasks
complete. Distributions with cv > 1 tends instead to finish the first task earlier,
while having a longer job completion time. The most important result that can
be appreciated is that the average ending time of each task is mainly influenced
by the cv: higher moments of the distribution play an impact only for the very
first completion times, and tend to become less and less evident as time passes.
Figure 4b zooms on the ending times of the first tasks. As it can be seen, only
the deterministic component has a clear ladder behaviour. As the cv increases
and as jobs complete, it become less and less evident. Moreover, after the very
few tasks, the effect of higher moments also disappears, and curves of distribu-
tions with the same cv overlaps almost perfectly. The last tasks ending times

manini
Comment on Text
potrebbe stridere con il fatto che dopo diciamo che lo otteniamo via simulazione?

Fluid approximation of pool depletion systems 7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

P
ro

b
.

Time [sec.]

Id 1
Id 2
Id 3
Id 9
Id 18

Fig. 4. Distribution of the execution time of the benchmark application running N =
18 tasks on K = 8 simultaneous threads for the first three, the ninth and the last task.

are instead considered in Figure 5c. As it can be seen, as depletion occurs, the
higher moments play a significant role again, by creating slightly different tails.
To better emphasize the effect of distribution with a cv > 1, Figure 5d considers
the case with K = 80 and N = 3600. When a large number of tasks has to
be executed, the task length distribution plays a marginal role, and all scenario
evolves at a rate which can be estimated to E[S]/K. The cv performs a shift
in the various curves, and determines the speed at which the depletion moves
away from the considered average behaviour. This type of evolution motivates
the idea of resorting to fluid models to efficiently consider this type of systems.

The effect of the level of parallelism K is studied in Figure 6 showing the av-
erage execution time for the exponential and for a 36 stages Erlang distribution
(corresponding to a cv = 1/6) required to run 720 tasks for K ∈ {8, 20, 40, 80}.
The length of the tail of the distribution becomes more important as K increases,
and also the effect of the cv becomes more evident. The staircase curve is de-
stroyed very earlier in the execution, and becomes negligible after 4 · K tasks
have been completed even for a relatively low cv.

Figure 7 shows the distribution of the execution time for several tasks du-
ration distributions. The exponential distribution, the four-stage Erlang distri-
bution (cv = 1/2) and the Hyper-Exponential distribution (with cv = 2) and
three different instances of a log-normal distribution with the same cv as the
other are shown. All the curves refer to the completion job time when it is split
into N = 144 tasks and it is run with parallelism level K = 8. Except for the
case with cv = 2, where the two distributions have very different shapes, the
distribution with the same cv presents very similar behaviours, which tend to
differ for what concerns the probability of having larger completion times.

8 E. Barbierato, M. Gribaudo, D.Manini

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18

T
as

k
 i

d

Time [sec.]

exp
ln(1)

erl(0.5)
unif(0.5)

ln(0.5)
erl(1/6)

unif(1/6)
ln(1/6)

det
hyper(2)

ln(2)

 100

 110

 120

 130

 140

 150

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
as

k
 i

d

Time [sec.]

exp
ln(1)

erl(0.5)
unif(0.5)

ln(0.5)
erl(1/6)

unif(1/6)
ln(1/6)

det
hyper(2)

ln(2)

a) b)

 0

 10

 20

 30

 40

 50

 6 8 10 12 14 16 18 20

T
as

k
 i

d

Time [sec.]

exp
ln(1)

erl(0.5)
unif(0.5)

ln(0.5)
erl(1/6)

unif(1/6)
ln(1/6)

det
hyper(2)

ln(2)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50

T
as

k
 i

d

Time [sec.]

exp
erl(1/6)

det
hyper(2)

ln(2)

a) b)

Fig. 5. Average execution time for different task duration distributions: a), b) and c)
shows the respectively the complete, the detail of the first tasks and the detail of the
last tasks for the case with K = 20 and N = 144; d) considers the case with K = 80
and N = 3600.

4 Fluid model

Due to the characteristic evolution of the completion time of the considered task,
we propose to approximate the average task ending time with a fluid variable.
In particular, a fluid variable x starting with the total number of tasks N that
needs to be completed by the K parallel servers is added. The continuous variable
then decreases at a fluid dependent rate that mimics the behaviour presented
in Section 3. Following [5], a fluid model is considered where the evolution of
the continuous variable is defined by a function φ : R2 →, where φ(x, t) = x′

represents a system which has an average of x jobs to be completed at time 0, will
remain with an average of x′ jobs to be completed at time t. The fluid evolution
function must satisfy the property that if the value of the continuous variable is
x(ta) at a time instant ta, then it must be that x(tb) = φ(x(ta), tb − ta). This
is achieved in the following way: let µ(t) denote the average number of tasks in
the system at time t. For example, µ(t) could correspond to one of the curves
shown in Figure 5. Then, it is possible to say that:

φ(x, t) = µ(t+ µ−1(x)) (3)

If the fluid variable starts from a point x(0) 6= µ(0) at time t = 0, the definition
of φ(x, t) shifts the fluid evolution curve to allow the continuity of x(t). The

Fluid approximation of pool depletion systems 9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80 90 100

T
a
sk

 i
d

Time [sec.]

k=80 cv=1
k=80 cv=.167

k=40 cv=1
k=40 cv=.167

k=20 cv=1
k=20 cv=.167

k=8 cv=1
k=8 cv=.167

Fig. 6. Distribution of the execution time for the exponential and the 36 stages Erlang
distribution cv = 1/6 ≈ 0.167, for a different level of parallelism K ∈ {8, 20, 40, 80}
and N = 720 tasks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

P
ro

b
.

Time [sec.]

exp
ln(1)

erl(0.5)
unif(0.5)

ln(0.5)
hyper(2)

ln(2)

Fig. 7. Distribution of the execution time for several task duration distributions on a
system running N = 144 tasks with a parallelism level K = 8.

average task completion time function µ(t) can be computed in many ways: for
example, it can be determined from measurements taken on a real system. This
is shown for example in Figure 3. In the following, µ(t) is computed with discrete
event simulation, and then by performing linear interpolation among the task
completion times.

5 Case study: analysis of Map-Reduce completion times

This section exploits the fluid model outlined in Section 4 to study in an efficient
way the execution times of Map-Reduce jobs. Map-Reduce is a paradigm that
allows to create applications able to compute huge amount of data in parallel, and
Apache Hadoop is an example of a framework allowing to exploit it. The basis
of the framework is a functional programming where data are not shared among
threads but are passed as parameters or return values. An application running
Map-Reduce has to specify input and output files, and map and reduce functions.

10 E. Barbierato, M. Gribaudo, D.Manini

Fig. 8. Logic Scheme of Map-Reduce.

The Hadoop client exploits the service provided by the JobTracker that farms
out MapReduce tasks to specific nodes in the cluster, ideally the nodes having
the data, or at least are in the same rack. A TaskTracker is a node in the cluster
accepting tasks (i.e. Map, Reduce and Shuffle operations) from a JobTracker.
In particular, the Hadoop client provides the jobs and the configurations to the
Job Tracker distributing them to the nodes for the execution. The Job Tracker
also defines the number of parts by which the input files must be split into, and
activates the Task Trackers according to their distance to the nodes holding the
respective data. Task Trackers get the data to manage and activate the map
function, then they run the reduce phase where data are sorted and aggregated.
Then the output is generated and saved in a different file for each tracker. Figure
8 shows a logical scheme of execution of Map-Reduce jobs.

One of the key-features of Map-Reduce is that resources can be acquired dy-
namically during the execution of the tasks: as more computation nodes become
available, they start working on the parts until all have been considered. After
all the parts of the map phase have finished, the reduce stage can start. From a
modeling point of view, a Map-Reduce job can be considered as the sequence of
two pool depletion models representing respectively the map and reduce stages,
where the number of available resources K changes with time. Although starting
the next job while the previous one is completing can increase the throughput
of the system, it complicates a lot the models that should be used to correctly
capture the evolution of the system. Thanks to the proposed fluid technique,
accurate estimates can be obtained with very simple models.

Fluid approximation of pool depletion systems 11

5.1 A Fluid Petri Net model of Map-Reduce

Figure 9 shows a Fluid Petri Net model describing the considered Map-Reduce
paradigm, where resources are obtained gradually. The place named Start, ini-
tially marked, represent the start of the job. At time t = 0, immediate transition
Mstarts fires, moving the token to place Map to denote the execution of the
map phase. Fluid place Tasks represents the count of tasks that needs to be
executed. When the map phase starts with the firing of Mstart, a set arc inserts
into place Tasks the number of tasks that will be executed in that stage. Fluid
transition Depletion models the execution of tasks. It behaves according to the
definitions given in Section 4 in a state dependent way as it will be described
later. The fluid arc that connects place Tasks to transition Depletion removes
tasks as they finish in a continuous way. As soon as the tasks of the map phase
end, transition Rstart fires, moving the token into place Reduce to denote the
beginning of the reduce stage. Again, the set arc connecting transition Rstart

to place Tasks defines the tasks that have to be executed in the reduce phase.
When also the reduce phase ends, the model stops with the firing of immediate
transitions End. The number of nodes running tasks in parallel is modeled by
place Nodes. Acquisition of resources is modeled by transition Nadd, which stop
firing thanks to the inhibitor arc coming from place Nodes as soon as the max-
imum number of available nodes K is reached. In the reduce phase, resources
can be released due to the firing transition Nrelease. This transition is guarded
by a function that depends both on the number of remaining tasks, and on the
number of available resources. When the marking of Tasks becomes smaller that
the marking of Nodes, a node can be released by allowing transition Nrelease to
fire. Resources are also released when the reduce phase ends with the flush-out
arc connecting place Nodes to transition End. The state-dependency of transition
Depletion is characterized by 2K fluid evolution functions µmr,K(x, t), one for
each combination of number of available nodes K, and map or reduce stage mr.
The marking of places Nodes, Map and Reduce determines which fluid evolution
function should be used in that particular moment of the model evolution.

5.2 Results

Figure 10 shows the results obtained with the solution of the FSPN presented in
Figure 9. In this case we consider that K = 20 nodes have to process NMap = 144
map tasks, and NReduce = 192 reduce tasks. The duration of map tasks SMap ∼
Erlang4(1000) is assumed to be Erlang distributed with an average of 1000ms,
and a cv = 0.5. Reduce tasks SReduce ∼ Erlang4(500) are instead assumed to be
still Erlang distributed with cv = 0.5, but this time with an average of 500ms.
Nodes are acquired at regular deterministic time intervals, with a new resource
being available every 400ms. As introduced in Section5.1, the model exploits
2K fluid evolution functions µmr,K(x, t). In this example, such functions are
determined by a quick run of discrete event simulation: due to the small cv that
characterizes the considered Erlang distributions, acceptable confidence intervals
can be achieved in about 100 runs per number of core and map or reduce stage.

12 E. Barbierato, M. Gribaudo, D.Manini

Map

Reduce

N

Start

Nodes

Tasks

Mstart Rstart End

Depletion

Nadd Nrelease

Fig. 9. A Fluid Petri Net model of the Map-Reduce paradigm.

 0

 50

 100

 150

 200

 0 5 10 15 20 25
 0

 5

 10

 15

 20

T
as

k
 i

d

N
o
d

es

Time [sec.]

Map/Red.
K

Map, K=10
Red., K=10
Map, K=20
Red., K=20

Fig. 10. Results of the FSPN model.

Figure 10 shows the fluid evolution function for both map and reduce tasks with
K = 20 (the maximum number of available resources), and K = 10. The bold
dotted line, referred to the secondary axis, shows the number of available cores as
the function of time, while the curve with the largest width represents the fluid
evolution of place Tasks. As it can be seen, as soon as number of cores reaches
the maximum available K = 20, the evolution corresponds to the corresponding
fluid models, translated to make the time evolution continuous. When the reduce
phase reaches the end, cores starts be released, ad the curve corresponding to K
drops very quickly to zero. In the considered scenario, the average time estimated
to complete a map-reduce job is R = 17.219 sec.

Fluid approximation of pool depletion systems 13

5.3 Validation

To remark the validity of the proposed technique, the obtained results are com-
pared against a simulation of the system performed in JMT [6] using the model
shown in Figure 11. The system is modeled by a closed queuing network with
a single job circulating in it. A delay station TinyTerminalDelay with a neg-
ligible waiting time is used as a reference station for the single circulating job.
As soon as the single job leaves the reference station, it is split in two by the
JobFork station: the upper job represents the execution of the map-reduce, while
the bottom one models the acquisition of the resources. Again, a negligible de-
lay TinyMapDelay is applied to the upper path, to allow the system to setup
the available resources before starting to work on the tasks. The NMap tasks
are generated by the MapFork primitive. The execution of the tasks is modeled
by the delay station Map, characterized by service time distribution SMap. As
soon as all the map tasks are completed, they are united into a single entity by
the MapJoin station, and then they are immediately split again into NReduce.
Reduce tasks are executed by the delay station Reduce, whose service time dis-
tribution corresponds to SReduce. The gradual acquisition of resources is modeled
by ResourcesFork that inserts in the system K − 1 jobs that are immediately
routed to the FIFO queue station ResoruceUsed. From this station, jobs com-
pletes every 400ms. Resources constraints are modeled by the finite capacity
region FCR that includes stations Map, Reduce and ResourceUsed, and that is
characterized by total capacity K. In this way, at the beginning, only one extra
task is allowed to enter the FCS from the MapFork station. As customers leaves
the ResourceUsed stations, new computation nodes become available, and new
tasks are allowed to start being served. Stations ReduceJoin, ResourceJoin

and JobJoin are used to restore the single job and return it to the reference
station. In this model, the average response time corresponds to the average
time to complete a map-reduce job, with the considered resource acquisition
policy, and should correspond to the one computed by the FSPN shown in Fig-
ure 9. Running JMT, we have obtained an average response time R = 17.528
sec, which differs from the result obtained with the FSPN model for 1.78%. This
shows that the fluid approach can indeed provide good approximation, at a much
lower computational effort.

6 Conclusions

This paper has proposed a characterization of single node, single class, multiple
server, pool depletion system, and has shown how the average completion time
of this type of models can be efficiently described by a fluid approximation. The
importance of this type of system has been proven by applying the proposed
technique to study incremental resource acquisition in map-reduce task execu-
tion. Future work will exploit the proposed characterization to define the fluid
model starting from system parameters like the number of nodes, the number
of tasks, and the average and coefficient of variation of the service time distri-
bution. Moreover, the proposed technique will be used to study the completion

14 E. Barbierato, M. Gribaudo, D.Manini

Fig. 11. A Fork/Join with Finite Capacity Regions Queuing Network model of the
Map-Reduce paradigm, used to validate the results obtained with the FSPN model.

time in Spark jobs characterized by more complex fork-join structures and task
execution policies. Thanks to their efficiency, fluid model will be exploited into
optimization algorithm to dynamical configure the system by setting the proper
number of nodes, number of tasks and tasks duration to reach proposed KPI with
the lowest possible expense in terms of utilization and energy consumption.

References

1. Hadoop website. https://hadoop.apache.org/docs/r1.0.4/ (2013)
2. Amari, S.V., Misra, R.B.: Closed-form expressions for distribution of sum of ex-

ponential random variables. IEEE Transactions on Reliability 46(4), 519–522 (Dec
1997)

3. Barbierato, E., Gribaudo, M., Iacono, M.: A performance modeling language for big
data architectures. In: Proceedings of the 27th European Conference on Modelling
and Simulation, ECMS 2013, Ålesund, Norway, May 27-30, 2013. pp. 511–517
(2013), http://dx.doi.org/10.7148/2013-0511

4. Barbierato, E., Gribaudo, M., Iacono, M.: Performance evaluation of nosql big-
data applications using multi-formalism models. Future Generation Computer Sys-
tems 37, 345 – 353 (2014), http://www.sciencedirect.com/science/article/

pii/S0167739X14000028, special Section: Innovative Methods and Algorithms for
Advanced Data-Intensive ComputingSpecial Section: Semantics, Intelligent pro-
cessing and services for big dataSpecial Section: Advances in Data-Intensive Mod-
elling and SimulationSpecial Section: Hybrid Intelligence for Growing Internet and
its Applications

5. Barbierato, E., Gribaudo, M., Iacono, M.: Modeling hybrid systems in
SIMTHESys. In: Proceedings of the 8th International Workshop on Practical Ap-
plications of Stochastic Modelling. to appear (2016)

6. Bertoli, M., Casale, G., Serazzi, G.: Jmt: performance engineering tools for system
modeling. SIGMETRICS Perform. Eval. Rev. 36(4), 10–15 (2009)

Fluid approximation of pool depletion systems 15

7. Bodrog, L., Gribaudo, M., Horvth, G., Mszros, A., Telek, M.: Control of queues
with map servers: experimental results. In: Matrix-Analytic Methods in Stochastic
Models: MAM8 - 2016, Kerala, India, January 8-10, 2014, Proceedings. pp. 9–11
(2014)

8. Castiglione, A., Gribaudo, M., Iacono, M., Palmieri, F.: Exploiting mean field
analysis to model performances of big data architectures. Future Generation Comp.
Syst. 37, 203–211 (2014), http://dx.doi.org/10.1016/j.future.2013.07.016

9. Cerotti, D., Gribaudo, M., Pinciroli, R., Serazzi, G.: Stochastic analysis of energy
consumption in pool depletion systems. In: Measurement, Modelling and Evalua-
tion of Dependable Computer and Communication Systems - 18th International
GI/ITG Conference, MMB & DFT 2016, Münster, Germany, April 4-6, 2016, Pro-
ceedings. pp. 25–39 (2016), http://dx.doi.org/10.1007/978-3-319-31559-1_4

10. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Communications of the ACM - 50th anniversary issue: 1958 - 2008 51(1), 107–113
(2008)

11. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, New York, NY, USA (1996)

12. Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative Sys-
tem Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1984)

13. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets. John Wiley & Sons, Inc., New York, NY,
USA, 1st edn. (1994)

14. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with
cuda. Queue 6(2), 40–53 (Mar 2008), http://doi.acm.org/10.1145/1365490.

1365500

15. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Clus-
ter computing with working sets. In: Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing. pp. 10–10. HotCloud’10, USENIX Associa-
tion, Berkeley, CA, USA (2010), http://dl.acm.org/citation.cfm?id=1863103.
1863113

16. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
Fault-tolerant streaming computation at scale. In: Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, SOSP 2013. pp. 423–
438. ACM (2013)

