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Abstract

We introduce the notion of Γ continuity at a point x—where Γ is any pointclass—and give conditions under which Γ continuity
at every x is equivalent to Γ measurability. Using this we extend the notion of the integral of a measurable function. Also we
examine the case Γ = Σ0

ξ , where (Σ0
ξ )ξ<ω1 is the usual ramification of the class of Borel sets, see [A.S. Kechris, Classical

Descriptive Set Theory, Springer-Verlag, 1994].
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1. Introduction

With the letters X and Y we always mean metric spaces, unless stated otherwise. Also with the term “pointclass”
we mean a collection of sets in arbitrary spaces, for example, the class of open sets. If Γ is a pointclass and X is a
metric space we denote with Γ (X) the family of the subsets of X which are in Γ .

Recall that if Γ is an arbitrary pointclass and f is a function from X to Y , we call f Γ measurable iff for each
open G ⊆ Y the inverse image f −1[G] is also in Γ [1].

We will consider some special cases for Γ . First define the family Σ0
1 (X) as the collection of all open subsets of X.

Put also Π0
1 (X) = {A ⊆ X/X\A ∈ Σ0

1 (X)}, i.e. the family Π0
1 (X) is the collection of closed subsets of X.

By transinfinite recursion we define for each ξ < ω1 [1]

Σ0
ξ (X) =

{⋃
n∈ω

An/ where An ∈ Π0
ξn

(X) for some ξn < ξ,∀n ∈ ω

}

and

Π0
ξ (X) = {

A ⊆ X/X\A ∈ Σ0
ξ (X)

}
.

Put also Δ0
ξ (X) = Σ0

ξ (X) ∩ Π0
ξ (X), for each ξ < ω1.
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It is well known that Δ0
ξ (X) ⊆ Σ0

ξ (X) ⊆ Δ0
ξ+1(X) for each ξ < ω1 and that

⋃
ξ<ω1

Σ0
ξ (X) = ⋃

ξ<ω1
Π0

ξ (X) =
B(X), where B(X) is the Borel σ -algebra on X.

Recall that a topological space X is called Polish iff it is separable and metrizable by some metric d such that
(X,d) is complete. If X is a perfect Polish space (i.e. a Polish space with no isolated points), then for each η < ξ < ω1
there exists a set A ∈ Δ0

ξ (X)\Δ0
η(X). With Σ0

ξ we mean the class of all sets which belong to Σ0
ξ (X) for some X.

2. Γ continuity

We now give a notion which is closely connected to Γ measurability.

Definition 2.1. Let Γ be an arbitrary class of sets, a function f : X → Y and x ∈ X. The function f is called Γ

continuous at x iff for every ε > 0 there exists δ > 0 such that the set f −1[S(f (x), ε)] ∩ S(x, δ) is in Γ .
Also say that f is Γ continuous iff f is Γ continuous at every x ∈ X.

[Of course with S(f (x), ε) we mean the set {y ∈ Y/p(f (x), y) < ε} where p is the metric of Y . The same for
S(x, δ).]

We will denote the set f −1[S(f (x), ε)] ∩ S(x, δ) with A(x, ε, δ) or simpler with A(ε, δ).
We first concentrate on the case where Γ = Σ0

ξ , for some ξ < ω1. The following are easy consequences of the
definitions.

Remark 2.2.

(I) Assume that Γ contains the class of open sets and is closed under finite intersections. If f : X → Y is Γ

measurable then f is Γ continuous.
(II) A function f : X → Y is Σ0

1 continuous exactly when it is continuous, or equivalently iff it is Σ0
1 measurable.

(III) Let Σ0
ξ measurable functions f,g : X → R and λ ∈ R. Then the functions f + g,λ · f,f · g, |f |,max{f,g} and

min{f,g} are also Σ0
ξ measurable.

(IV) If η < ξ < ω1 and f : X → Y is Σ0
η measurable (or Σ0

ξ continuous at some x ∈ X), then f is also Σ0
ξ measurable

(respectively, Σ0
ξ continuous at x).

Example 2.3.

(I) Define f : R → R such that

f (x) =
{

0, if x � 0,

1, if x > 0.

For each ε > 0 put δ = 1 > 0. Then A(0, ε,1) = (x − 1,0] for each x ∈ R. Hence A(0, ε,1) ∈ Σ0
2 (R). Therefore

f is Σ0
2 continuous at 0, but not continuous at 0.

(II) Let f : R → R be the Dirichlet function, i.e.

f (x) =
{

1, if x ∈ Q,

0, if x /∈ Q.

For x ∈ Q and ε > 0 the set A(x, ε,1) is one of the sets (x − 1, x + 1) ∩ Q, R. In either case A(x, ε,1) is an
Fσ set and therefore f is Σ0

2 -continuous on every rational x. Also for each rational x and for each δ > 0 the set
A(x, 1

2 , δ) = (x − δ, x + δ) ∩ Q is not a Gδ set. Hence f is not Π0
2 -continuous at Q.

With analogous arguments the Dirichlet function is Π0
2 but not Σ0

2 continuous at every x /∈ Q.

It is interesting to distinguish Σ0
ξ continuity from Σ0

η continuity. This is fairly easy to do at this point. However,
we will obtain this as a result of Theorem 2.5.

According to Remark 2.2, Σ0
ξ measurability implies Σ0

ξ continuity. Of course the inverse is also true in the case

of ξ = 1. This is because the class of Σ0 sets is closed under arbitrary unions. However the latter does not hold
1
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for the general case; so we cannot refer to an analogous proof in order to establish the inverse in the case of an
arbitrary ξ .

On the other hand, in some topological spaces we can replace arbitrary unions of open sets with countable ones, i.e.
those spaces which satisfy the Lindelöf property. It is well known that separable metric spaces are among those spaces.
This remark will help us prove that Σ0

ξ measurability is equivalent to Σ0
ξ continuity in separable metric spaces.

Lemma 2.4. Let (X,d) and (Y,p) be separable metric spaces and a function f : X → Y . For each open G ⊆ Y which
is bounded (i.e. supx,y∈G p(x, y) < ∞) there exists a family (εx)x∈f −1[G] of positive reals, such that for every family

(δx)x∈f −1[G] of positive reals there exists a countable I ⊆ f −1[G] with

f −1[G] =
⋃
x∈I

A(x, εx, δx)

(where A(x, εx, δx) = f −1[S(f (x), εx)] ∩ S(x, δx)).

Roughly speaking this lemma transfers arbitrarily large unions in which we may concern, into countable unions.

Proof. Let G ⊆ Y open and bounded. Then for each x ∈ f −1[G] there exists r > 0 such that S(f (x), r) ⊆ G. Put
εx = sup{r > 0/S(f (x), r) ⊆ G} > 0. Then εx ∈ R since G is bounded.

One can check that S(f (x), εx) ⊆ G for each x ∈ f −1[G].
Take (δx)x∈f −1[G] any family of positive reals.
Put A = {S(f (x), εx

4 )/x ∈ f −1[G]}. From the Lindelöf property of Y there exists a sequence (xn)n∈ω of elements
of f −1[G] such that

⋃
n∈ω S(f (xn),

εxn

4 ) = ⋃
A.

For each n ∈ ω put Bn = {x ∈ X/f (x) ∈ S(f (xn),
εxn

4 )} ⊆ f −1[G] and Bn = {S(x, δx)/x ∈ Bn}. From the Lindelöf
property of X there exists a sequence (xn

k )k∈ω of elements of Bn such that
⋃

k∈ω S(xn
k , δxn

k
) = ⋃

Bn, for each n ∈ ω.
Define I = {xn

k /n, k ∈ ω}.
Observe that if x = xn

k for some n, k ∈ ω, then from the definition of εx it follows that εxn � 2εx . Using this remark
it is easy to verify that

f −1[G] =
⋃
x∈I

A(x, εx, δx). �

Theorem 2.5. Let X,Y be separable metric spaces and a function f : X → Y .

(I) If there exists a function ξ : X → ω1 such that for each x ∈ X the function f is Σ0
ξ(x) continuous at x, then f is

Σ0
ζ measurable for some countable ordinal ζ � supx∈X ξ(x).

(II) For each ξ < ω1, f is Σ0
ξ measurable exactly when it is Σ0

ξ continuous at every x ∈ X.

Proof. It is enough to prove (I) since the second assertion follows immediately from the first.
Let {Gn/n ∈ ω} be a countable basis for the topology of Y . Since Y satisfies the Lindelöf property we may assume

that each Gn is an open ball and hence bounded (with respect to the metric of Y ).
For each n ∈ ω choose a family of positive reals (εn

x)x∈f −1[Gn] as in Lemma 2.4.

Now fix some n ∈ ω. For each x ∈ f −1[Gn], f is Σ0
ξ(x) continuous at x. So for the εn

x > 0, there exists δx > 0

with A(x, εn
x , δx) ∈ Σ0

ξ(x). Choose a family (δx)x∈f −1[Gn] of those δ’s. From Lemma 2.4 there exists a countable set

I ≡ In ⊆ f −1[Gn] such that

f −1[Gn] =
⋃
x∈In

A
(
x, εn

x , δx

)
. (∗)

If we let ζn = supx∈In
ξ(x) � supx∈X ξ(x) then ζn is a countable ordinal and A(x, εn

x , δx) ∈ Σ0
ζn

for each x ∈ In. So

f −1[Gn] ∈ Σ0
ζn

.
Putting ζ = supn∈ω ζn, where ζn is as above, we obtain the result. �
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The preceding theorem allows to view—in separable metric spaces—the notion of Σ0
ξ measurability in a “local

way”, since Σ0
ξ continuity is a local meaning.

This proof applies also to other pointclasses. Let us first recall the class of sets with the Baire property. If A is
a subset of a topological space X, we say that A has the Baire property iff there exists some open U such that the
symmetric difference (A \ U) ∪ (U \ A) is meager in X.

We denote the class of the sets with the Baire property with BP. It is well known that for any topological space X,
the family BP(X) forms the least σ -algebra on X which contains all open and all meager sets.

Corollary 2.6. Let X,Y be separable metric spaces and a function f : X → Y . Also let a pointclass Γ which contains
the open sets and it is closed under countable unions and finite intersections.

Then f is Γ measurable exactly when it is Γ continuous at every x ∈ X.
In particular f is BP measurable, i.e. Baire measurable (or Σ0

ξ measurable) exactly when it is BP continuous at

every x ∈ X (respectively, Σ0
ξ continuous at every x ∈ X).

Proof. Proceed as in the proof of Theorem 2.5. �
We now give an example distinguishing Σ0

ξ continuity from Σ0
η continuity, for each η < ξ < ω1, using Theo-

rem 2.5.

Example 2.7. Let X be a perfect Polish space, η < ξ < ω1 and A in Δ0
ξ (X) but not in Δ0

η(X).

Then the characteristic function of A, χA is easily Σ0
ξ measurable (and hence Σ0

ξ continuous) but not Σ0
η measur-

able. From the previous theorem there exists some x ∈ X such that f is not Σ0
η continuous at x. Therefore f is Σ0

ξ

continuous but not Σ0
η continuous.

We conclude with an application of Corollary 2.6. Let us begin with some notations. If X is a metric space, A is
a subset of X and Γ is a pointclass denote with ΓA the family {G ∩ A/G is a subset of X and in Γ }. Also for a
function f : X → Y put X(f,Γ ) = {x ∈ X/ the function f is Γ continuous at x}. Finally for A ⊆ X denote with χA

the characteristic function of A.
Let X be a separable metric space and a function f : X → R. We will consider the case where Γ is a σ -algebra M

which contains the open sets. Also let some A ⊆ X(f,M) ≡ Xf . Then for each x ∈ A the function f is M continuous
at x. It is clear that the function f �A (i.e. the restriction of f on A), is MA continuous at every x ∈ A. Now regard A

as a metric space. From Corollary 2.6 it follows that the function f �A is MA measurable. If furthermore A ∈M one
can verify that the function f · χA is M measurable.

So if μ is a measure on (X,M) the integral
∫
A

f dμ is well defined for each A ∈M with A ⊆ Xf .

Definition 2.8. Let X be a separable metric space, M be a σ -algebra on X which contains the open sets and μ a
measure on (X,M). Let also a non-negative function f : X → R. Define the partial integral of the function f as
follows:

p∫
f dμ = sup

{∫
A

f dμ/A ∈ M&A ⊆ Xf

}
.

Remark 2.9. Notice that if Xf is in M since f is non-negative we have that
∫ p

f dμ = ∫
Xf

f dμ. The set Xf is sort
of speak the “largest” set on which the function f behaves like a measurable function. It would be interesting to find
conditions under which the set Xf is in M.

If furthermore Xf = X then the partial integral coincides with the usual integral. Thus this new notion is indeed a
generalization of the classic one.

Of course we may extend the previous notion to a not necessarily non-negative function with the usual way. For an
arbitrary function f : X → R let

∫ p
f dμ = ∫ p

f + dμ − ∫ p
f − dμ, where f + = max{f,0} and f − = max{−f,0}.

(In case of ∞ − ∞ we define the partial integral to be 0.)
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It would be interesting also to examine if the classic theorems of the usual integral can be transferred to the partial
integral, see [2].

Example 2.10. Here we give an example of a partial integral which is reduced to the Lebesgue integral on a Cantor-
type set. Define x ∼ y ⇔ x − y ∈ Q and (using the Axiom of Choice) let A be a set which contains exactly one
member of each equivalence class. Let M be the Lebesgue σ -algebra on R and μ be the Lebesgue measure on
(R,M). It is well known that A /∈ M, in fact for every set U ⊆ R, if U ∩ A ∈M then μ(U ∩ A) = 0. This is because
if μ(U ∩A) > 0 then from the Steinhaus theorem there exists δ > 0 such that (−δ, δ) ⊆ (U ∩A)− (U ∩A) ⊆ A−A,
a contradiction.

Let B be the family of all open intervals (x − δ, x + δ) for which Ac ∩ (x − δ, x + δ) ∈ M, where Ac stands for
the complement of A in R. If B = ∅ put J = ∅, otherwise choose a countable family (In)n∈ω of the previous intervals
which covers B and put J = ⋃

n∈ω In. In any case we have that Ac ∩ J ∈ M and if Ac ∩ (x − δ, x + δ) ∈ M then
(x − δ, x + δ) ⊆ J .

Define X = R \ J . Then X is a closed set and furthermore μ(X) > 0. Otherwise the set Ac ∩ J c would μ-null and
thus in M. Hence Ac = (Ac ∩ J ) ∪ (Ac ∩ J c) ∈ M, a contradiction. It is well known that we can find a Cantor type
set C ⊆ X for which μ(C) > 0.

Let MX be the restriction of M on X, i.e. MX = {M ∩ X/M ∈ M}. Also let μX be the restriction of μ on MX .
Since X is closed and thus in M it is clear that some B ⊆ X is in MX if and only if B ∈ M.

Define the function g : X → R by g(x) = inf{|x − y|/y ∈ C}. The function Γ is continuous non-negative and
g−1[{0}] = C.

Now define f : X → R as follows

f (x) =
{

g(x) + 1, if x ∈ A,

1, if x /∈ A.

If x ∈ C, i.e. g(x) + 1 = 1 it is clear that f is continuous (and hence MX continuous) at x. For simplicity put
Xf = X(f,MX). Let now some x ∈ Xf \ C. Assume furthermore that x ∈ A. Then g(x) > 0 and f (x) = g(x) + 1.

Put ε = g(x)
2 . Notice that if y /∈ A then f (y) = 1 < g(x) + 1 − ε = f (x) − ε. Hence if f (y) ∈ (f (x) − ε,f (x) + ε)

then y ∈ A. It follows that

f −1[(f (x) − ε,f (x) + ε
)] = f −1[(f (x) − ε,f (x) + ε

)] ∩ A

= h−1[(h(x) − ε,h(x) + ε
)] ∩ A,

where h = g + 1.
Since x ∈ Xf there exists some δ > 0 such that f −1[(f (x) − ε,f (x) + ε)] ∩ (x − δ, x + δ) ∈MX ⊆ M. Also we

have that

f −1[(f (x) − ε,f (x) + ε
)] ∩ (x − δ, x + δ)

= h−1[(h(x) − ε,h(x) + ε
)] ∩ A ∩ (x − δ, x + δ)

= Ux ∩ A,

where Ux is open in X such that x ∈ Ux . Therefore Ux ∩ A ∈ MX ⊆ M and thus μ(Ux ∩ A) = 0. Repeat the same
procedure for each x ∈ (Xf \ C) ∩ A in order to get the previous set Ux . Using the Lindelöf property of X we find a
sequence (xn)n∈ω in (Xf \ C) ∩ A such that (Xf \ C) ∩ A = ⋃

n∈ω Uxn ∩ A. It follows that the set (Xf \ C) ∩ A is
μ-null and thus it belongs in M.

Now towards a contradiction assume that there exists some x ∈ Xf \ C which is not in A. Then f (x) = 1 and

g(x) > 0. Put ε = g(x)
2 > 0. Since g is continuous there exists some δ0 such that for all y ∈ (x−δ0, x+δ0)∩X we have

that g(y) >
g(x)

2 . Also x ∈ Xf hence there exists some δ > 0 such that f −1[(f (x) − ε,f (x) + ε)] ∩ (x − δ, x + δ) ∈
MX ⊆ M. We may assume that δ � δ0. Thus if y ∈ (x − δ, x + δ) ∩ X then f (y) ∈ (f (x) − ε,f (x) + ε) ⇔ y /∈ A. It
follows that f −1[(f (x) − ε,f (x) + ε)] ∩ (x − δ, x + δ) = Ac ∩ (x − δ, x + δ) ∩ X = Ac ∩ J c ∩ (x − δ, x + δ) ∈ M.

Since Ac ∩J ∈ M it follows that Ac ∩J ∩ (x − δ, x + δ) ∈ M as well. Therefore Ac ∩ (x − δ, x + δ) = [Ac ∩J c ∩
(x − δ, x + δ)] ∪ [Ac ∩ J ∩ (x − δ, x + δ)] ∈M. From the definition of J it follows that (x − δ, x + δ) ⊆ J . This is a
contradiction since x ∈ X = R \ J .
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Therefore Xf \ C = (Xf \ C) ∩ A is μ-null and thus in M. Since Xf \ C ⊆ X we have that Xf \ C ∈ MX .
Furthermore C is closed in X and it is also a subset of Xf , hence Xf ∈MX .

Thus
∫ p

f dμX = ∫
Xf

f dμX = ∫
C

f dμX = ∫
C

1 dμX = μX(C) = μ(C) > 0.
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