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ABSTRACT

Timing is essential for many cellular processes, from
cellular responses to external stimuli to the cell cy-
cle and circadian clocks. Many of these processes
are based on gene expression. For example, an acti-
vated gene may be required to reach in a precise time
a threshold level of expression that triggers a specific
downstream process. However, gene expression is
subject to stochastic fluctuations, naturally inducing
an uncertainty in this threshold-crossing time with
potential consequences on biological functions and
phenotypes. Here, we consider such ‘timing fluctu-
ations’ and we ask how they can be controlled. Our
analytical estimates and simulations show that, for
an induced gene, timing variability is minimal if the
threshold level of expression is approximately half
of the steady-state level. Timing fluctuations can be
reduced by increasing the transcription rate, while
they are insensitive to the translation rate. In pres-
ence of self-regulatory strategies, we show that self-
repression reduces timing noise for threshold levels
that have to be reached quickly, while self-activation
is optimal at long times. These results lay a frame-
work for understanding stochasticity of endogenous
systems such as the cell cycle, as well as for the
design of synthetic trigger circuits.

INTRODUCTION

Several cellular processes rely on a precise temporal organ-
isation (1,2). Prominent examples are the controls of the
cell cycle and of circadian clocks, where the timing preci-
sion can be crucial for the correct cellular physiology (1,3).
Similarly, the complex patterns of sequentially ordered bio-
chemical events that are often observed in development and
cell-fate decision presumably require a tight control of ex-

pression timing (4–6). Typically, internal signals and envi-
ronmental cues induce the expression of one or several reg-
ulators, which in turn can trigger the appropriate cellular
response when their concentration reach a certain thresh-
old level (1,7).

However, a gene may reach a target level of expression
with substantial cell-to-cell variability, even in a genetically
identical population of cells exposed to the same stimulus.
This variability is a necessary consequence of the intrinsi-
cally stochastic nature of gene expression (8,9). For genes
whose expression has to reach a trigger threshold level,
noise in gene expression leads to variability in the time re-
quired to reach the target level. This raises the question of
what is the extent of this variability and which regulatory
strategies can control such fluctuations. Most studies have
focused on fluctuations in molecule numbers at equilibrium,
while comparatively very few studies have addressed the
problem of timing fluctuations theoretically (2,7,10) or ex-
perimentally (1,11–12).

Here, we develop analytical estimates and simulations to
study the fluctuations in the time necessary to reach a target
expression level after gene induction, and we investigate the
effect of simple regulatory strategies on these fluctuations.
We first consider the case of an unregulated gene whose ex-
pression is switched on, and we ask what are the relevant
parameters defining the crossing-time fluctuations and how
these fluctuations can eventually be reduced by the cell. Sec-
ond, we investigate the role of simple regulatory strategies
in controlling the expression timing fluctuations, focusing
on the two circuits of positive and negative transcriptional
self-regulation.

Understanding expression timing variability is key to ap-
proach basic biological mechanisms at the single-cell level.
Isolating the possible regulatory strategies able to control
this variability can be useful to decipher the design princi-
ples behind regulatory networks associated to cellular tim-
ing.
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Figure 1. Model of gene expression. A basic description of gene expres-
sion includes transcription, translation and molecule degradation. The
model described by Equation (1) and its stochastic version is based on this
scheme.

With today’s experimental techniques based on fluores-
cence time-lapse microscopy (13), potentially coupled with
microfluidic devices to keep cells in a controlled environ-
ment for many generations (14,15), data on gene expression
timing and its fluctuations will be more and more accessi-
ble in the next years. Therefore, a parallel theoretical under-
standing of timing fluctuations is necessary to interpret this
upcoming data, to design focused experiments and eventu-
ally to engineer synthetic circuits with specific timing prop-
erties.

MATERIALS AND METHODS

Background on the ‘standard model’ for gene expression

We employed a standard model of stochastic gene expres-
sion (16) (Figure 1) taking into account messenger RNA
(mRNA) and protein production and degradation as first-
order chemical reactions (with rates km, kp for productions
and �m, �p for degradations) (16–19). The rate equations
describing the average mRNA and protein dynamics are

dm(t)
dt

= km − γmm(t)

d p(t)
dt

= kpm(t) − γp p(t). (1)

Since the gene expression process in Figure 1 does not
entail any transcriptional or post-transcriptional regulation
we refer to it as ‘constitutive’ expression in the following.
However, we are interested in the activation dynamics to
evaluate the time (and its fluctuations) necessary to reach
a certain level of expression (Figure 2). Thus, the case of a
step induction of transcription will be considered, following
e.g. (20). The kinetics after a step induction is modeled by
the solution of Equation (1) with initial conditions m(0) =
0 and p(0) = 0,

p(t) = pss

(
γp(1 − e−γmt) − γm(1 − e−γpt)

γp − γm

)

� pss(1 − e−γpt), (2)

Figure 2. Definition of the threshold-crossing problem. When a gene is
switched on at time t = 0 the average protein level (red continuous line)
approaches the steady state with the dynamics described by Equation (2).
Since gene expression is a stochastic process, individual trajectories fluctu-
ate around the mean behavior, as illustrated by stochastic simulations (blue
lines). The distribution of times of crossing a fixed protein level p̃ (orange
horizontal dashed line) is the first-passage time distribution (histogram)
representing the variabilty in reaching a certain level of expression. The
average first-passage time can be directly deduced from the deterministic
mean dynamics (green vertical dashed line).

where pss = kpkm/�m�p is the protein steady-state value,
and the approximation holds for a protein half-life much
longer than the mRNA half-life, i.e. �= �p/�m � 1. Indeed,
especially in microorganisms such as bacteria and yeast,
proteins are typically stable, with a lifetime longer than the
cell cycle, while mRNAs have a lifetime of just few minutes
(19,21), justifying the assumption � � 1 (19,22). Moreover,
the loss of highly stable proteins, captured by the rate �p,
is mainly due to dilution through growth and cell division,
so that an effective degradation rate �p = � ln2 (where the
growth rate � is the inverse of the cell doubling time) can be
safely assumed in most cases (23).

The threshold level p̃ of protein expression to be crossed
was defined in units of the steady-state value of expres-
sion, with the dimensionless parameter α = p̃/pss (Figure
2). Given the threshold �, the corresponding average cross-
ing time can be numerically calculated from Equation (2),
while it takes the simple form t � −log(1 − �)/�p for �� 1.

The master equation controlling the time evolution of the
probability of having m mRNAs and p proteins at time t can
be solved analytically for constitutive expression (19). Since
the mRNA dynamics is described by a birth-death process,
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the distribution of mRNA numbers is Poisson. By contrast,
protein abundance follows a broader distribution, because
of the amplification of mRNA fluctuations by protein trans-
lation bursts. The model predicts at steady state a negative
binomial distribution (19), and a gamma distribution in the
limit of p continuous (24). Fluctuations in protein number
can be measured by the coefficient of variation (CV) which
is the ratio between the standard deviation and the average
number of proteins CVp(t) = �p(t)/〈p(t)〉. The time evolu-
tion of this noise measure has a particularly compact form
in the regime of � � 1 (19):

CVp(t)2 = 1
〈p(t)〉 (1 + b + be−γpt), (3)

where b = kp/�m is the burst size, i.e. the average number
of proteins produced during a mRNA lifetime, while the
dynamics of 〈p(t)〉 is described by the deterministic equa-
tion (Equation (2)). The burst size represents the amplifica-
tion factor of noise with respect to the Poisson noise of the
mRNA. Indeed, the noise expression at steady state CV2

p =
1

〈p〉ss
(1 + b) explicitly shows a noise term proportional to b in

addition to the Poisson scaling ∼1/〈p〉. A ‘burst frequency’
parameter a = km/�p can be defined so that the average pro-
tein level at steady state is expressed as the product 〈p〉ss =
ab.

Estimate of biologically relevant parameter values

The biologically relevant range of parameters can be extrap-
olated from large-scale measurements of gene expression at
the single cell level. For Escherichia coli in particular, pro-
teins and mRNAs have been measured with single-molecule
sensitivity for ∼103 genes (21). In this data set, the average
mRNA lifetime is ∼5 min, which corresponds to a degrada-
tion rate of �m = 0.2. Protein lifetime is often longer then
the duration of the cell cycle, which may span from 20 min
to several hours in fast-growing bacteria like E. coli. Thus,
protein dilution in fast-growth conditions defines the max-
imum value �p � 0.03 min−1 for effective protein degrada-
tion. The higher stability of proteins with respect to mRNAs
(i.e. the approximation �� 1) is generally valid in yeast (19)
as well as in mammalian cells (25), although in higher eu-
karyotes the many layers of regulation of molecule stability
can give rise to a more complex scenarios.

The average number of proteins per cell in E. coli ranges
from less than a unit to thousands (21). The corresponding
burst size and frequency have been estimated from fitting
the distributions of protein numbers for different genes with
a Gamma distribution (21), i.e. the model prediction of the
steady-state distribution of the stochastic process based on
the scheme in Figure 1 in the continuous p limit and for ��
1 (24). However, for highly expressed genes extrinsic noise
is empirically the dominant noise source in E. coli (21). In
this case, the values of b and a obtained from fitting can-
not be strictly interpreted as the burst size and frequency,
since the underlying model does not include extrinsic fluc-
tuations. Nevertheless, the average protein number can be
roughly approximated by the product ab, although correc-
tions due to extrinsic fluctuations can emerge (26), making
our order-of-magnitude estimate of the biologically relevant

parameter range still meaningful. With this caveat in the in-
terpretation of a and b, empirically we find that these pa-
rameters span a broad range. This makes the relevant pa-
rameters strongly gene dependent. The burst size has a long-
tail distribution, ranging from 1 to thousands of proteins
translated in a mRNA lifetime. The average value is around
21 proteins while the median is 3. The burst frequency of
active genes is close to 5 mRNAs per cell cycle.

The rates of transcription km and translation kp can be
explicitly calculated once the molecule lifetimes have been
fixed. For example, bursts of frequency a = 10 and size b
= 5 correspond to transcription and translation rates of km
= 0.1 min−1 and kp = 1 min−1, if the mRNA degradation
is set to �m = 0.2 min−1 (i.e. the empirical average value)
and the cell-cycle time is around 70 min. Additionally, all
these parameters are influenced by cell physiology, and in
particular they are growth-rate dependent in bacteria (27).

Although an extensive exploration of this large parame-
ter space is not feasible, we tested our model results with sev-
eral parameter sets inside this biologically relevant range,
finding a qualitative agreement. The main figures are based
on the example of a gene expressing 2000 proteins at the
steady state, a burst size and frequency chosen compatible
with this steady state value, with the burst size laying in the
range b ∈ [2, 100] (setting the noise at the protein level),
mRNA lifetime around 5 min, effective protein lifetime set
by the cell-cycle time.

Stochastic simulations

Simulations were implemented by using Gillespie’s first re-
action algorithm (28). The stochastic reactions simulated
are those presented in Figure 1 for constitutive expression.
Reactions that depend on a regulator, as in the two self-
regulatory circuits, were allowed to have as rates the cor-
responding full non-linear functions (Equation (12)). Each
data point in the figures is the result of 104 trials.

RESULTS

Estimate of first-passage time fluctuations

The threshold-crossing problem for gene expression is rep-
resented in Figure 2. After induction, the level of gene ex-
pression rises with a specific dynamics p(t) and approaches
the steady-state pss for long times. We want to evaluate the
time necessary to reach a target level of expression p̃, and
in particular its fluctuations. Mathematically, the problem
of determining the time required for a stochastic process to
reach a certain value falls into the category of first-passage
time (FPT) problems (29). Usually, FPT problems are diffi-
cult to treat analytically. Indeed, previous attempts of eval-
uating the FPT distribution in the context of gene expres-
sion were based on numerical approximations (10,19), or
on simplified processes, e.g. neglecting protein degradation
(7). Here, we take a different approach. Our goal is to pro-
vide a rough but simple analytical estimate of the FPT noise
that allows to identify and intuitively understand some of its
general properties. To this aim, the geometrical arguments
illustrated in Figure 3 can be used. Fluctuations around the
dynamics of the average protein level p(t), which for consti-
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Figure 3. Scheme of the geometric relations at the basis of the analytical
estimate of timing fluctuations. The average protein level p(t) rises after
induction at time t = 0. The dynamics depends on the specific regulations
acting on the gene. The time evolution of protein fluctuations is captured
by the dynamics of the region at one standard deviation from the mean,
defined by the curves p(t) ± �p(t). The time necessary to these curves to
cross a fixed threshold p̃ gives an estimate of the variability in the first-
passage time (FPT).

tutive expression is described by Equation (2), are quanti-
fied by considering the region at a standard deviation dis-
tance from the mean behavior, defined by the two curves
p(t) ± �p(t) shown in Figure 3. A crossing threshold p̃ de-
fines the dimensionless parameter α = p̃/pss and the cor-
responding mean FPT � . The two trajectories p(t) ± �p(t)
cross the threshold p̃ at the time points � − ll and � + lr re-
spectively. The time interval [� − ll, � + lr] can be considered
as an estimate of the variability in the FPT. In particular, an
approximation of the standard deviation of the FPT is given
by the average value σt( p̃) � lr+ll

2 , and this quantity can be
calculated explicitly as a function of the known parameters
of the process. Figure 3 shows that two geometric relations
hold:

σp(τ + lr) = p(τ + lr) − p(τ )

σp(τ − ll) = p(τ ) − p(τ − ll) . (4)

These expressions can be Taylor expanded around the mean
FPT �

σp(τ ) + d
dt

σp(t)
∣∣∣
τ
lr + ... = dp(t)

dt

∣∣∣
τ
lr + ...

σp(τ ) − d
dt

σp(t)
∣∣∣
τ
ll + ... = dp(t)

dt

∣∣∣
τ
ll + ... . (5)

Considering the first-order expansion and generalizing to
all possible threshold levels p and their corresponding aver-
age FPT t, we obtain a general relation between the vari-
ability in the FPT �t(p), the protein level variability at that

time �p(t), and the average dynamics p(t):

σt(p) � lr + ll

2
� σp(t)

dp(t)
dt

[(dp(t)
dt

)2

−
(

dσp(t)
dt

)2]−1
(6)

If the variability in the protein level is approximately con-
stant in time, the above expression further simplifies to

σt(p) �
(

dp(t)
dt

)−1

σp(t), (7)

an equation reminiscent of the classic ‘propagation of un-
certainty’ in statistics. Equations (6) and (7) can be easily
reformulated in terms of the CV. In particular, the lowest
order approximation of the CV of the FPT is

CVt(p) � p(t)
t

(
dp(t)

dt

)−1

CVp(t). (8)

Note that p(t) in this expression is the deterministic average
dynamics of the process, and t is the average time if takes for
p(t) to reach a generic fixed value p. This relation between
noise in the protein level and noise in the timing of a thresh-
old crossing is quite general (although approximate), since
it does not require particular assumptions about the process
in analysis. Clearly, the caveat is that the time dependence
of noise in the protein level have to be known, which can be
a severe limitation given that an exact analytical solution is
only known for constitutive expression (19) (Equation (3)),
while it has to be evaluated through numerical simulations
even for simple regulatory schemes.

Optimal out-of-equilibrium protein level for time measure-
ments

This section addresses the role of the positioning of the
threshold protein level in determining the FPT fluctuations.
We consider the example of a transcription factor (TF)
whose expression is turned on in response to an external
stimulus. Typically, the dependence of the target expres-
sion on the TF concentration is sigmoidal (30,31), trigger-
ing a response when the level of expression approximately
matches the dissociation constant of the target. The dissoci-
ation constant is largely defined by the sequence specificity
of the TF to the promoter (32), and thus it is subject to
evolutionary selection (5,33–34). If noise in the timing is a
variable with phenotypic relevance, the threshold level that
triggers the target response may have been tuned so as to,
for instance, minimize the noise in the FPT. Given a steady-
state protein level pss that the regulator dynamics will reach
asymptotically, the system could select a threshold � with
the smallest noise in the time ‘measured’ by the target re-
sponse. The question is how the FPT variability depends
on the threshold level �, and if an optimal strategy for con-
trolling timing noise actually exists.

In the case of simple activation without further regulation
(‘constitutive’), the noise in the protein number is known
analytically (Equation (3)), and thus Equation (8) can be
used as a first estimate of the FPT noise. In this approxi-
mation, the relative fluctuations in the crossing time are a
function of the frequency a and size b of expression bursts,
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and of the threshold �,

CV2
t = α

ab
1 + b(2 − α)

[(1 − α)log(1 − α)]2
. (9)

This approximate analytical expression shows a non-
monotonous dependence on �, and is in very good agree-
ment with the results of exact stochastic simulations of the
process (Figure 4A). The noise in the FPT has a minimum
at an intermediate level of protein expression, implying that
the threshold position can actually be selected in order to
minimize the noise in the ‘time measurement’. Intuitively,
the presence of this minimum is the result of a trade-off be-
tween the noise at the protein level and the steepness of the
increase in time of the average protein level, as described by
Equation (8). Both quantities are decreasing functions of
the threshold position in the case � � 1. This can be easily
observed by taking the time derivative of the average pro-
tein dynamics (Equation (2)) and by simply reformulating
the protein noise in Equation (8) as

CV2
p (α) = 1 + b(2 − α)

a b α
. (10)

For short times the protein noise is high, while for long times
the noise propagation is particularly efficient. The optimal
trade-off is in the intermediate region. The timing noise de-
pends on the specifics of the gene in analysis, i.e. on the burst
size b and frequency a (Equation (9)). However, the value of
� at which this noise has a minimum shows no dependence
on the transcription rate, thus on the burst frequency a for
a fixed protein lifetime, and a dependence on the burst size
b that is completely negligible in the regime b 	 1, which is
typically the case empirically as described in the Materials
and Methods section. In fact, in this regime the minimum
position takes a constant value, approximately halfway to
the steady state:

dCV2
t (α)

dα

∣∣∣
b	1

= 0 ⇒ α � 0.55. (11)

This value compares well to simulations (Figure 4A).
As expected, the protein noise level determines the ab-

solute value of the timing fluctuations. In fact, if the same
number of proteins is produced with burst sizes of different
amplitudes both the noise at the protein level (Equation (3))
and the timing noise (Equation (8) and Figure 4A) increase.

Note that if the process is simply a birth-death Poisson
process, which can be the relevant case if the regulator is a
non-coding RNA, the FPT noise has analogously a min-
imum value, in this case at � = 0.47. This can be calcu-
lated by substituting the steady-state value ab with the cor-
responding steady state k/� of the birth (rate k) and death
(rate � ) process, and taking the limit b → 0 in Equation (9).

In the specific case of a burst size much larger than the
threshold level (i.e. b 	 p̃), the problem of evaluating the
FPT fluctuations greatly simplifies. In fact, in this specific
case, the first transcription event nearly always leads to
a burst of protein production that crosses the threshold.
Therefore, the FPT distribution is well approximated by an
exponential distribution with a single parameter km (i.e. the
transcription rate) as can be easily tested with stochastic
simulations.

We considered so far stable proteins with a half-life longer
than the cell cycle, which is typically the case in microor-
ganisms (19,21). However, few proteins, such as stress re-
sponse regulators, are actively degraded by proteolysis (35)
and protein half-life can be controlled in synthetic circuits
(36). For unstable proteins, the higher degradation rate �p
can be compensated by an increased transcription rate km
or translation rate kp in order to reach the same steady-state
level of expression ab. In the first case, both the burst size b
= kp/�m and frequency a = km/�p remain constant, while
in the second case the burst size increases to compensate
the reduced frequency. Equation (9) shows that, for a fixed
steady state ab, the minumum noise level (i.e. for � � 0.55)
does not change for unstable proteins transcribed more of-
ten, while timing become more noisy if the burst size is in-
creased. The average FPT corresponding to the minimum
noise level decreases as the protein becomes less stable since
t � −log(1 − �)/�p. Therefore, if a signal has to be trans-
mitted reliably on very short time scales with respect to the
cell cycle, a possible cellular strategy is boosting the pro-
tein degradation at the cost of making more transcripts to
achieve a shorter average crossing time without an increase
in its relative fluctuations.

On the other hand, given a fixed average value of the
crossing time, one can ask whether the timing variability
can be reduced by the cell by ‘paying the cost’ of producing
more proteins. Equation (9) shows that increasing the tran-
scription rate, and thus the burst frequency a, can indeed
decrease the absolute value of fluctuations. On the other
hand, the timing variability does not depend on the burst
size for b 	 1. Therefore, making more proteins in order
to have a more precise crossing time is a possible strategy if
the expression is increased at the transcriptional level, but
does not work if the increase occurs at the translational level
(Figure 4B).

Role of autoregulation in controlling timing fluctuations

This section addresses how the timing noise is affected
by self-regulation of the gene. Gene autoregulation is
widespread in both bacteria and eukaryotes and has rel-
evant consequences on the gene expression dynamics and
stochasticity (30,37). For example, negative transcriptional
self-regulation speeds up the expression rise-time after in-
duction (20) and can reduce the cell-to-cell variability in the
protein number at steady state (38), while positive autoreg-
ulation slows down the time of induction (39), and increases
stochastic fluctuations eventually leading to expression bi-
modality in a specific range of parameters (39,40).

Transcriptional regulation is described by multiplying the
transcription rate of the target with a nonlinear function
F(p) of the level of expression of the regulator (30,32). The
empirical dependence is well captured by a Hill function
(31) of the form:

F−(p) = 1
[1 + (p/K)n]

for negative autoregulation,

F+(p) = (p/K)n

[1 + (p/K)n]
for positive autoregulation.(12)
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Figure 4. Minimum of noise in the first-passage time at intermediate protein levels. (A) The coefficient of variation CVt of the FPT is reported as a function
of the target expression level � (in units of the steady-state value). The analytical estimate in Equation (8) (continuous lines) predicts with good precision
the results of exact Gillespie simulations (symbols). Both curves show a minimum timing noise value for an intermediate level of expression, around � �
0.55. We verified that the presence of a minimum is robust with respect to the parameter values, as expected from Equation (8). The plot considers different
values of the burst size b, the key determinant of protein number fluctuations (Equation (3)), while keeping the steady state to a constant value (ab =
2000 proteins). The mRNA half-life is 5 min and the protein half-life around 8 h, roughly corresponding to dilution for bacteria in slow-growth conditions
(see the Materials and Methods section for the biologically relevant range of the parameter values). (B) Increasing the number of proteins produced (thus
relaxing the constraint on the steady state value) lowers the noise in the timing fluctuations if expression is controlled at the transcriptional level, i.e. varying
the burst frequency a. On the other hand, increasing the translation rate, and thus the burst size b, does not affect the timing noise. Lines represent the
analytical predictions while dots are the results of Gillespie simulations.

Here, the dissociation constant K specifies the regulator
level at which the production rate is half of its maximum
value, while the Hill coefficient n defines the degree of co-
operativity of the regulator and thus the steepness of the
regulation curve.

To compare in a meaningful way different regulatory
strategies, it is essential to precisely define the constraints
and the criteria to put different circuits on equal footing
(30,41). For example, to show that negative transcriptional
regulation speeds up the gene response to activation, its dy-
namics can be compared to the one of a constitutive gene
with the same steady-state level of expression (20,30). We
adopt the same approach, comparing different regulatory
strategies while keeping fixed the final expression level. This
can be achieved in practice by choosing the appropriate val-
ues of the regulation strengths (defined by the dissociation
constants K in Equation (12)) and of the basal transcrip-
tion rates km for the three circuits. Given this constraint,
the same average response time can be achieved by different
types of autoregulation (positive or negative) or by a consti-
tutive promoter by setting the crossing threshold at different
positions. This is shown in Figure 5A: the protein expres-
sion tends asymptotically to the same equilibrium level in
the three circuits, and the same average FPT (vertical line)
is measured by placing different thresholds (�0, +, −) because
of the different dynamics of the average protein level p(t) in
the three circuits.

Figure 5B shows the ratio between the timing noise of
the two self-regulations and the timing noise for constitu-
tive expression. Depending on the average crossing time,
different regulatory strategies have different noise proper-
ties. Around the time scale set by the protein half-life (cell-
cycle time in bacteria) adding any type of autoregulation
introduces larger timing fluctuations. On the other hand, if
the crossing time is shorter than the cell cycle, smaller tim-
ing fluctuations can be achieved introducing negative self-

regulation, while positive autoregulation reduces the timing
noise for longer time scales. The scenario emerging from this
result is that the type of regulation that can buffer timing
fluctuations crucially depends on the time that the cell has
to precisely ‘measure’ with respect to the typical time scale
of the process (protein half-life or cell-cycle time for stable
proteins). The reduction or amplification of noise in the pro-
tein number at the steady state seems to be more directly
associated to the sign of autoregulation, i.e. noise reduction
for repression and noise amplification for activation (42).
Instead, the noise properties of autoregulation are context
dependent at the level of FPT fluctuations (Figure 5B).

This effect can be understood qualitatively by looking at
the dynamics of the protein level in Figure 5A, and con-
sidering Equation (8) to connect noise at the protein level
and timing noise. Now, the dynamics of p(t) is strongly de-
pendent on the type of regulation. The expression of a con-
stitutive gene crosses an intermediate (with respect to the
steady state) protein level at a time close to the protein half-
life since t � −log(1 − �)/�p, and this is the range where its
timing noise is close to a minimum. On the other hand, for
negative autoregulation this same timing corresponds to a
protein level much closer to the steady-state value, where the
derivative dp(t)/dt is much smaller, and thus the fluctuations
are strongly amplified at the timing level. The opposite is
true for short times, where this derivative has a larger value
if the gene is negatively autoregulated. Analogous observa-
tions hold for positive autoregulation. Clearly, at a quan-
titative level, the fact that autoregulation can significantly
change the noise at the protein level plays an important role.
However, the contribution from the deterministic dynamics
seems dominant in most cases.

As previously discussed, positive self regulation can dis-
play bistability, and thus bimodality, in the protein level for
specific parameter values (39,40). In this particular case,
the protein expression level can converge to a stable no- or
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Figure 5. Timing noise can be reduced by different regulatory strategies in different time regimes. (A) Setting of the comparison between regulatory
strategies: we imposed the same steady state of expression for the three different circuits. A common average FPT (vertical line) is achieved by placing the
target protein level � at a position that depends on the circuit type, corresponding to �0, +, − in this example. Protein and mRNA lifetimes are defined as 5
min and 8 h, while the steady-state number of proteins is ab = 2000 as in Figure 4. The average burst size has a value of b = 5. The strengths of regulation
are defined by the dissociation constants K = 1000 and K = 90 (proteins) for negative and positive autoregulation, respectively. The Hill exponent n = 2
was used for regulations. (B) With the constraints shown in A, the timing noise for autorepression (squares) and autoactivation (triangles) are compared
to the timing noise of a constitutive gene as a function of the average FPT value. Given the common final steady-state level of expression, each average
FPT (x-axis) corresponds to a different threshold level for the three circuits (as illustrated in panel A) and to a different noise level. When the mean FPT
is close to the protein half-life (or to the doubling time for stable proteins) both transcriptional autoregulations increase the timing noise (central region).
The two shaded regions show the FPTs for which self-regulation works as a timing noise filter. In particular, autorepression reduces timing noise for time
scales shorter than about 0.5 doubling times, while autoactivation is efficient in timing noise reduction on time scales longer than about 1.5 doubling times.

low-expression state or to a high-expression state depending
on initial conditions. Assuming a threshold value between
these two stable states and an initial condition of low ex-
pression, the timing of threshold crossing would be defined
by the residence time in the low-expression state. Bistable
circuits are typically found at the basis of cell-fate deter-
mination and phenotypic heterogeneity, e.g. in the context
of bacterial persistence and competence (43), where noise-
driven stochastic switches are relatively rare. Therefore, a
bistable circuit seems a less well-suited strategy to transmit
signals within timescales comparable to the cell cycle and
with a reliable timing, as in cell-cycle regulation or circa-
dian clocks. As a consequence, we did not explore param-
eter regimes for which the positive feedback shows bista-
bility. In this case, other mathematical tools can be used to
estimate the fluctuations in the residence times (44,45).

DISCUSSION

Our two most important results are the following. First, the
fluctuations of the time necessary to reach a threshold ex-
pression level have a minimum value. This optimal thresh-
old level of expression is approximately half the steady-state
value. Thus, it does not naively coincide with a noise mini-
mum in the protein number, which is instead monotonously
decreasing while approaching the steady-state level. As a
consequence, the level of noise in protein number does not
directly translate into a level of timing fluctuations, since
the out-of-equilibrium dynamics plays a non-negligible role.
Therefore, the cellular strategies to control noise can be sig-
nificantly different depending on what is exactly the biolog-
ically relevant variable, e.g. protein intracellular concentra-
tion or threshold-passing time.

Second, positive and negative transcriptional gene self-
regulation can alter the level of timing fluctuations: the for-
mer reduces timing fluctuations at short times compared to

one cell cycle (the system’s intrinsic time scale), while the
latter reduces timing noise at large times. In other words,
the role of autoregulation in controlling timing noise is con-
text dependent. In the intermediate region (around one cell
cycle), the absence of any regulation is the best strategy.
Importantly, different regulatory strategies have been com-
pared in a mathematically controlled way (30), thus measur-
ing the timing variability given a fixed average crossing time
and a fixed number of proteins produced. The cell can in
principle further reduce the timing noise, as well as the noise
at the protein level, by paying the cost of producing more
proteins. However, we showed that also for timing noise this
is effective only if the production is increased at the tran-
scription level.

Giving up the ambition of a full analytical solution for
the FPT problem, we provide a general approximate rela-
tion linking timing fluctuations and noise at the protein level
that leads to a closed-form expression for the timing noise of
constitutive expression. This expression was not employed
in previous studies; we tested it with exact stochastic sim-
ulations, and appears to be useful in many regimes. Im-
portantly, this simple estimate may be applicable to cellu-
lar first-passage time noise problems in more general con-
texts than the gene expression problem considered here, in-
cluding protein modification, signal transduction and titra-
tion, which has likely importance for cell-cycle progression
(46,47). The importance of this estimate is that it gives a
clear intuition about general features of timing fluctuations.
In particular, in our case we can capture and explain the fact
that the timing noise shows a minimum value at a thresh-
old expression level approximately half of the steady-state
value. In the case of a transcription factor inducing a target
gene, this translates into setting the value of the dissocia-
tion constant around half the steady-state level of the reg-
ulator. This general property can be used for the design of
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synthetic genetic circuits such as clocks and oscillators for
which a precise timing is relevant (48).

A recent interesting study also produced analytical esti-
mates of the FPT fluctuations (7), but only in the specific
case of gene expression in absence of protein degradation
or dilution through growth. Although the results appear to
be relevant for the case of lysis time variation in the bacte-
riophage lambda, they do not easily generalize to the classic
scheme of gene expression in Figure 1, which is more realis-
tic for most genes. Indeed, as we showed, the intrinsic time
scale defined by protein half-life plays an important role in
shaping timing fluctuations.

Another study (19) proposed an approach to estimate the
FPT distribution based on numerical solutions of a renewal
equation, but did not explored systematically the sources or
controls of timing variability. A subsequent work (10), fo-
cused on the role of the mRNA to protein lifetime (the pa-
rameter � = �p/�m) in shaping timing fluctuations for au-
toregulatory loops. Using a continuous approximation and
numerical simulations, the authors showed that in these cir-
cuits timing fluctuations can be tuned by �. Here, we extend
the list of the key variables determining timing fluctuations,
and we show that different autoregulatory strategies can ef-
ficiently control timing noise at different time scales. Impor-
tantly, we also provide an analytical explanation of our re-
sults, based on a simple, although approximate, approach
to evaluate timing fluctuations and intuitively understand
some of its general properties.

An important technical extension of the work presented
here would be the inclusion of extrinsic fluctuations, i.e. fluc-
tuations in the model parameters due to the variability of
global factors affecting gene expression such as polymerases
or ribosome concentrations (49). Extrinsic noise can be rel-
evant especially for highly expressed genes (21) and its ef-
fects on timing fluctuations is completely unknown. Unfor-
tunately, the sources of extrinsic noise are still not fully un-
derstood, and analytical calculations easily become unfea-
sible in presence of parameter fluctuations. Therefore, this
extension is out of the scope of the present work and will
require an extensive exploration of the possible sources and
functional forms of extrinsic noise and of its propagation at
the timing level. Moreover, more complex models explicitly
accounting for cell-cycle progression, DNA replication and
cell division may be necessary to fully capture the details of
expression timing fluctuations, especially if the time scales
in analysis are short with respect to the cell cycle (50,51).

Importantly, fluctuations in the time necessary for a reg-
ulator to reach a threshold expression level may not be the
only source of the overall timing noise. In fact, a regulator
reaching a critical expression level also needs to be ‘sensed’
by the downstream processes. For example, TFs have to find
and bind target promoters in order to control their expres-
sion. This ‘reading process’ takes some time and introduces
additional timing variability. An order-of-magnitude esti-
mate of reaction times points to the presence of a separa-
tion of time scales between the relatively slow change in a
protein level due to transcription and translation and the
faster kinetics of target search and binding/unbinding to
promoters (30,52). More precisely, single-molecule experi-
ments addressing the kinetics of TF search (53), have shown
that a single TF molecule can find its binding site in about 4

min (54), and this search time is expected to reduce propor-
tionally to the number of TFs (55). Hence, for TFs that are
present in hundreds or thousands of copies, we expect these
times to be negligible compared to changes in protein levels,
which happen on a time scale of the order of the cell cycle.
These observations support a prominent role of the regu-
lator expression dynamics with respect to the reading pro-
cess of its targets in establishing timing fluctuations, unless
the TF copy number is very low and the threshold cross-
ing time is relatively fast. This general consideration finds
some experimental evidence in the context of yeast meiosis:
the variability in the expression dynamics of a meiotic mas-
ter TF was shown to be the dominant source of variability
in the onset time of downstream targets (and thus on the
resulting phenotypic variability) (12). However, a general-
ization of our modeling framework to include downstream
processes should be required in cases in which the out-of-
equilibrium kinetics of TF binding plays a non-negligible
role in the observed expression dynamics (56).

While the biologically relevant circuits are in general
more complex than those considered here, we can specu-
late on the implications of our results in a wider context.
It is interesting to notice that the promoter of the dnaA
gene is repressed by its own protein DnaA, forming a neg-
ative self-loop (57). DnaA is responsible for the initiation
of DNA replication in E. coli by promoting the unwinding
of the double-strand DNA when its level reaches a certain
threshold (58). The initiation timing have to be precisely reg-
ulated to couple cell growth and division with DNA repli-
cation (59), and this timing is clearly shorter than the cell-
cycle time. Our analysis suggests that indeed negative self-
regulation can help controlling the timing fluctuations on
such a time scale.

Additionally, the importance of expression timing could
be relevant for genes beyond cell-cycle and circadian clock
regulators. In fact, several endogenous genes are expressed
in a precise temporal order. This is the case, for example for
genes involved in flagellar biosynthesis (60), or genes cod-
ing for enzymes in the amino acid biosynthesis systems of
E. coli (34). This temporal order has been proposed as the
result of an optimization process due to a trade-off between
speed and cost of production (30,34). Often the genetic net-
work implementing this temporal order is composed by a
single TF that triggers the response of a set of target genes
at different threshold levels (30). If the delay between the
expression of these genes has to be tightly tuned, timing
fluctuations in reaching the different thresholds could be
detrimental. Interestingly, many of these master TFs are au-
toregulated. For example the lrhA gene, a key regulator con-
trolling the transcription of flagellar, motility and chemo-
taxis genes, shows positive autoregulation (61). On the other
hand, some of the pathways in amino acid synthesis are con-
trolled by a single regulator with a negative self-loop (34).
It is tempting to speculate that this can be also due to reg-
ulation of timing noise and not only of its average value. In
fact, the response of metabolic genes is known to be gen-
erally fast (order of minutes) (34), while the complete for-
mation of a functioning flagella is intuitively a more time
consuming process. Ideally, experiments directly checking
the timing variability for different values of the threshold,
e.g. looking at the response in fluorescence of target pro-
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moters with different binding affinities, or measurements of
the timing noise in presence or absence of autoregulation
would be the perfect tests of our theoretical work.
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