
15 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Optimal Aggregation of Components for the Solution of Markov Regenerative
Processes

Publisher:

Published version:

DOI:10.1007/978-3-319-43425-4_2

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1620749 since 2016-12-20T11:57:54Z

Optimal aggregation of components for the
solution of Markov Regenerative Processes

Elvio G. Amparore, Susanna Donatelli

University of Torino, Corso Svizzera 187, Torino, Italy.
amparore@di.unito.it and susi@di.unito.it

Abstract. The solution of non-ergodic Markov Renewal Processes may
be reduced to the solution of multiple smaller sub-processes (compo-
nents), as proposed in [4]. This technique exhibits a good saving in time
in many practical cases, since components solution may reduce to the
transient solution of a Markov chain. Indeed the choice of the compo-
nents might significantly influence the solution time, and this choice is
demanded in [4] to a greedy algorithm. This paper presents a compu-
tation of an optimal set of components through a translation into an
integer linear programming problem (ILP). A comparison of the optimal
method with the greedy one is then presented.

1 Introduction

A Markov Regenerative Process (MRP) is a stochastic process defined by a se-
quence of time instants called renewal times in which the process loses its mem-
ory, i.e. the age of non-exponential (general) events is 0. The behaviour between
these points is then described by a time-limited stochastic process. MRPs have
been studied extensively in the past [13,16], and many solid analysis techniques
exists. MRP are considered the richest class of stochastic processes for which it
is still possible to compute an exact numerical solution, and have therefore at-
tracted a significant interest in the performance and performability community.

This paper considers the subclass of MRP in which the time limited stochastic
process is a CTMC and general events are restricted to deterministic ones. This
type of MRPs arise for example in the solution of Deterministic Stochastic Petri
nets (DSPN), in the model-checking of a one-clock CSLTA formula [12] and in
Phased-Mission Systems (PMS) as in [8, 15].

The solution of a MRP involves the computation and the solution of its
discrete time embedded Markov chain, of probability matrix P. The construction
of P is expensive, both in time and memory, because this matrix is usually dense
even if the MRP is not. The work in [13] introduces an alternative matrix-free
technique (actually P-free), based on the idea that P can be substituted by a
function of the basic (sparse) matrices of the MRP.

When the MRP is non-ergodic it is possible to distinguish transient and
recurrent states, and specialized solution methods can be devised. The work
in [2, 4] introduces an efficient steady-state solution for non-ergodic MRPs, in

matrix-free form, called Component Method. To the best of our knowledge, this
is the best available technique for non-ergodic DSPN and for CSLTA, as well as
for non-ergodic MRPs in general.

The work in [2, 4] and its application to CSLTA in [5] identify a need for
aggregating components into bigger ones, and observe that the performance of
the algorithm may depends on the number, size, and solution complexity of
the components. The aggregation is defined through a set of rules, to decide
which components can be aggregated together, and through a greedy-heuristic
algorithm that performs aggregations as much as it can. In this paper we observe
that the greedy algorithm of [4] may actually find a number of components that
is not minimal. The greedy solution seems to work quite well on the reported
example, but the lack of optimality has some obvious theoretical limitations:
there is no measure of the “goodness” of the solution, and it is impossible to
compare the component method with ad-hoc techniques as whose developed, for
example, for PMS solution in [8, 15].

This paper formalizes the optimality criteria used in [4] and defines an ILP
for the computation of an optimal set of components: to do so, the component
identification problem is first mapped into a graph problem.

The paper develops as follows: Section 2 defines the necessary background.
Section 3 defines the component identification problem in terms of the MRP
graph. Section 4 defines the ILP that computes the optimal set of components.
Section 5 discusses the performance of the ILP method and how it compares to
the greedy method and concludes the paper.

2 Background and Previous Work

We assume that the reader has familiarity with MRPs. We use the definitions
of [13]. Let {〈Yn, Tn〉 | n ∈ N} be the Markov renewal sequence (MRS), with
regeneration points Yn ∈ S on the state space S encountered at renewal time
instants Tn. A MRP can be represented as a discrete event system (like in [11])
where in each state a general event g is taken from a set G. As the time flows,
the age of g being enabled is kept, until either g fires (∆ event), or a Markovian
transition, concurrent with g, fires. Markovian events may actually disable g
(preemptive event, or Q̄ event), clearing its age, or keep g running with its
accumulated age (non-preemptive event, or Q event).

Definition 1 (MRP representation). A representation of a MRP is a tuple
R = 〈S, G, Γ,Q, Q̄,∆〉 where S is a finite set of states, G = {g1 . . . gn} is a set
of general events, Γ : S → G ∪ {E} is a function that assigns to each state a
general event enabled in that state, or the symbol E if no general event is enabled,
Q : S × S → R≥0 is the non-preemptive transition rates function (rates of non-
preemptive Markovian events), Q̄ : S × S → R≥0 is the preemptive transition
rates function (rates of preemptive Markovian events), ∆ : S × S → R≥0 is the
branching probability distribution (probability of states reached after the firing of
the general event enabled in the source state). Vector α is the initial distribution.

Given a subset of states A ∈ S, let Γ (A) = {Γ (s) | s ∈ A} be the set of

events enabled in A. Let the augmented set Â be defined as set of states A plus
the states of S \ A that can be reached by A with one or more non-preemptive
Markovian events (Q events). To formulate MRP matrices, we use the matrix
filter notation of [13]. Let Ig be the matrix derived from the identity matrix of
size |S| where each row corresponding to a state s with Γ (s) 6= g is set to zero.
Let IE be the same for Γ (s) 6= E.

By assuming {Yn, Tn} to be time-homogeneous, it is possible to define the
embedded Markov chain (EMC) of the MRP. The EMC is a matrix P of size

|S|× |S| defined on the MRS as Pi,j
def
= Pr{Yn = j | Yn−1 = i}. A full discussion

on the EMC matrix can be found in [13, ch. 12]. Matrix P is usually dense
and slow to compute. To avoid this drawback, a matrix-free approach [14] is
commonly followed. We now recall briefly the matrix-free method for non-ergodic
MRP in reducible normal form.

Definition 2 (RNF). The reducible normal form of a EMC P is obtained by
rearranging the states s.t. P is in upper-triangular form:

P =




T1 F1
. . .

...

Tk Fk

Rk+1
. . .

Rm






 k ≥ 0 transient subsets.





(m− k) recurrent subsets,
with m > k.

(1)

The RNF of P induces a directed acyclic graph, where each node is a subset
of states Si (called component i). Let Ii be the filtering identity matrix, which
is the identity matrix where rows of states not in Si are zeroed.

When P is in RNF, the steady-state probability distribution can be computed
using the outgoing probability vectors µi. The vector µi gives for each state
s ∈ (S \ Si) the probability of reaching s in one jump while leaving Si:

µi =
(
Ii ·α +

∑

j<i

(Ii · µj)
)
· (I−Ti)

−1 · Fi, i ≤ k (2)

Since matrix inversion is usually expensive, a product of a generic vector u with
(I − Ti)

−1 can be reformulated as a linear equations system x · (I − Ti) = u.
This system can be computed iteratively using vector×matrix products with
uTi. The steady state probability of the i-th recurrent subset is given by:

πi =
(
Ii ·α +

k∑

j=1

(Ii · µj)
)
· lim
n→∞

(Ri)
n, k < i ≤ m (3)

The Component Method computes first equation (2) for all transient compo-
nents, taken in an order that respects the condition j < i of the formula, and
then computes the probability for the recurrent subsets based on equation (3).

Since the construction of P is not always feasible, a matrix-free method has
been devised in [4] for the computations of uTi and uFi. This generalization
provides: 1) a derivation of the m subsets Si which is based only on Q, Q̄ and ∆;
2) the matrix-free form of the sub-terms Ti, Fi and Ri, to be used in Eq. (2) and
(3). Observing that solution costs may differ depending on the structure of the
subterms, it is convenient to distinguish three different matrix-free formulations.

[Class CE] Condition: Γ (Si) = {E}. No general event is enabled in the Si states.
The matrix-free products are defined as uTi = Ii ·ai(u) and uFi = (I−Ii)·ai(u),
with the term ai(u) defined as follow, given IEi = Ii · IE and QE

i = IEi ·Q:

ai(u) = u · (IEi − diag−1(QE
i)QE

i)

Time cost of a product with Ti or Fi is f O(|QE
i |).

[Class CM] Either |Γ (Si)| > 1 or Γ (Si) = {g} ∧ (Q̄i · Ii 6= 0 ∨ ∆i · Ii 6= 0)
Let bi(u) be defined as:

bi(u) =

(
u ·
∑

g∈G
Igi · eQi δ

g

)
·∆ +

(
u ·
∑

g∈G
Igi ·

∫ δg

0

eQix dx

)
· Q̄

The term bi(u) gives the probability distribution of the next regeneration state
reached with the firing of the general event (∆ event) or with the preemption of
the general event enabled (Q̄ event). Note that the computation of bi(u) on a

subset Si of states has to consider all the states in the augmented set Ŝi, since we
have to consider all states, also outside of the component, in which the system
can be found at the next regeneration state. The products with Ti and Fi are
defined as:

uTi = Ii ·
(
ai(u) + bî(u)

)
, uFi = (I− Ii) ·

(
ai(u) + bî(u)

)

The term (I−Ti)
−1 in Eq. (2) requires a fixed-point iteration to be evaluated.

The time cost of bi(u) is that of the uniformization, which is roughly O(|Qi| ×
Rg), with Rg the right truncation point [14, ch.5] of a Poisson process of rate
δg ·maxs∈Si(−Q(s, s)).

[Class Cg] Condition: Γ (Si) = {g} ∧ Q̄i ·Ii = 0 ∧ ∆i ·Ii = 0. A single general
event g is enabled in Si, and all the ∆ and Q̄ transitions exits from Si in one
step. The matrix-free products with Ti and Fi are then:

uTi = 0, uFi = (I− Ii) · bî(u)

which means that the term (I−Ti)
−1 in (2) reduces to the identity.

3 Identification of an optimal set of components

As observed in [2, 4], the performance of the Component Method may vary sig-
nificantly depending on the number, size and class of the considered components.

There are two main factors to consider. The first one is that the complexity of
the computation of the outgoing probability vector µi in Eq.(2) depends on the
class of component Si, and a desirable goal is to use the most convenient method
for each component. The second one is that the presence of many small com-
ponents, possibly with overlapping augmented sets, increases the solution time,
as observed in [4], where it was also experimentally observed that the number
of SCCs of a non-ergodic MRP can be very high (tens of thousands is not un-
common) also in non artificial MRPs, Therefore multiple components should be
joined into a single one, as far as this does not lead to solving components of a
higher complexity class.

In [4] a greedy method was proposed that aggregates components to reduce
their number, while keeping the component classes separated. The identifica-
tion of the components starts from the observation that the finest partition of
the states that produces an acyclic set of components are the strongly connected
components (SCC), were the bottom SCCs (BSCC) represent the recurrent com-
ponents of the MRP. The greedy algorithm aggregates components when feasi-
ble and convenient. Two components can be aggregated if acyclicity is preserved
(feasibility), thus ensuring that the MRP has a reducible normal form, and if the
resulting component has a solution complexity which is not greater than that
of the two components (convenience). The objective is then to find the feasible
and convenient aggregation with the least number of components. The greedy
algorithm works as follows:

1. Let Z be the set of SCCs of S, and let FZ ⊆ Z be the frontier of Z, i.e. the
set of SCC with in-degree of 0 (no ingoing edges).

2. Take a SCC s from FZ and remove it from Z.

3. Aggregate s with as many SCCs from FZ as possible, ensuring that the class
of the aggregate remains the same of the class of s.

4. Repeat the aggregation until Z is empty.

S1 : CM

S2 : Cg S4 : Cg

S3 : CE

Fig. 1: Counter-example.

The main limitation of this method is that it de-
pends on the visit order, since the aggregation of
step 3 only visits the frontier. This limitation is nec-
essary to ensure the acyclicity, but it may lead to
sub-optimal aggregations. Indeed Fig. 1 shows the
SCCs of a MRP, along with their classes, where the
greedy algorithm may fail to provide the minimal
aggregation. If the visit order is S1,S2,S3,S4, at the
time of visiting S2 the in-degree of S4 will still be 1,
since S3 is yet to visit. Therefore the method will not

merge S2 with S4, resulting in a sub-optimal aggregation. Viceversa, the visit
order S1,S3,S2,S4 allows the greedy algorithm to aggregate S2 and S4 together.

The goal of this paper is indeed to propose a method that identifies the
optimal set of valid partitions (feasible and convenient).

Definition 3 (MRP valid partition). A set of components of a MRP state
space is a valid partition iff (1) the components are acyclic; and (2) each com-

ponent, which belongs to one of the three classes (CE, Cgand CM), should not
be decomposable into an acyclic group of sub-components of different classes.

Acyclicity ensures that the partition is feasible and can be used for the Compo-
nent Method. Condition (2) ensures convenience, i.e. by aggregating we do not
increase the complexity of the solution method required for the component.

Definition 4 (MRP component optimization problem). The MRP com-
ponent optimization problem consists in finding a valid partition of the MRP
with the smallest number of components.

It should be clear that this problem does not necessarily result in the fastest
numerical solution of the MRP, since other factors, like rates of the components
and numerical stability, may come into play: as usual the optimization is only
as good as the optimality criteria defined, but results reported in [4] show that
the component method is always equal or better, usually much better, than the
best MRP solution method that considers the whole MRP.

To solve this MRP optimization problem we map it into a graph optimization
problem for graphs with two types of edges: joinable (for pair of vertices that
can stay in the same component) and non-joinable (for pair of vertices that have
to be in different components).

3.1 Reformulation as a graph problem

We use standard notation for graphs. Let G = 〈V,E〉 be a directed graph, with
V the set of vertices and E ⊆ V × V the set of edges. A path is a sequence of
vertices σ = v1 → v2 → . . . → vn such that ∀ 1 ≤ i < |σ| : 〈vi, vi+1〉 ∈ E. Let
σ[i] be the i-th vertex in the path, and |σ| be the length n of the path.

Let Paths(v, v′) the (possibly infinite) set of paths from v to v′, and let
Paths(·, v′) =

⋃
v∈V Paths(v, v′). Notation v ; w indicates that w is reachable

from v.

Definition 5 (DAG-LJ). A labelled directed acyclic graph with joinable edges
is a graph G = 〈V,Σ,Lab, E,EN 〉, where:

– 〈V,E〉 is an acyclic (direct) graph;

– Σ is a finite set of labels and Lab : V → Σ is a vertex labelling function;

– EN ⊆ E is the set of non-joinable edges; For ease of reference we also define
EJ = E \ EN as the set of joinable edges;

– ∀ v, v′ ∈ V, 〈v, v′〉 ∈ EJ ⇒ Lab(v) = Lab(v′);

Notations v J v′ and v N v′ are shorthands for a joinable and a non-joinable
edge from v to v′, respectively. Given a label l ∈ Σ, the section Dl of G is the
set of vertices of equal label: {v ∈ V | Lab(v) = l}. Let D = {Dl | l ∈ Σ} be the
set of sections of G. Let sect(v) be the section of vertex v.

We now define the concept of valid and optimal partition of a DAG-LJ,
to later show how to an optimal valid partition of G induces a set of optimal
components of the MRP for the component method.

Definition 6. A valid partition of the vertices V of DAG-LJ G is a partitioning
P = {P1, . . . , Pm}of the set of vertices V such that:

1. ∀P ∈ P and ∀v, v′ ∈ P : Lab(v) = Lab(v′);

2. ∀P ∈ P: EN ∩ (P × P) = ∅;

3. Partition elements P are in acyclic relation.

and we indicate with Parts(G) the set of all valid partitions of G.
Note that the presence of a non-joinable edge v N v′ implies that v and

v′ cannot stay in the same partition element, in any valid partition. A joinable
edge v J v′ means that v and v′ are allowed to be in the same partition element
(and they are, unless other constraints are violated). From a valid partition we
can build a graph which is a condensation graph, the standard construction in
which all the vertices belonging to the same partition are replaced with a single
vertex, from which we can easily check acyclicity.

An optimal partition (not necessarily unique) is then defined as:

Definition 7 (Optimal partition of G). A valid partition P∗ ∈ Parts(G) is
optimal if the number of partition elements m is minimal over Parts(G).

3.2 Partitioning a MRP.

MRPs have a natural representation as directed graphs: MRP states are mapped
onto vertices and non-zero element in Q, Q̄, and ∆ are mapped onto edges.
Fig. 2, upper part shows the graph of a MRP R of 10 states, s1 to s10, and
one general event g1. For each state we list the Γ (si), which is either g1 or E,
if no general event is enabled. Transition rates are omitted. The mapping to
DAG-LJ cannot be done at the MRP state level, since this result, in general
in a non-acyclic directed graph. Since our objective is to find an acyclic set of
components we can map SCC of the MRP (instead of MRP states) to vertices
and connection among SCCs to edges, since SCCs are the finest partition that
satisfies acyclicity. When mapping to DAG-LJ, labels are used to account for
the class of the SCCs, and non-joinable edges are used to identify connections
that violates the convenience of component aggregation.

Definition 8. Given a MRP R = 〈S, G, Γ,Q, Q̄,∆〉, its corresponding DAG-
LJ G(R) = 〈V,Σ,Lab, E,EN 〉 is defined as:

– V = SCC(S). Each vertex is a strongly connected component of MRP states.
Let states(v) be the set of states in the strongly connected component v ∈ V .

– The set Σ of labels is {CE ,CM} ∪ {Cg | g ∈ G} and Lab(v) is defined as:

• Lab(v) = CE iff Γ (states(v)) = E;

• Lab(v) = Cg with g ∈ G iff Γ (states(v)) = {g} and ∀ s, s′ ∈ states(v) :
Q̄(s, s′) = 0 ∧ ∆(s, s′) = 0; (g is enabled continuously, no firing that
disables and immediately re-enables g is allowed)

• otherwise Lab(v) = CM .

– E = {〈v, v′〉 : if ∃s ∈ states(v) and s′ ∈ states(v′) such that Q(s, s′) 6= 0 or
Q̄(s, s′) 6= 0 or ∆(s, s′) 6= 0}.

– Edge 〈v, v′〉 is a joinable edge iff Lab(v)=Lab(v′) and: 1) either Lab(v) = M
or 2) all MRP transitions from the states of v to the states of v′ are Q
transitions. All other edges are non-joinable. Note that if there is a joinable
and a non-joinable edge between v and v′, the former is ignored, since EJ is
defined as E \ EN .

G(R) has |G|+2 distinct labels that induce |G|+2 distinct sections: (DE) if the
SCC is of class CE ; (Dg) if the SCC is of class Cg, for the general event g ∈ G;
(DM) if the SCC is of class Cg.

Example 1. The MRP of Fig. 2 (upper part) has only two SCCs with more than
one state: {s2, s3, s4} and {s6, s7}. The bottom-left part shows the DAG-LJ G

: Es1

:s4 g1: Es2 : Es3

:s5 g1 :s6 g1 :s7 g1

:s8 g1 : Es9

: Es10

MRP R:

�

Q̄

Q

� �

� �Q

Q
Q

Q

Q

Q

�

QQ

SCCs of R =
n�

s1

,
�
s2, s3, s4

,
�
s5

,
�
s6, s7

,
�
s8

,
�
s9

,
�
s10

 o

v1 : CE

{s1}

v2 : CM

{s2, s3, s4}

v3 : g1

{s5}

v4 : g1

{s8}

v5 : g1

{s6, s7}

v6 : CE

{s9}

v7 : CE

{s10}

DAG-LJ G: Sections:
DE has Lab(v) = E,
DM has Lab(v) = M ,
Dg1

has Lab(v) = g1

Joinable edge.
Non-joinable.

Valid partition P :

P1 = {v1}

P2 = {v2}

P3 = {v3, v5}

P4 = {v4}

P5 = {v6, v7}

Fig. 2: Example of a MRP, its DAG-LJ, and a valid partition.

built from the SCCs of R. The DAG has three sections: DE for SCCs of class CE
(all the states of the SCC enables only exponential transitions), Dg1 for SCCs in
which all states enable g1 and DM) for the remaining ones. Vertices v3 and v5 are
connected by a joinable edge, since only Q transitions connect states of v3 with
states of v5, while the edge 〈v3, v4〉 is non-joinable because ∆(s5, s8) 6= 0. The
right part of Fig. 2 shows the condensation graph of a valid partition of the DAG-
LJ (left). The partition satisfies the requirements of Def. 6: all vertices in the
same partition element have the same label, and it is not possible to go from one
vertex to another vertex in the same partition elements through a non-joinable
edge. Since the condensation graph is acyclic this is a valid partition.

We now prove that on optimal partitioning of the DAG-LJ generated from
an MRP is a solution of the MRP component optimization problem.

Property 1. If G(R) is the DAG-LJ of a MRP R, and P∗ = {P1, . . . , Pm} is an
optimal partition of G, then P∗R = {S1, . . . ,Sm}, with Si =

⋃
v∈Pi

(
states(v)

)

is a solution of the MRP component optimization problem of R according to
definition 4 .

Proof. Recall that each partition element Si is a set of SCCs of R and each SCC
belongs to one of the three classes (CE , Cgand CM). We need to prove that
P∗R is a solution of the component optimization problem of definition 4, which
requires to prove that P∗R is a MRP valid partition and that m is minimal.

A valid MRP partition is characterized by (1) acyclicity and (2) each com-
ponent should not be decomposable into an acyclic group of sub-components of
different classes. Acyclicity of the set of Si trivially descend from the acyclicity
of P∗ For point (2) we can observe that all SCCs in the same partition element,
by Definition 6, condition 1, have the same label, and therefore have the same
complexity class. Therefore point (2) can be proved by showing that it is never
the case that the union of two SCCs of the same class result in a component
of a different class if the two SCC are in the same partition element. If the two
SCCs are classified as CE , then all states are exponential, and the union is still
in CE . If the two SCCs are classified as Cg, then we know that there is no Q̄
nor ∆ transitions inside the single SCC, so that the classification of the union
of the two as of an higher class (CM) can only be originated by an arc between
the states of the two SCCs, but the presence of such an arc, by definition of the
non-joinable edges in G(R), produces a non-joinable arc between the DAG-LJ
vertices that represents the two SCCs, and this violates point 2 of Definition
6 (there can be no non-joinable edges between vertices of the same partition
element) If the two SCC are classified as CM , then all arcs between them, if any,
are joinable, and the two SCCs can end up in the same partition element, which
is also of class CM .

Optimality of P∗R = {S1, . . . ,Sm} trivially descends from optimality of P∗ =
{P1, . . . , Pm}, as it is never the case that two SCCs that can be joined together
result in a pair of vertices with a non-joinable edge between them, which is true
by definition of G(R).

4 Formulation of the ILP

This section defines an optimization problem with integer variables whose solu-
tion allows to build P∗. For each vertex v ∈ V the ILP considers |D| integer
variables : a variable xv and one variable yDv for each section D ∈ D \ sect(v)
(each section excluded that of v). We shall refer to these two types of vari-
ables simply as x and y variables. The optimal partition of G is then built as:

P∗(G) =
⋃
D∈D

(⋃ND

i=1

(
PDi
))

where PDi =
{
v
∣∣ v ∈ D ∧ xv = i

}
, and ND is

the number of partition elements of section D (optimization target).

Definition 9. The optimization problem is:

Minimize
∑

D∈D
ND subject to:

Rule 1. ∀ v ∈ V : xv ≥ 1 and ∀D 6= sect(v): yDv ≥ 0

Rule 2. ∀ v ∈ V : xv ≤ ND
Rule 3. ∀ v, v′ ∈ V with sect(v) = sect(v′) and v J v′: xv ≤ xv′
Rule 4. ∀ v, v′ ∈ V with sect(v) = sect(v′) and v N v′: xv < xv′

Rule 5. ∀v ∈ D, v′ 6∈ D if v N v′ then: xv ≤ yDv′
Rule 6. ∀v ∈ D, v′ 6∈ D if v′ N v then: yDv′ < xv
Rule 7. if v J v′ or v N v′ then ∀D 6∈ {sect(v), sect(v′)} add: yDv ≤ yDv′
Rule 8. ∀ v, w ∈ D such that ¬(v ; w) ∧ ¬(w ; v) add1 the constraint:

xv ≤ xw ⇒ ∀D′ 6= D : yD
′

v ≤ yD
′

w .

Rule 1 sets a minimum value for the x and y variables. Rule 2 defines the ND
value as the maximum of all x variables of the same section. This value is part
of the ILP goal function. Rules 3 and 4 constrains the x variables of the same
section: if there is a non-joinable edge the order must be strict. Note that the
relative order of the x variables follows the arc sense. No constraint is present if
there is no direct edge between v and v′.

D

Dʹ

a1 a2 a3 a4 a5

b2 b3 b4 b5

c1 c2

b1

D

Dʹ

a3 a4

c2c1

Fig. 3: The use of y variables to respect acyclicity

The remaining constraints take into account the requirement of acyclicity.
Observe the portion of DAG-LJ reported in Fig. 3, left. ai vertices are in section
D, ci are in section D′ and bi are in some other unspecified section(s). Since
there is no arc between a3 and a4 the first 4 rules do not generate any constraint
between the x variables of the two vertices, but if a3 and a4 ends-up in the same
partition element acyclicity will be violated. The y variables are then defined as:

yDv = max
(
0, xw

∣∣ w ∈ D ∧ w ; v
)

(4)

For each vertex v, variables yDv is the maximum over the x values of the vertices
in D that can reach v. The value of yDv is used for the definition of the x
variables of those vertices w ∈ D that can be reached from v, if any. If there is
an edge v → w, then xw has to be strictly greater than yDv . Back to Fig. 3, left,
yDb4 stores the maximum value among xa1 and xa3 , therefore yDb4 = xa3 , while

yD
′

b4
has the same value of xc1 . Indeed Rules 5 to 7 of the ILP ensure that the

optimal solution of the ILP assigns to each y the correct value, as we shall prove

1 This logic implication is not in standard ILP form. It can be transformed [10] in
ILP form as follows. Let U be a constant greater than |V |. Add a new variable kv,w
subject to these constraints: 0 ≤ kv,w ≤ 1, Ukv,w − U < xv − xw ≤ Ukv,w and

∀D′ ∈ D \ {D} add yD′
v ≤ yD′

w + Ukv,w.

in Theorem 1. In the example Rules 5 to 7 inserts the following constraints:
xa3 ≤ yDb2 ≤ yDb3 ≤ yDb4 < xa4 , therefore xa3 6= xa4 , so xa3 and xa4 end up in
different elements of the partition and acyclicty is preserved.

But the above rules are effective in generating a constraints between xv and
xw of the same section only if the two vertices are connected through a path
(possibly passing through different sections). Consider the DAG-LJ of Fig. 3,
right: Rules 3 to 7 produce four constraints: xa4 ≤ yDc2 , yDc1 < xa3 , xc1 ≤ yD

′

a3 ,

and yD
′

a4 < xc2 , that allows for a ILP solution with xa3 = xa4 = 1, xc1 = xc2 = 1,

yDc1 = yD
′

a4 = 0 and yDc2 = yD
′

a3 = 1. The final partition will be P∗ = {a3, a4} ∪
{c1, c2}, which clearly violates acyclicity. Rule 8 accounts for these situation
for pairs of unconnected (in the ; sense) vertices of the same section, stating
that the values of the x and y variables in the ILP solution should respect the
property that xv 6= xw ⇒ yD

′

v ≤ yD
′

w (the ≤ relation among x variables should
be reflected in the order of the corresponding y variables).

Back to Fig. 3, right, four constraints are inserted by Rule 8: xa3 ≤ xa4 ⇒
yD

′

a3 ≤ yD
′

a4 , xa4 ≤ xa3 ⇒ yD
′

a4 ≤ yD
′

a3 , xc2 ≤ xc1 ⇒ yDc2 ≤ yDc1 , and xc1 ≤ xc2 ⇒
yDc1 ≤ yDc2 . And the assignment of x and y above does not satisfies the constraint.
In this case a feasible solution is either xa3 > xa4 , with xc2 = xc1 or xc2 > xc1 ,
with xa3 > xa4 . The final partition has then three components and is acyclic.

Rule 8 modifies the constraint on the y variables, and their definition should
now be based on a different notion of reachability. Let v ∗→ v′ be the one-step
extended reachability relation, which is true if either 〈v, v′〉 ∈ E or sect(v) =
sect(v′) ∧ xv ≤ xv′ . Let v ∗; v′ be the extended reachability relation, defined as
the reachability of v′ from v using the ∗→ relation. The y variables are now:

yDv = max
(
0, xw

∣∣ w ∈ D ∧ w ∗
; v

)
(5)

Theorem 1. The partition P∗ of G built on the solution of the ILP of Definition
9 for graph G, is an optimal partition of G according to Definition 7.

Proof. We need to show that the ILP solution provides a partition which is valid
(as in definition 6) and which has a minimum number of elements.
Validity is articulated in three conditions, the first two are trivial, as partition
elements are built from vertices of the same section (and therefore of equal
label) and Rule 4 states that xv < xw whenever there is a non-joinable edge
between v and w. Acyclicity is also rather straightforward. There is a cycle
among two partition elements if it exists a pair of partition elements PDi and

PD
′

j and vertices v, w ∈ PDi and v′, w′ ∈ PD′

j such that v ; v′ and w′ ; w.
Obviously xv = xw and xv′ = xw′ . We show that if such paths exists, then at
least one constrain of the ILP is violated. We consider separately the case in
which v′ ; w′ and the one in which this is not true. If v′ ; w′, then (Rule 5, 6,
and 7) xv ≤ yDv′ ≤ · · · ≤ yDw′ < xw, which violates the hypothesis that xv = xw.
if ¬(v′ ; w′) then Rule 8 ensure that, since xv′ = xw′ , we must have yDv′ ≤ yDw′ ,
moreover, by Rule 6, we have yDw′ < xw, which leads to xv ≤ yDv′ ≤ yDw′ < xw
which violates the hypothesis that xv = xw.

Minimality is more complicated, and is based on three observations: 1) the ILP

solution builds the correct value (as per definition 5) of the y variables of interest,
2) ND is the number of partition elements for section D, and 3) the ILP is not
over-constrained (or if v and v′ could stay in the same partition element, then
there is no < among their x).

For point 1, let’s assume that there are n vertices w1, . . . , wn ∈ D such
that wi → v and v 6∈ D (the generalization to ; is trivial due to Rule 7 that
propagates the ≤ constraints among y variables in presence of a direct arc). Rule
5 sets a constraint xwi

≤ yDv for each vertex wi and at least one strict constraint
yDv < xv′ , if there is an edge from v to v′ ∈ D. Then the minimization of xv′

assigns to yDv the minimum possible value, which is the minimum value that
satisfies the xwi

≤ yDv constraints, which is precisely the maximum over the xwi

values. The proof indicates that the yDv value computed by the ILP is exactly
equal to the maximum only in presence of a path from v back to D, in all other
cases the ILP can assign any value y ≥ max(. . .). But if there is no path from v
back to D, then the value of yDv is inessential for the definition of the x variables
of D. In case instead of w ∗

; v, the path between w and v is made either of pairs
〈ak, ah〉 such that either ak → ah (in this case the yDak value, set initially to xwi

propagates according to Rule 7) or, by definition of ∗→, sect(ak) = sect(ah) and
xak ≤ xah . This implies (by Rule 8) that also yDak ≤ yDah and again the value of
xwi propagates as if there were an edge between ak and ah. As in the previous
case, if there is a path between v and a vertex in D, then the yDv is set precisely
to the maximum among the xwi

.
For point 2, we need to prove that ∀i ∈ {1..ND},∃v ∈ D : xv = i. This is

true since, in the rules of the ILP, the < order between x variables only involves
x variables of the same section D, either directly (through Rule 4) or indirectly
through yD variables (Rule 6) which, by definition, carry the value of one of the
x variables of D, as proved in point 1.

For point 3, we need to prove that, if w and v are in the same partition
element in the optimal partitioning P∗ of G, then they are assigned the same
x value by the ILP. For simplicity, let’s assume that P∗ is unique in Parts(G).
We prove that if xv 6= xw then the ILP solution violates a constraint. The only
way by which the ILP, given the goal of minimizing ND, can assign a different
value to xv and xw is the presence of < among the two variables, either directly,
as in Rule 4, or indirectly, through Rule 6. In the case of Rule 4, the constraint
is inserted only if there is a non-joinable edge between w and v, which clearly
violate the hypothesis that w and v are in the same partition element in P∗.
In the latter case, if it is a constraint yDv′ < xv (of Rule 6) that causes xw to
be different from xv, it means that yDv′ ≥ xw. Def. (5) implies that there is a
path between w and v that passes through vertex v′. In that case, w and v could
not stay in the same partition element, otherwise acyclicity would be violated.
Clearly the path between w and v could be either through ; or through ∗

; since
we have already shown that both can create a loop among partition elements.

We now show two small examples of DAG-LJ, whose optimal partitioning
have been constructed with the ILP method. The ILPs have been solved using
the lp solve tool.

Example 2. Consider the DAG-LJ G shown in Fig. 4, left, that has 14 vertices
and 3 sections D1...3. Each box reports in the first row the vertex and the section.
The second line of each box reports the xv number as computed by the ILP.

x = 1
: Dv1 1

1

x = 3
: Dv12 1

12

x = 3
: Dv13 1

13

x = 2
: Dv7 1

7

x = 2
: Dv6 1

6

x = 2
: Dv5 1

5

x = 1
: Dv2 2

2

x = 1
: Dv3 2

3 x = 2
: Dv9 2

9

x = 2
: Dv10 2

10

x = 2
: Dv11 2

11

x = 1
: Dv4 3

4

x = 2
: Dv8 3

8

x = 2
: Dv14 3

14

Partition P⇤

PD1
1 = {v1}PD2

1 = {v2, v3}

PD1
2 = {v5, v6, v7}PD3

1 = {v4}

PD2
2 = {v9, v10, v11}

PD1
3 = {v12, v13}

PD3
2 = {v8, v14}

DAG-LJ G

Fig. 4: Example of a DAG-LJ with the xv values and P∗.

The minimal solution of the ILP is found with ND1
= 3, ND2

= 2 and ND3
=

2, which leads to a partition of the vertices in 7 subsets (partition elements).
Observe that v8 is not a direct successor of v4, but they cannot form a single
component because it would form a loop. Since there is v4 N v6 and v7 N v8
with xv6 ≤ xv7 , Rule 8 adds a constraint yD3

4 ≤ yD3
8 , to ensure the acyclicity.

Fig. 4, right, shows the optimal valid partitioning P∗.

Example 3. Fig. 5 reports a rather different DAG-LJ, as there is no connection
among the vertices of the same section, but if all the vertices of equal section
are put in the same partition element, then acyclicity is violated.

v1 v5 v9 v13 D1

v2 v6 v10 v14 D2

v3 v7 v11 v15 D3

v4 v8 v12 v16 D4

PD1
1 = {v1}

PD2
1 = {v2, v6}

PD3
1 = {v3, v7, v11}

PD4
1 = {v4, v8, v12, v16}

PD1
2 = {v5, v9, v13}

PD2
2 = {v10, v14}

PD3
2 = {v15}

Partition P⇤

Fig. 5: An example of a DAG-LJ and P∗ with a complex structure.

This is a prototypical example for the need of Rule 8 in the ILP. Without that
rule, all the vertices of the same sections would form a single partition element,
resulting in a cyclic partitioning. The problem of determining where partition
elements are separated, however, is not trivial, since there are many possible
combinations. In this case, the optimization problem is crucial in finding the
partition boundaries that minimize the total number of components.

5 Assessment and conclusions

Since the ILP solution finds the optimal partition, the assessment of the pro-
posed method does not address the quality of the solution, but aims at comparing
the ILP solution with the greedy one of [4](obviously on on relatively small ex-
amples since ILP solution is known to be NP-hard), to identify the cases in which
the greedy approach fails. Table 1 shows such a comparison.

The models used in the comparison are non-ergodic MRP created from De-
terministic Stochastic Petri Nets with GreatSPN [6], and could be solved in
GreatSPN using any of the implemented techniques for non-ergodic MRP (clas-
sical, matrix-free, or component-based). The partition computed by the ILP (or
by the greedy method) is the base for the component method, that usually is
the best solver of the three available in GreatSPN. Models can be found at
www.di.unito.it/~amparore/QEST16.zip: for each model the zip file include
the pdf of the net (drawn with the GreatSPN editor [1]), and a representation
of their DAG-LJ and of their ILP-computed partitioning. The whole process
is automatized: from the DSPN description the MRP state space, their SCCs,
and the corresponding DAG-LJ is constructed, the ILP is produced and solved
with lp solve, the components are then computed and provided as input to the
component method. A similar chain is available for the greedy method. We con-
sider 5 models: the last two have been artificially created to investigate cases in
which acyclicity is non-trivial (cases in which Rule 8 plays a significant role in
constraining the solution), while the first three are variations of Phased Mission
Systems (PMS). In particular they are cases of a Scheduled Maintenance System
(SMS), inspired by [9], in which a system alternates between two phases: Work
and Maintenance, and behaves differently depending on the phase (as typical in
PMS). The model is studied for its transient behaviour, the stopping condition
for model A is determined by the number NP of phases, while models B and
C cycle over the two phases, and the stopping condition is triggered when the
system reaches a failure state. K and M are the number of pieces and machines.

Model |D| SCC EJ EN Greedy ILP vars ILP Constr.P.

PhMissionA, K=1, NP=2 3 47 36 36 6 2767 6 20
PhMissionB, K=3, M=2 3 52 47 36 6 2492 5 7
PhMissionC, K=6, M=3 3 45 25 27 7 504 7 7
Cross 6 10 0 20 7 108 7 10
MRP of Fig. 5 6 18 0 44 12 372 9 13

Table 1: Result of the ILP method against the greedy method.

The table reports the model name and the number of sections, SCCs, joinable
and non-joinable edges. The column ’Greedy’ indicates the number of compo-
nents found by the greedy method, while the two subsequent columns reports the
number of variables of the ILP and the number of components found by solving
the ILP. Finally, the last column reports the number of components found by
applying a constraint propagation method, i.e. by applying the ILP constraint
in order to maximize the x and y variables until a fix-point is found. Constraint

propagation can be seen as an approximate solution of the ILP, where the found
partitioning is always valid but not necessarily optimal.

As the table shows, the greedy method performs reasonably, but it does not
always found the optimal solution, although it goes very close to it (a behaviour
that has been observed on other cases of “real” systems). It instead performs
badly in cases created ad-hoc to experiment with Rule 8 (models Cross and
MRP of Fig. 5). The constraint propagation method is consistently the worst
one. The MRP size we could solve with standard computer are below a hundred
of SCCs (of course the state spaces could be much larger), which is not surprising
considering that the ILP size grows rapidly with the number of SCCs (the vertices
of the DAG-LJ) and that the problem is NP-hard.

Conclusions. This paper introduces a technique to find the optimal partition
of a non-ergodic MRP which is the basis of the Component Method solver for
MRPs. The method is both general (can be applied to any non-ergodic MRP)
and optimal, as it finds the minimum number of partition elements, and therefore
of components. Optimality is important not only for the solution time, but also
because it provides a baseline against which to assess the greedy solution. An
optimal solution is a prerequisite to compare the component method against
specific ad-hoc MRP solver. A typical example are the MRPs generated from
Phased Petri nets [8] for which an efficient ad-hoc solution technique was devised
in [15]: this technique can be interpreted as a special case of the component
method (with roughly one component per phase), moreover with the component
method the class of PMS that can be efficiently solved can be enlarged to include,
for example, different type of dependencies of the system behaviour from the
phase description that we believe are relevant for reliability analysis and that
will be investigated in our future research work. Optimality is also a prerequisite
when comparing the efficiency of a CSLTA model checker, as the one in [3], on
verifying CSL Until formulas. The component method with optimal partitioning
reduces the time complexity of the CSLTA model checker to that of a CSL one
(CSL model-checking algorithm as described in [7]), as already envisioned in [4].

A question that might arise is whether it is worth to define DAG-LJ, instead
of deriving the ILP directly from the SCCs of the MRP. The answer is that the
DAG-LJ abstraction may be used for other purposes and we are indeed currently
using it in the context of model-checking of CSLTA based on zone graph. The
idea here is that the MRP that describes the set of accepting paths of the formula
is obtained by a cross product of the Markov chain model and the zone graph (a
rather trivial construction since there is a single clock) of the timed automata
that describes the CSLTA formula. The MRP is then solved with the component
method. But this is an a-posteriori work: the MRP is first built completely, and
then solved by component. The solution we are working on translates the zone
graph in a DAG-LJ, computes the components of the DAG-LJ and then does
the cross-product between a zone graph component and the Markov chain.

Another more than legitimate question is whether it makes sense to rely on
ILP solution, in particular as it is not uncommon to have MRPs with thousands
of SCCs. But luckily this is not always the case, for example the DAG-LJ of the

zoned graph of the timed automata that describes a CSLTA formula typically has
a very limited number of SCCs, and the ILP solution can be easily found, while
a similar situation arises in PMS, as typically the number of SCCs is related to
the number of phases, which is usually significantly less than 10. As future work,
we plan nevertheless to experiment with classical approximate ILP solvers, and
to compare it with the greedy approach.

References

1. Amparore, E.G.: A new GreatSPN GUI for GSPN editing and CSLTA model check-
ing. In: Quantitative Evaluation of Systems, Lecture Notes in Computer Science,
vol. 8657, pp. 170–173. Springer International Publishing (2014)

2. Amparore, E.G., Donatelli, S.: A component-based solution method for non-ergodic
Markov Regenerative Processes. In: Computer Performance Engineering, LNCS,
vol. 6342, pp. 236–251. Springer (2010)

3. Amparore, E.G., Donatelli, S.: MC4CSLTA: an efficient model checking tool for
CSLTA. In: International Conference on Quantitative Evaluation of Systems. pp.
153–154. IEEE Computer Society, Los Alamitos, CA, USA (2010)

4. Amparore, E.G., Donatelli, S.: A component-based solution for reducible markov
regenerative processes. Performance Evaluation 70(6), 400 – 422 (2013)

5. Amparore, E.G., Donatelli, S.: Improving and assessing the efficiency of the
MC4CSLTA model checker. In: Computer Performance Engineering, LNCS, vol.
8168, pp. 206–220. Springer Berlin Heidelberg (2013)

6. Baarir, S., Beccuti, M., Cerotti, D., Pierro, M.D., Donatelli, S., Franceschinis, G.:
The GreatSPN tool: recent enhancements. SIGMETRICS Performance Evaluation
Review 36(4), 4–9 (2009)

7. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Transactions on Software Engineering
29(6), 524–541 (2003)

8. Bondavalli, A., Mura, I.: High-level petri net modelling of phased mission systems.
In: 10th European Workshop on Dependable Computing. pp. 91–95. Vienna (1999)

9. Bondavalli, A., Filippini, R.: Modeling and analysis of a scheduled maintenance
system: a DSPN approach. The Computer Journal 47(6), 634–650 (2004)

10. Brown, G.G., Dell, R.F.: Formulating integer linear programs: A rogues’ gallery.
INFORMS Transactions on Education 7(2), 153–159 (2007)

11. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (2006)

12. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic prop-
erties with CSLTA. IEEE Transactions on Software Eng. 35(2), 224–240 (2009)

13. German, R.: Performance Analysis of Communication Systems with Non-
Markovian Stochastic Petri Nets. John Wiley & Sons, Inc., New York (2000)

14. German, R.: Iterative analysis of Markov regenerative models. Performance Eval-
uation 44, 51–72 (April 2001)

15. Mura, I., Bondavalli, A.: Markov regenerative stochastic Petri nets to model and
evaluate the dependability of Phased Missions. IEEE Transactions 50(12) (2001)

16. Stewart, W.J.: Probability, Markov chains, queues, and simulation : the mathemat-
ical basis of performance modeling. Princeton University Press, Princeton (2009)

